
A data infrastructure for heterogeneous telemetry
adaptation. Application to Netflow-based

cryptojacking detection
Alejandro A. Moreno-Sancho

Cybersecurity Laboratory
Atos Research & Innovation

Málaga, Spain
0000-0001-8863-1875

Antonio Pastor
GCTIO Office
Telefónica I+D
Madrid, Spain

0000-0003-2849-9782

Ignacio D. Martinez-Casanueva
GCTIO Office
Telefónica I+D
Madrid, Spain

0000-0002-8573-127X

Daniel González-Sánchez
Dpto. de Ingenierı́a de Sistemas Telemáticos

Universidad Politécnica de Madrid
Madrid, Spain

0000-0002-7691-0030

Luis Bellido Triana
Dpto. de Ingenierı́a de Sistemas Telemáticos

Universidad Politécnica de Madrid
Madrid, Spain

0000-0001-9591-0928

Abstract—The increasing development of cryptocurrencies has
brought cryptojacking as a new security threat in which attackers
steal computing resources for cryptomining. The digitization of
the supply chain is a potential major target for cryptojacking due
to the large number of different infrastructures involved. These
different infrastructures provide information sources that can be
useful to detect cryptojacking, but with a wide variety of data
formats and encodings. This paper describes the Semantic Data
Aggregator (SDA), a normalization and aggregation system based
on data modelling and low-latency processing of data streams that
facilitates the integration of heterogeneous information sources.
As a use case, the paper describes a Cryptomining Detection
System (CDS) based on network traffic flows processed by a
machine learning engine. The results show how the SDA is
leveraged in this use case to obtain aggregated information that
improves the performance of the cryptomining detection system.

Index Terms—Netflow, YANG, Data modelling, Data Normal-
ization, Data Aggregation, Supply chain, Cryptojacking.

I. INTRODUCTION

The advancement of cloud technologies and IoT has enabled
the digitization of the supply chain, thus achieving countless
benefits, however, this also leaves the supply chain open to
potential attacks [1][2]. Projects such as FISHY [3], seek to de-
velop solutions that bring cyber resilience to the supply chain
to enable business continuity. With supply chain systems, we
are faced with a considerable amount and variety of data.
When IT is combined with OT (Operational Technology), and
information is obtained from a wide variety of infrastructures
(e.g., cloud, network, IoT...), the schema and even the encoding
of the data can be very diverse. In order for the various
modules or applications that conform a project to consume the
monitored data, they must not only be adapted to the correct
format and encoding, but also be anonymized, filtered or even
derived and enriched. This task is both costly and not reusable,

as each consumer needs the data in a specific schema and
encoding format.

2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICIN56760.2023.10073490

Moreover, supply chain systems may require a high com-
putational capacity since they must process a very large
amount of data, therefore making them the perfect target for
cryptomining attacks, that have been enhanced as a result of
cryptocurrency developments. However, traditional Intrusion
Detection Systems (IDS), which use Deep Packet Inspection
(DPI) and signature-based methods, are not effective for
detecting this kind of malware due to the complexity of
infrastructure, the massive increase in traffic, and the heavy
use of encrypted connections. But with the advent of ML
(Machine Learning) mechanisms, IDS have become more
efficient, especially when using flow statistics, which allows
detection of threats with lower generated latency and even with
encrypted traffic. Netflow, a protocol for obtaining network
flow statistics used in this paper, is one of the most widely
used by network operators.

Using ML for threat detection has its downsides, predictions
are commonly not perfect, and its likelihood to have false
positives and negatives is high. In addition, datasets are
scarce, may contain poor quality samples (i.e., samples with
a large number of erroneous measurements), and poor format
specification. Some studies address data scarcity by generating
synthetic traffic using NFV (Network Function Virtualization)
and SDN (Software-Defined Networking) [4], but data pre-
processing is still necessary to be performed, differently for
each dataset and system.

It is noticeable that there is a widespread problem for the
adaptation of data sources to data consumers. Therefore, in this
paper, we intend to lay the foundations of the Semantic Data
Aggregator (SDA), that through data modelling with YANG,

https://doi.org/10.1109/ICIN56760.2023.10073490

allows an easy, scalable, and fast way, to adapt any source to
any consumer.

The dangers of a system failure due to cryptojacking be-
come obvious in scenarios such as connected vehicles, as it
is studied in FISHY [5], so a Cryptomining Detection System
(CDS) is also developed to work as a consumer for the SDA.

Both the SDA and the CDS have already proven their use-
fulness in other projects such as PALANTIR [6], where they
are used as components of the security-as-a-service solution.

The remainder of the document is organised as follows.
Section II gives a brief description of the current state of
the art of traffic monitoring, modelling, and threat detection
technologies. Next, in section III, the architecture of the
proposed system is detailed, with emphasis on individual
elements of the architecture and how the system is deployed.
This is followed by section IV with the evaluation of the
system. And finally, section V, provides the conclusions and
future directions of this research.

II. BACKGROUND

A. Traffic Monitoring

1) SNMP: If a network component fails, the first step in
getting it to repair itself automatically is for it to realize
it is down. This is why traffic monitoring is so important.
Later, traffic monitoring began to be used for more powerful
tasks: knowing the network load, identifying needs, identifying
problems, or even with security purposes.

Due to these monitoring and management needs, SNMP
(Simple Network Management Protocol) was created. Any
device that has a MIB (Management Information Base) can be
managed and monitored, so it can support routers, switches,
servers, and even printers. Metrics to pull from devices may
include: CPU consumption, memory, temperature, or any
variable that is present in the MIB of the device.

Netflow was created by Cisco with the purpose of moni-
toring network traffic. Netflow does not allow the collection
of device information like SNMP; rather focused on network
traffic flows. Netflow can only monitor IP traffic, which is not
a problem considering that most of the traffic nowadays is
IP. Netflow and SNMP are both different and complementary
protocols, the choice of one or the other will depend on the
objective to be achieved.

Netflow was originally implemented as a feature of Cisco
routers. There are currently several versions (1, 5, 7, 8 and 9).
Although an informative document exists [7], it is not really
standarized.

2) Netflow version 9 (Netflowv9): Netflow version 9 is
becoming one of the most widely used protocols for flow mon-
itoring in security-related aspects. There are a large number of
articles that refer to its use for threat detection systems using
Machine Learning [8][9].

The purpose of Netflow is to monitor network flows, uni-
directional sequences of packets that share the same source
and destination IP, the same source and destination port, and
the same protocol. The Netflow architecture consists of three
main components:

• Flow Exporter: Responsible for aggregating the packets
belonging to the same flows and sending them to the
collectors.

• Flow Collector: It is in charge of receiving the flows sent
by the exporter.

• Analysis Application: The Collector will send the in-
formation so it can be processed, stored, or analyzed by
other applications for any purpose.

B. Modelling Languages

A modelling language refers to a set of terms and rules
that allow the information structure and behaviour of a system
to be represented in written form. Protocols such as the
aforementioned SNMP have associated modelling languages,
in this case, SMI (Structure of Management Information),
based on ASN.1 (Abstract Syntax Notation One). With the
emergence of NETCONF, there was a need for a language
that defines the data models for the management of network
infrastructures, so YANG [10] was developed.

Although its initial development was for NETCONF pro-
tocol and XML encoding, YANG now supports independent
transport protocols such as RESTCONF or gNMI, and data
encoding formats like XML, JSON, or PROTOBUF. Since the
SDA long-term intention is to be able to handle data coming
from heterogeneous sources, this is a considerable advantage,
as it would not matter which protocol is used, or in which
encoding the data is transmitted, as long as there is a YANG
model describing the data.

The benefits of YANG apply both to the system that has
been implemented and to the data itself. YANG allows to
add semantic descriptions and metadata that make the data
modelled more readable and understandable, so the benefit is
not only at the machine level but also at the human level.
Furthermore, it is quite common to obtain erroneous metrics
and to have to perform a data pre-processing stage prior to
the training of a ML algorithm. However, the normalization
of the data received with respect to the YANG model used, will
reduce the reception of erroneous metrics, since it is possible
to accurately describe the structure and each field of the data,
describing name, type of value, range for numerical values,
and rules for text values. This flexibility in describing a field
will allow any data received to be normalized without the need
to implement specific pre-processing stages.

In regards to Netflow, there are YANG models developed by
Cisco [11]. The models are for managing Netflow exporters
and not for modelling Netflow monitoring data itself. This is
why a model described in a previous work [12] is used. This
work develops YANG models of the data provided by Netflow
v9.

C. Threat Detection

One of the main motives for cyber attacks is to steal money.
Ransomware have been one of the most famous methods since
2005. An analysis of the first ransomware attacks carried out
in [13] indicates that some of the factors that made the attacks

initially not very effective include the low reachability, a weak
encryption, or the payment method.

Due to the development of more advanced accessibility
and encryption techniques, ransomware attacks have im-
proved considerably. Moreover, the creation of cryptocur-
rencies brought advantages such as privacy and security in
transactions, leading to a better payment method. However,
ransomware attacks have some disadvantages: the victim may
not pay the ransom, and it can be simply protected against
by making frequent, secured backups. On the other hand,
the solution is not so simple when it comes to cryptomining
attacks, which are on the rise. Studies such as Symantec show
that 8 million attacks could be detected in just 3 months [14].

Cryptojacking is a type of malware that aims to infect a
machine to use its computational resources for the purpose
of benefiting the attacker by mining cryptocurrency. This is
clearly an advantage compared to ransomware, where success
depends on many factors such as the victim’s willingness to
pay the ransom. In cryptojacking, the more machines that are
infected the better, since payment is guaranteed.

Traditional signature-based intrusion detection is insufficient
to prevent cryptojacking due to the continuous and rapid
development of attacks. In addition, IDS are only able to
analyse the traffic passing through them. Using anomaly-based
systems can also be challenging as cryptomining protocols
hardly generate any traffic, as evaluated in [15]. Therefore, a
proper monitoring scheme accompanied by a good detection
system, can allow all traffic occurring inside the network to
be analysed, and detect activity such as one machine trying to
infect another.

Among all the detection techniques, the most common are
to use device metrics or traffic related metrics. When using
metrics from the device, it is common to use hardware metrics
as the temperature, hardware consumption, CPU utilisation
among others [16][17]. However, using these metrics is gener-
ally insufficient, as some of the cryptomining protocols have
functionalities that make detection based on these parameters
difficult. Some may set CPU usage limits, while others act for
a short period and then move on to the next victim, making
them difficult to detect by antivirus. Most algorithms even use
operations that are common in benign applications such as
compression and decompression. A solution to some of these
inconveniences, along with an increase in the accuracy of the
models, can be seen in [18] through the use of performance
counters. They allow the status of components from the
hardware level to the application level to be obtained, and are
an effective solution to reduce the number of false positives
[19][20].

On the other hand, there are detection solutions by means
of the traffic produced. In this case systems have already been
developed that satisfactorily classify flows based on features
obtained from the traffic. For example in [21] it is used libpcap
to capture traffic and an application based in flowtbag to
transform it into flows. In [15] a passive network eavesdropper
is used to capture cryptocurrency-related traffic along with
non-malicious traffic from YouTube, Skype and office network

traffic.
Taking advantage of the benefits of both methods, there

are also studies [22][23] that use both metrics to implement
detection systems.

This study focuses on the use of traffic metrics. The
traffic metrics used are based on Netflow flows, which have
already been analyzed for cryptocurrency purposes. In [24]
The behaviour of Ethereum is analysed on the basis of Netflow
related flows. Netflow/IPFIX is proposed to replace DPI-based
detection systems in [25]. In [26] Pastor et al. propose a solu-
tion based in traffic flows for encrypted connections, making
a comparative analysis between multiple ML algorithms and
features extracted from different applications (i.e., Netflow and
Tstat).

Although the main focus of this paper is the creation of
a YANG model-based normalization and aggregation system
for Netflow data, the development of cryptomining detection
models is a very interesting proof of concept for such a system.

III. SYSTEM DESIGN AND IMPLEMENTATION

A. Scenario, architecture and tools

A scheme of the complete scenario can be seen in Figure
1, where it can be seen on the left the simulated network that
is being monitored, in the centre it can be seen the SDA,
and finally on the right the CDS (Cryptomining Detection
System), which will act as a consumer of the SDA. A brief
description of each of the components of the scheme is given
below, however, each of the components will be described in
depth in the following sections.

OpenStack has been used to setup 11 machines, 10 (crypto1
to crypto10) of them will act as infected, the remaining one
(Exporter) will be used to receive the traffic reflected from
these machines. Each of the infected machines will send a
copy of any traffic passing through its interface, whether it is
cryptomining traffic or not, to the Exporter machine. The ma-
chines generate video and audio streaming, cloud storage, web
surfing and other type of traffic, connecting to servers on the
internet and within the dedicated network. For the generation
of cryptomining traffic, different cryptomining Monero clients
are used, these are connected to mining pools on the internet.
Both cryptomining and normal traffic are formed by encrypted
and non-encrypted connections, in order to accurately simulate
all possible kinds of traffic in any device. The Exporter will
use the Softflowd tool to transform received network traffic
into valid Netflowv9 flows. Within the SDA, the Goflow2 tool
will be in charge of collecting these Netflowv9 flows. From
here, an input driver and an output driver, together with other
applications developed with the Apache Flink framework, will
make the relevant transformations until the final data is written
in an output topic, which will be consumed by the CDS.

As shown in Figure 1, Apache Kafka acts as a message bus,
providing interconnection between the different components
and applications that will process the network lows. In the
following subsections there is a detailed description of each
of the applications developed with Flink, in addition to the

mirroring
traffic

mirroring
traffic

Exporter
(192.168.165.198)

crypto10
(192.168.165.142)

crypto1
(192.168.165.138)

softflowd

goflow2

Semantic Data Aggregator (SDA)

(Netflow_v9)

Cryptomining
Detection

System

Message Bus
(Apache Kafka)

CSV Nv9_aggJSON
flows

Monitored Network

Flink Cluster

Apache Flink
Application 2

Apache Flink
Application 1

Apache Flink
Application n

YANG Normalized
Data

Fig. 1: Diagram of the complete scenario: Monitored Network, SDA and CDS.

CDS, and the tools used for the Netflow related exporter and
collector.

B. Netflow Exporter

The traffic from the 10 machines is mirrored to the eleventh
one. Softflowd is used to obtain the Netflowv9 export packets
from the mirrored traffic received. Then Softflowd is config-
ured to push the export packets into the machine and port
where the Netflow collector is listening.

Softflowd has been chosen over other exporters due to its
ease of installation and configuration, as well as its flexibility,
since it allows configuring parameters that facilitate the debug-
ging of applications, such as creating Netflowv9 flows from
PCAP files, or selecting the Netflow version to be generated.

C. Netflow Collector

The collector is the first component of the SDA. It receives
Netflowv9 traffic and generates a number of JSON values
equal to the number of flows inside the existing export packets.

For the collector we are using Goflow2, an open-source
application programmed in Go that can be used for different
versions of Netflow and also for IPFIX and sFlow protocols.
It is developed for systems with a decent amount of samples
and to scale horizontally, as is our case, since the monitored
networks can send a considerable amount of traffic.

Through this project an open-source contribution have also
been made to the Goflow2 solution, so that the output has been
enriched, adding timestamps related to the flow with greater
granularity than the already provided. Therefore, a greater
consistency has been achieved with respect to the Netflow
standard [27], by adding these improvements also in Netflow
version 5 and IPFIX.

D. Input Driver

Java and Maven are used for the development of the
applications, because Java and Scala are the languages in
which the core of Flink is implemented. Moreover, the Java
library YANG-TOOLS, which is an OpenDayLight compatible
project, allows us to use YANG in JAVA. Using Maven and
YANG-TOOLS we can generate Java classes from a YANG

file, and instantiate them in the Flink application to serialize,
deserialize and perform the relevant transformations.

In Figure 2, the input driver logic can be seen. First, the
message received in JSON format from a Kafka topic, which
is a NetFlow record previously published by the GoFlow2
collector, is mapped into the Java class generated from the
YANG file. Then the data, which now follows the schema
modelled in the YANG file, is serialized to be sent to another
Kafka topic where the following application is subscribed.

The development of any application will have a similar
methodology, the only difference will be that instead of a
mapping between two schemas, it will be done any other data
transformation.

Flink Application

Source Sink

Kafka
topic

Kafka
topic

netflow-
v9.yang

YangTools
and

Maven

Generated Classes

Netflow.java FlowDataRecord.javaExportPacket.java

DataStream<String>
Input

DataStream<String>
Processed

Instantiate Netflow Class

Mapping Input (String
JSON) to Processed

(Netflowv9 class)

Fig. 2: Flink input-driver application architecture diagram.

A future proposal is to have the ability to achieve this one-
to-one mapping without the need to develop new drivers, but to
indicate to a generic driver how the mapping between YANG
models should be done.

E. Aggregation

Aggregation is one of the most important parts of the
system. If we did not implement any aggregation application,
the benefits of the system would only limit to the normaliza-
tion of the data. Although normalizing the data brings great
advantages already mentioned, such as the ease of avoiding
invalid samples thus eliminating a possible pre-processing step
or the context information provided by standardising the data
received from the different sources into models, aggregation

brings other very valuable advantages for consumers. Through
an aggregation stage, data can be improved so that the con-
sumer can use this enriched information to achieve better
results in its objective. From the point of view of the CDS
as a consumer, training the model with one feature or another
will cause significant variations in the outcome of the models.

In [26], parameters that are not found in Netflowv9 or
obtained through Goflow2 are used. Therefore, to obtain these
parameters it is necessary to implement a flow aggregation ap-
plication. The application will use the information of each flow
to obtain these statistics. This implies the implementation of a
new YANG model that models the related flows of Netflowv9
along with the aggregated parameters. The YANG language
facilitates this by means of the “augment” statement. These
allow us greater modularity, since for the implementation of
the aggregated model we will import the base model, and use
the keyword “augment” to extend the fields of the base model.

To perform the aggregations with the Flink DataStream API
we will use the “map” transformation, which allows us to take
one element and produce another.

Some of the Netflow related variables, such as bytes or
packets, contain the string “in” or “out”, which indicates
the direction of the flow. However, the variables “bytes-
out” and “pkts-out” always appear with a value of 0 when
obtained by Goflow2. After studying this behaviour, it is
observed that Softflowd always separates a communication
into unidirectional flows. That is, the communication between
hosts A and B is separated into A→B and B→A flows, and is
not considered as a single bidirectional flow. This behaviour
prevents the correct functioning of the developed aggrega-
tion application and does not take advantage of Netflow’s
capabilities. Therefore, it was decided to implement another
aggregation application that allows transforming unidirectional
flows into bidirectional flows by means of windows. The Flink
API provides us with functions that allow the separation of
flows into different partitions via the keyby function. The flows
will be separated by means of a key formed by the addresses
and ports of origin and destination ordered together with the
start and end time of the flow. They must be ordered so that
two unidirectional flows must go to the same partition.

Subsequently a window is created, each partition will have
its own window. For these windows Flink implements time-
dependent triggers and triggers dependent on the number of
events in the window. A trigger is what will lead the window
to be processed. Using a time trigger can be a solution. When
the time ends and the window is processed, the number of
elements in the window is checked. If there is one element, it
is sent without further processing and the flow is assumed to
be unidirectional, and thus cannot be aggregated. If there are
two events, they are added in a bidirectional flow. However,
the operation is not optimal, because if the rate of arrival of
events together with the time of the window are high, the
amount of partitions created may be too large. To solve this
efficiency problem, we implement a trigger itself, which allows
to create windows depending on the time and the amount of
elements in the window. In this way, if two events arrive at

the window, they are processed directly without waiting any
timer, and if an event arrives and passes a certain time, it is also
processed. In this way we manage to considerably increase the
rate of packets that we can aggregate. A schematic of how this
aggregator works can be seen in the Figure 3.

Data Source keyby()

Data Sink

Window length = 2

Event 2 Event 1

Event 1

Time after Event 1 => x ms

Event Count == 2
Process the

windowsrc-address
dst-address

src-port
dst-port

first-switched
last-switched

Alphabetically
ordered

Fig. 3: Unidirectional to Bidirectional Aggregation Applica-
tion.

F. Output Driver

The output driver will always be the end of the pipeline,
working to adapt the normalized and aggregated events to the
consumer. YANG-TOOLS library gives us plenty of ease, due
to the fact that it already supports the serialization of the events
to different schemas (e.g., JSON or XML).

The consumer will be a Cryptomining Detection System that
will use Machine Learning. These type of systems normally
need an array format to make the predictions, at least with
well-known libraries such as Scikit-Learn. Therefore, for the
ease of the subsequent transformation into array-like struc-
tures, the output will be in Comma Separated Values (CSV).
YANG-TOOLS does not support CSV serialization, therefore,
a specific function is developed to be able to serialize to CSV
for the consumer.

Emphasize again that the purpose of the SDA is to fa-
cilitate the ingestion of data from heterogeneous sources by
consumers. Therefore, the final goal is to lay the foundations
for generalizing this output driver as was done with the input
driver case.

G. Consumer

The events processed by the system can be consumed to be
stored, to continue processing the data, for anomaly detection,
threat classification, among others. In this case, a consumer
is used to detect cryptomining traffic. For this purpose, a
Python application has been developed. Making use of Scikit-
Learnlibraries, a classification model is trained. The results
shown in [26] indicate that using RandomForestClassifier is a
good choice for the traffic we are using. The application reads
events from a Kafka topic in a specific CSV format and writes
results in another topic if the traffic belongs to cryptomining
protocols.

H. Deployment

Both Docker and Kubernetes are open-source applications
that allow the orchestration of containerised applications. In

fact, Kubernetes can work with Docker, the difference between
them is that Docker is designed to package applications on a
single node, while Kubernetes is more flexible and makes it
easier to handle the scalability of applications.

For the development of the system and the initial deploy-
ment Docker was used. Services were launched by using
Docker Compose, where different parameters can be specified,
such as the image to use or environment variables for the
configuration of them. Thus, a single Flink cluster is deployed,
consisting of a JobManager and one or more Task Managers
(in charge of executing the applications), sharing all the same
resources of a JVM (Java Virtual Machine). This results in
concurrency problems with YANG-TOOLS library, because
the YANG schemas seem to be loaded into memory. To solve
this, two solutions are proposed and developed:

1) Flink Application Mode with Kubernetes: Using Appli-
cation Mode deployment each application runs in a different
JVM. With the previous mode we could create several slots in
a TaskManager, providing scalability and a failover system.
Now this capabilities are provided with Kubernetes, which
also provides some degree of abstraction of the Flink clusters,
facilitating system orchestration. A Kubernetes operator for
Flink developed by Spotify (flink-on-k8s-operator) is used,
facilitating the deployment and lifecycle management of Flink
applications.

2) Apache Flink Statefun: For this solution, a special image
of Flink called Flink StateFun has been used. This image let
us develop applications that communicate via HTTP/gRPC.
Therefore, any programming language that allows to deploy a
server of this type can be used. So instead of using YANG-
TOOLS we can use libraries for other languages, such as
pyang for Python or ygot for Go. In addition, this allows
physical separation between the Flink cluster and the different
applications or functions, so they can be scaled independently.
Figure 4 illustrates the described scheme.

<
Apache Flink

StateFun ClusterApache Flink
StateFun Cluster

flink-conf.yaml
Flink StateFun

clusters
module.yaml

Ingress Egress

Same or other
Kubernetes

Cluster

Kubernetes
Cluster

App 2 App 1 App 1 App n

Ka
fk

a
in

gr
es

s
Ka

fk
a

eg
re

ss

Java

JavaScript
Go

Python

MASTER

WORKER 1 WORKER 2 WORKER n

Physically Separated Functions

WORKER nWORKER 2WORKER 1

App 2

Fig. 4: Scheme of multiple functions implemented in different
programming languages using Apache Flink StateFun cluster.

The file flink-conf.yaml allows to configure Flink and State-
fun properties. The file module.yaml is used to specify the
location of the HTTP/gRCP endpoints, the source (ingress)
and the consumer (egress).

The flink-on-k8s-operator does not support this Flink clus-
ter. Therefore, Helm is used to package the applications,
adding flexibility and ease of deployment.

Although the first solution is chosen, the second solution is
also implemented to add flexibility to the development of the
system.

IV. EVALUATION

In this section, multiple tests will be carried out to determine
the efficiency of the system implemented for both the SDA and
the CDS.

A. SDA Evaluation

This tests focus on measuring the efficiency of the SDA
for latency and scalability purposes. To measure the latency,
the use of functions such as System.nanoTime() is not feasible
due to the complexity of the applications (use of partitions and
windows, topic reading and writing latencies, etc).

Some mechanisms are implemented in the Flink API such
as LatencyMarkers, but as discussed in [28] they do not
reflect the real latency as they bypass user functions where
most of the latency is expected. Also, there are components
in the system that do not work with the Flink API, such
as Goflow2. Due to this, two additional Flink applications
have been developed. The two applications are placed at the
input and output of the related application or driver to be
measured. They take timestamps both when they send and
receive the event, together with a hash of specific fields that
will allow later, through a script, to relate both timestamps and
calculate the latency. This process adds the latency relative to
reading and writing from Kafka topics, but it allows a fairer
comparison between the SDA components and a more accurate
measurement than the above-mentioned methods.

A test with 1250 samples was performed. Figure 5 shows
the results of latency obtained for the four applications. In
the first figure, it can be seen that for the input-driver the
latency increases for each event that arrives, indicating that
we have overloaded the driver, introducing a number of events
per second higher than the driver’s processing capacity. Since
Kafka command console has been used to write the events
into the Kafka topic, the event rate has not been controlled,
so the latency results do not allow a fair comparison between
the different applications. However, it is clear that the input-
driver has been overloaded, while the aggregation application
and the output driver seem to have maintained a stable latency
despite having a higher rate, which was measured later. These
are clear indicators that in a real system with a high event
rate, we may need more parallelization for the input driver to
avoid overloading the system.

To avoid the disparity in the input rate and to be able to
make a fair comparison in terms of latency measurement,
another application is implemented to allow us to manipulate
the rate of events per second that are written to the topic. In
addition, a very low rate is chosen (one event per second)
to ensure that none of the applications are overloaded. In the
Figure 5 below, the aggregator and output driver have very
low latency, followed by the input driver, which is now not
overloaded. Aggregation of individual flows to bidirectional
(i.e., netflow2bidi) seems to perform worst. This is due to

the event rate, since the minimum time for the application
to process a window is when at least two samples arrive (one
second).

0 200 400 600 800 1000 1200
Event Index

0

100000

200000

300000

215294

Processing Time

0

5000

10000

15000

20000

Du
ra

tio
n

(m
s)

21551

147
106

input-driver
netflow2Bidi
netflowAgg
consumer-CDS

input-driver netflow2Bidi netflowAgg consumer-CDSinput-driver netflow2Bidi netflowAgg consumer-CDS
Application

0

200

400

600

800

1000

1200

176

1101

120

1078

Processing time boxplot (Controlled Rate)

6

8

10

12

14

16

Du
ra

tio
n

(m
s)

10

13

9

12

Fig. 5: Latency for uncontrolled and controlled event rate. In
the boxplot, red dashed marks are the mean while the orange
ones are the median.

As seen in Figure 5, it is clear that the system may need to
be scaled up at some point. Since the deployment of the system
is done through Kubernetes, a Helm chart is developed that
allows to launch the complete pipeline. Therefore, multiple
pipelines (i.e., Goflow2 and all the Flink applications) are
deployed with this Helm chart. In the Kubernetes cluster, a
Prometheus service is installed so that we can collect metrics
related to the system’s memory and CPU. The experiment
consists of launching seven complete pipelines every five
minutes, so that we can see the variations in memory and
CPU during each deployment. Collected metrics are plotted
in Figure 6.

9:35 9:39 9:43 9:47 9:51 9:55 10:0 10:4 10:8 10:12
Time (hour:minutes)

0

10

20

30

40

Gi
B

Memory and CPU with Multiple Pipelines

0

1

2

3

4

Se
co

nd
s

Memory usage
CPU usage

Fig. 6: Memory and CPU usage during the deployment of
seven full Netflowv9 pipelines.

The figure shows the sum of memory and CPU consumed
by each pipeline. We can observe seven peaks of CPU usage
at the times when each pipeline is deployed. After that, the

CPU increase is minimal and behaves in a linear fashion. In
terms of memory, the increase is similar with each deployment,
indicating also a linear behaviour. As a result, it is shown that
the system can scale correctly without any CPU or memory
issues.

B. CDS Evaluation

In [26], the authors make a comparison between the aggre-
gated features obtained from Netflowv9 and the ones obtained
with TSTAT. Tests are also performed with the combination
of both features. The best results are obtained with TSTAT.
However, no tests are performed to see whether this ag-
gregation of Netflowv9 features has a significant impact on
the prediction results compared to not using no aggregated
Netflowv9 features.

Features F1 Precision Recall AUC ROC

netflow 0.9843 0.9842 0.9844 0.9922
netflow inbound 0.9845 0.9805 0.9885 0.9942

netflow inoutbound 0.9874 0.9862 0.9885 0.9943

netflow netflow inbound netflow inoutbound[
16055097 70

69 4355

][
16055080 87

51 4373

][
16055106 61

51 4373

]
TABLE I: Comparison of results using Netflow, Netflow and
aggregated, and data into consideration the bidirectionality of
the flows. The confusion matrix is shown below

Therefore, tests are performed with Netflowv9 features, and
compared with the features aggregated by the SDA. First by
taking into account the Netflow aggregator application. The
application for unidirectional to bidirectional flows will also
be added later to observe this difference as well.

In [26], hyper-parameter optimisation is already being used
by separating the dataset into training, validation and test. In
this case, it is not necessary to separate a set for validation, as
hyper-parameters will not be optimised, since the aim is not
to find the best model, but to demonstrate the improvement
introduced by the aggregations performed with the SDA prior
to the CDS. Therefore, the dataset will be composed by
training and testing (16 million samples each) with the same
distribution between them.

Table I shows the results obtained in the form of different
classification metrics for a Random Forest model trained with
the aforementioned datasets.

For the case of Netflowv9 with the aggregated features,
it can be seen that the results improve for the F1, recall
and AUC ROC metrics, but not for accuracy, since it can
be observed in the confusion matrix that the false positives
have increased although the false negatives have decreased
considerably. In the case where we also use the aggregator
from unidirectional to bidirectional flows, we obtain an im-
provement for all metrics, thus reducing the number of false
negatives and false positives.

As a result, the efficiency of the SDA for improving the
performance of a specific detection system such as the one

tested is demonstrated, in addition to the benefits of SDA
mentioned above.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper presents an data normalization and aggregation
system based on YANG models.

Netflow version 9 is used to demonstrate the methodology
of implementing a complete pipeline within the system. The
impact of a system that allow normalizing and aggregating
information in a simple way becomes evident, especially
nowadays when the use of Artificial Intelligence is on the
rise and used to solve a large number of problems. The
effectiveness and benefits of using aggregated variables for
cryptomining detection results are also demonstrated. In ad-
dition, tests are performed on the system to demonstrate the
robustness and scalability that it allows, which will allow great
flexibility for the integration of heterogeneous sources.

B. Future Work

For the analysis of threat detection, it would be very
interesting to combine several sources. It has already been
proven in other studies that the combination of traffic with
HPC can increase the effectiveness of cryptomining detection
systems.

On the other hand, both this mentioned combination and
the integration of a source is currently a methodology. This
work lays the foundations for the creation of a tool capable
of integrating any source automatically and easily. The final
goal is to facilitate the adaptation of any source, regardless
of the data encoding format and the transport protocol used,
to any consumer, simply by modelling source and consumer
with YANG, also allowing the combination and aggregation
of heterogeneous sources.

ACKNOWLEDGMENT

The research leading to these results received funding from
the European Unions Horizon 2020 research and innovation
programme under grant agreement no. 952644 (FISHY) and
no. 883335 (PALANTIR). The paper reflects only the author
view. The Commission is not responsible for any use that may
be made of the information it contains.

REFERENCES

[1] D. Zhang, M. He, X. Wang, and M. Tehranipoor, “Dynamically ob-
fuscated scan for protecting ips against scan-based attacks throughout
supply chain,” in 2017 IEEE 35th VLSI Test Symposium (VTS), pp. 1–6,
2017.

[2] W. J. Heinbockel, E. R. Laderman, and g. J. Serrao, “Supply chain
attacks and resiliency mitigations,” in Guidance for System Security
Engineers, 2017.

[3] H. H2020, “Fishy, a coordinated framework for cyber resilient supply
chain systems.”

[4] A. Pastor, A. Mozo, D. R. Lopez, J. Folgueira, and A. Kapodistria,
“The mouseworld, a security traffic analysis lab based on nfv/sdn,” in
Proceedings of the 13th International Conference on Availability, Reli-
ability and Security, ARES 2018, (New York, NY, USA), Association
for Computing Machinery, 2018.

[5] FISHY, “D6.2 it-1 fishy release validated,” in A coordinated framework
for cyber resilient supply chain systems over complex ICT infrastruc-
tures, 2022.

[6] H. H2020, “Palantir, practical autonomous cyberhealth for resilient smes
& microenterprises.”

[7] B. Claise, “Cisco systems netflow services export version 9,” RFC 3954,
RFC Editor, 10 2004.

[8] D. Geneiatakis, R. Kozik, M. Pawlicki, and M. Chora, “Cost-sensitive
distributed machine learning for netflow-based botnet activity detection,”
Security and Communication Networks, 2018.

[9] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commu-
nications Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[10] M. Bjorklund, “Yang - a data modeling language for the network
configuration protocol (netconf),” RFC 6020, RFC Editor, 10 2010.

[11] YangModels, “yang vendor cisco xr 622,” Sep 2020. [Online; posted
2017].

[12] D. Gonzlez-Snchez, I. D. Martinez-Casanueva, A. Pastor, L. B. Triana,
C. P. M. Zamarro, A. A. M. Sancho, D. F. Cambronero, and D. Lopez,
“Model-driven network monitoring using netflow applied to threat
detection,” in 2022 IEEE 8th International Conference on Network
Softwarization (NetSoft), pp. 450–455, 2022.

[13] P. O’Kane, S. Sezer, and D. Carlin, “Evolution of ransomware,” IET
Networks, vol. 7, no. 5, pp. 321–327, 2018.

[14] C. Symantec, “Internet security threat report 2019,” 2019.
[15] M. Caprolu, S. Raponi, G. Oligeri, and R. Di Pietro, “Cryptomining

makes noise: Detecting cryptojacking via machine learning,” Computer
Communications, vol. 171, pp. 126–139, 2021.

[16] A. D. Yulianto, P. Sukarno, A. A. Warrdana, and M. A. Makky,
“Mitigation of cryptojacking attacks using taint analysis,” in 2019
4th International Conference on Information Technology, Information
Systems and Electrical Engineering (ICITISEE), pp. 234–238, 2019.

[17] D. Tanana, “Behavior-based detection of cryptojacking malware,” in
2020 Ural Symposium on Biomedical Engineering, Radioelectronics and
Information Technology (USBEREIT), pp. 0543–0545, 2020.

[18] G. Mani, V. Pasumarti, B. Bhargava, F. T. Vora, J. MacDonald, J. King,
and J. Kobes, “Decrypto pro: Deep learning based cryptomining malware
detection using performance counters,” in 2020 IEEE International Con-
ference on Autonomic Computing and Self-Organizing Systems (ACSOS),
pp. 109–118, 2020.

[19] R. Tahir, S. Durrani, F. Ahmed, H. Saeed, F. Zaffar, and S. Ilyas, “The
browsers strike back: Countering cryptojacking and parasitic miners on
the web,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, pp. 703–711, 2019.

[20] I. Petrov, L. Invernizzi, and E. Bursztein, “Coinpolice:detecting hidden
cryptojacking attacks with neural networks,” 2020.

[21] N. Helio N. Cunha, L. Martin Andreoni, F. Natalia C., and M. Diogo
M. F., “Minecap: super incremental learning for detecting and block-
ing cryptocurrency mining on software-defined networking,” Annals of
Telecommunications, 2020.

[22] R. Ning, C. Wang, C. Xin, J. Li, L. Zhu, and H. Wu, “Capjack: Capture
in-browser crypto-jacking by deep capsule network through behavioral
analysis,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, pp. 1873–1881, 2019.

[23] C. Kelton, A. Balasubramanian, R. Raghavendra, and M. Srivatsa,
“Browser-based deep behavioral detection of web cryptomining with
coinspy,” in Workshop on Measurements, Attacks, and Defenses for the
Web (MADWeb) 2020, pp. 1–12, 2020.

[24] Z. Li, J. Hou, H. Wang, C. Wang, C. Kang, and P. Fu, “Ethereum
behavior analysis with netflow data,” in 2019 20th Asia-Pacific Network
Operations and Management Symposium (APNOMS), pp. 1–6, 2019.

[25] J. Z. i. Muoz, J. Surez-Varela, and P. Barlet-Ros, “Detecting cryp-
tocurrency miners with netflow/ipfix network measurements,” in 2019
IEEE International Symposium on Measurements & Networking (M&N),
pp. 1–6, 2019.

[26] A. Pastor, A. Mozo, S. Vakaruk, D. Canavese, D. R. Lpez, L. Regano,
S. Gmez-Canaval, and A. Lioy, “Detection of encrypted cryptomining
malware connections with machine and deep learning,” IEEE Access,
vol. 8, pp. 158036–158055, 2020.

[27] Cisco, “Netflow version 9 flow-record format,” May 2011.
[28] J. Qin and N. Kruber, “Getting into low-latency gears with apache flink

- part one.” [Available; 18-May-2022].

	Introduction
	Background
	Traffic Monitoring
	SNMP
	Netflow version 9 (Netflowv9)

	Modelling Languages
	Threat Detection

	System design and implementation
	Scenario, architecture and tools
	Netflow Exporter
	Netflow Collector
	Input Driver
	Aggregation
	Output Driver
	Consumer
	Deployment
	Flink Application Mode with Kubernetes
	Apache Flink Statefun

	Evaluation
	SDA Evaluation
	CDS Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work

	References

