

Why do we need Safe and sustainable by design chemicals, materials and products?

Safe and Sustainable by Design – Quo Vadis?

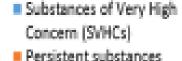
ZeroPM webinar November 2nd 2022

Xenia Trier, Associate Professor Section of Environmental Chemistry and Physics, PLEN, University of Copenhagen

UNIVERSITY OF COPENHAGEN

Why Safe and Sustainable by Design (SSBD)?

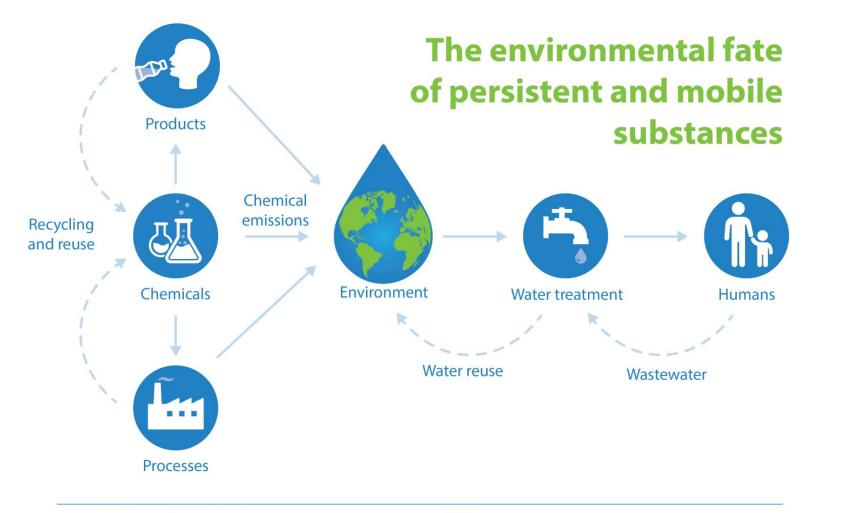
Safe and sustainable


- European Green Deal: Prevent pollution, environmental degradation, biodiversity loss, resource depletion & climate change - at the same time
- Chemical Strategy for Sustainability:
 - Aim: Avoid harm to planet and people
 - \Rightarrow from all chemicals and stressors to reduce absolute harm
 - **Tool:** *Prevent* pollution by Industrial transition to SSBD

SSBD methodological requirements

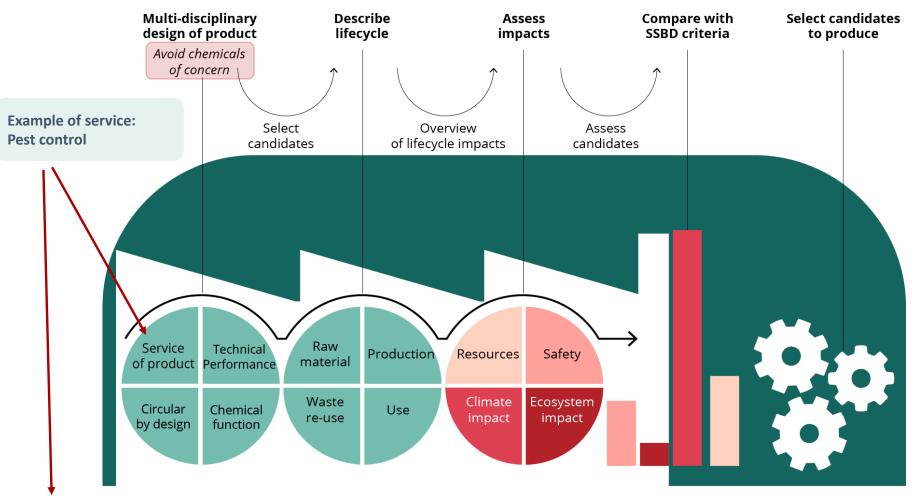
- in the context of the Chemical Strategy for Sustainability

CSS aims to prevent harm to people and planet


- Harm: to humans and the environment
 - Safety (toxicity to humans),
 - Ecosystem health (ecotoxicity, land use, biodiversity),
 - Resources (resource use and circularity),
 - Climate change
 - Social and economic dimensions are not in the scope of the CSS
- Proactive: avoid use of known/suspected substances of concern
 - avoid persistent chemicals that accumulate
- Effective policies and actions: **Reduce 'absolute' harm** not just relative. Calls for designs that
 - reduce total amount of used chemicals and materials
 - enables reuse/recycling of chemicals, materials, products
 - => calls for reducing complexity of chemical diversity, materials and products

Unknown properties

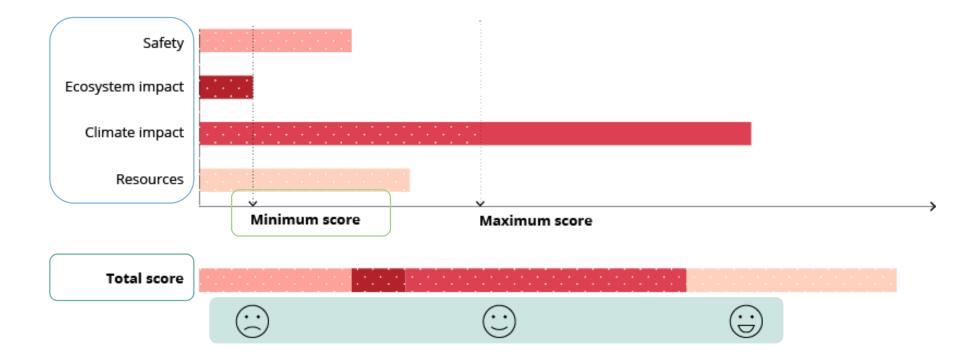
Persistent and Mobile substances ..

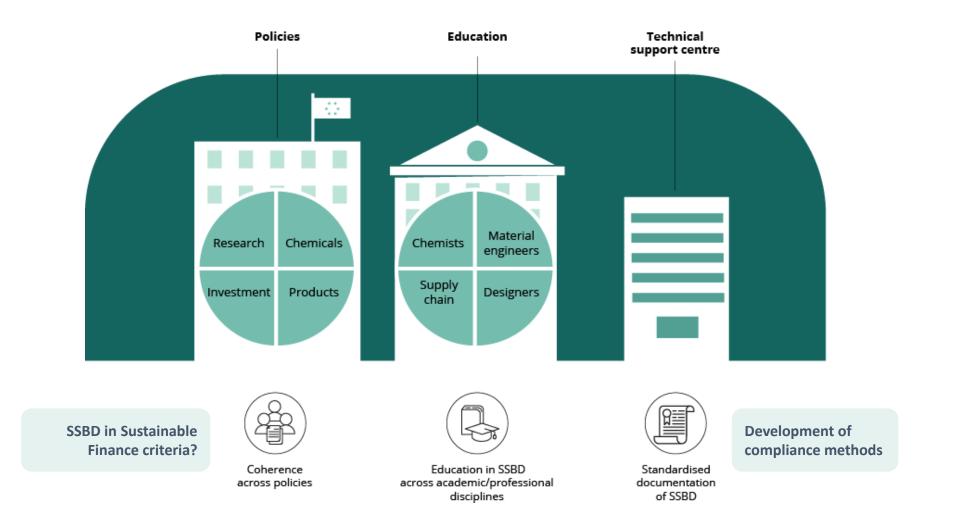


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101036756

Safe and Sustainable by Design premarket design

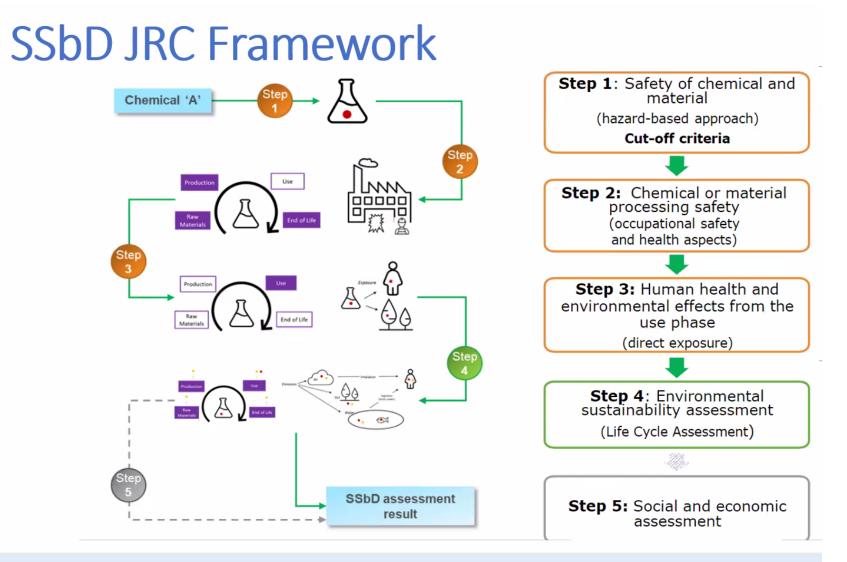
Service (pest control) delivered by:


- Chemical pesticides?
- Physical removal?
- Biological methods?


Focus on chemicals and materials alone limits innovation, e.g. to drop-in chemical substitution => apply SSBD on products and processes as well

Assessing Safe and Sustainable by Design

- Meet sustainability goals without compromising safety...
- Set min scores to avoid burden shifting and to create trust in SSBD
- (Societal) Protection goals can inform minimum and total scores



Safe and Sustainable by Design – creating an enabling environment

EEA 2021: Web-riefing on SSBD: https://www.eea.europa.eu/publications/designing-safe-and-sustainable-products-1

.

23-06-2022 Partnership for the Assessment of Risks from Chemicals (PARC) - Grant Agreement No 101057014

UNIVERSITY OF COPENHAGEN

How to foster a transition to Safe and Sustainable by Design?

- Trustworthy
 - => standardised methodology to avoid greenwashing
- Build on existing methodologies, if possible
 - start with what exists, e.g. safety: avoid *substances of concern*.
 - add sustainability components when they are ready
 - expand methods and models on
 - life-cycle assessment for chemicals,
 - (generate) environmental) monitoring data to validate models
 - ensure access to data/statistics on uses, volumes, chemical identity needed to fill the models
 - use standardised methods to fill data-gaps
- Education and involvement of stakeholders
 - educate and involve stakeholders along supply chains
 - educate on methodologies and interdisciplinary design processes

How to foster a transition to Safe and Sustainable by Design food systems?

• Implementable:

- develop fast, cost-efficient compliance methods
- create a level playing field for European and imported products
- Technical Support centres to assist businesses
- Strong incentives needed for broad uptake of SSBD by industry

 sticks and carrots:
 - legal obligations, e.g. to include SSBD into risk assessment?
 - financial incentives e.g. Financial taxonomy for investments, taxes, fees?
 - public and private procurement?

Thanks to you for listening!

Thanks to the European Environment Agency (EEA)

Xenia Trier Associate Professor University of Copenhagen Department of Plant and Environmental Sciences Section for Environmental Chemistry and Physics Thorvaldsensvej 40 Frederiksberg C DIR +45 35 33 51 63 xt@plen.ku.dk

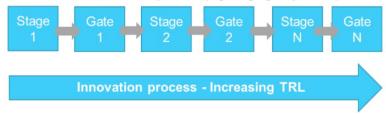
Willkommen Welcome Bienvenue

Operationalizing Safe and Sustainable by Design: JRC's Framework and Some Personal Thoughts

Zhanyun Wang

JRC's Work on SSbD

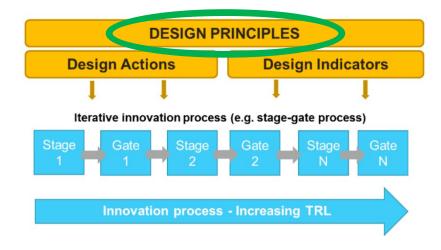
Technology & Society Laboratory



Intgration of SSbD in the Innovation Cycle

Technology & Society Laboratory

Iterative innovation process (e.g. stage-gate process)

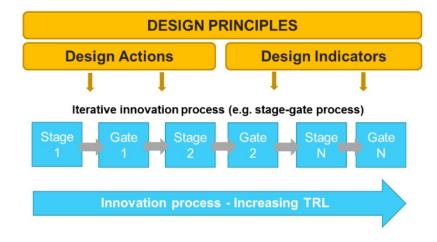


Intgration of SSbD in the Innovation Cycle

Technology & Society Laboratory

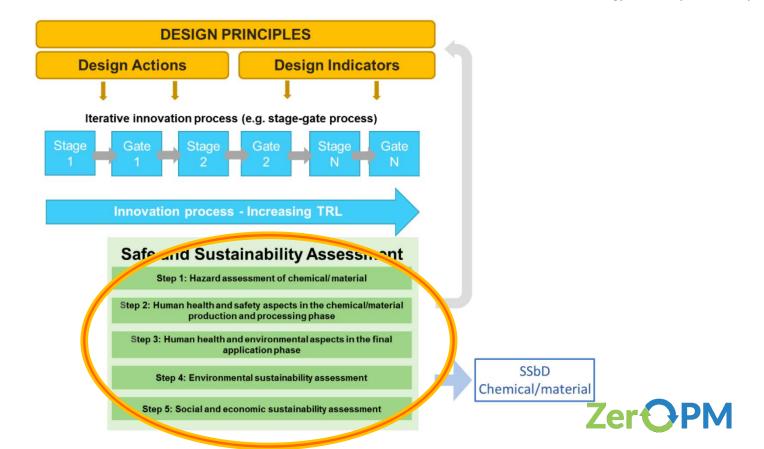
Proposed Design Principles

Technology & Society Laboratory


Material efficiency	Minimise the use of hazardous chemicals/materials	Design for energy efficiency	Use renewable sources
Prevent and avoid hazardous emissions	Reduce exposure to hazardous substances	Design for end-of- life	Consider the whole life cycle

Intgration of SSbD in the Innovation Cycle

Technology & Society Laboratory



Intgration of SSbD in the Innovation Cycle

Technology & Society Laboratory

Safety and Sustainability Assessment

Technology & Society Laboratory

Safe and Sustainability Assessment

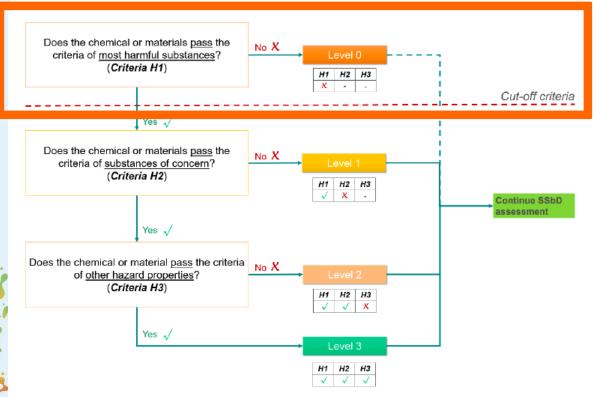
Step 1: Hazard assessment of chemical/material

Step 2: Human health and safety aspects in the chemical/material production and processing phase

Step 3: Human health and environmental aspects in the final application phase

Step 4: Environmental sustainability assessment

Step 5: Social and economic sustainability assessment


- Safety dimension

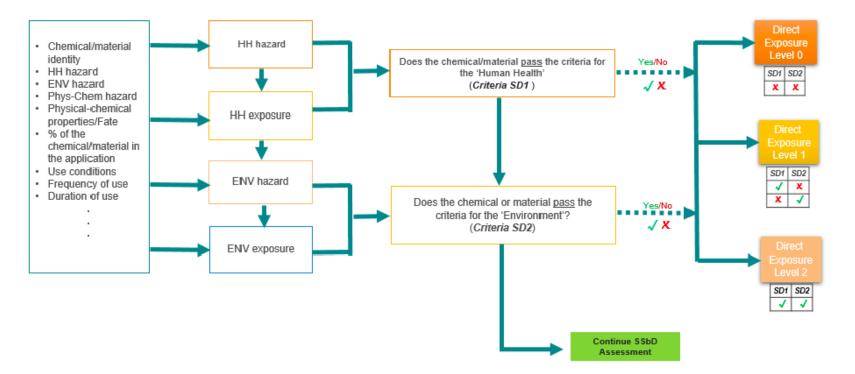
- Sustainability dimension

Step 1. Hazard Assessment

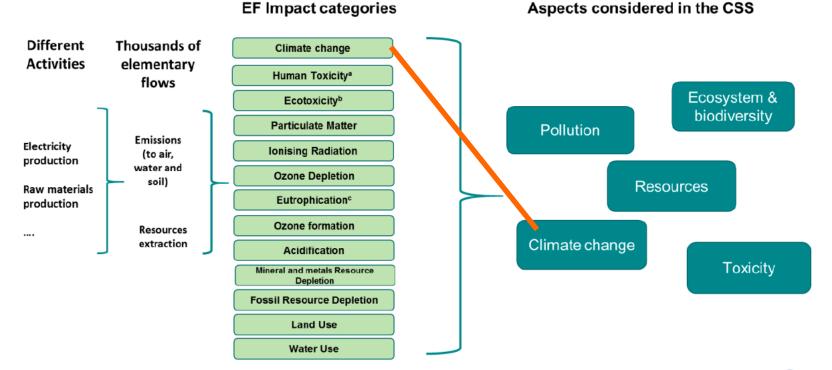
- H1 = Substances of Very High Concern (SVHCs) + EDCs Cat. 1 +PMT/vPvM +STOT RE Cat. 1 (incl. immunotoxicity + neurotoxicity)
- H2 = substances of concern, including skin sensitization, CMR cat. 2, STOT (RE Cat. 2, SE Cat. 1&2), EDCs Cat. 2, ozone-depletion + chronic aquatic toxicity
- H3 = other hazard classes

Step 2. Occupational Safety and Health

Including raw material extraction, production, and end-of-life treatment
Including the chemicals used in all the production and processing steps

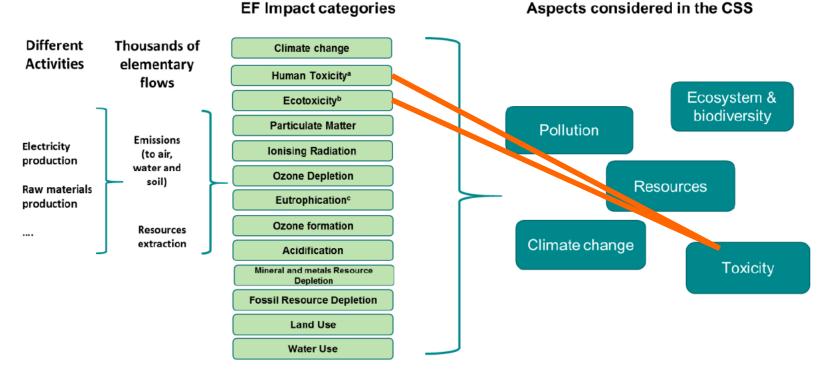

Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5	Sa	fety
4	4	5	5	5	21-25	Negligible risk
3	3	4	4	5	16-20	Low-risk
1	2	3	3	4	11-15	Medium-risk
1	1	2	2	3	6-10	High-risk
1	1	1	1	1	0-5	Very high risk

Step 3. Safety during Use

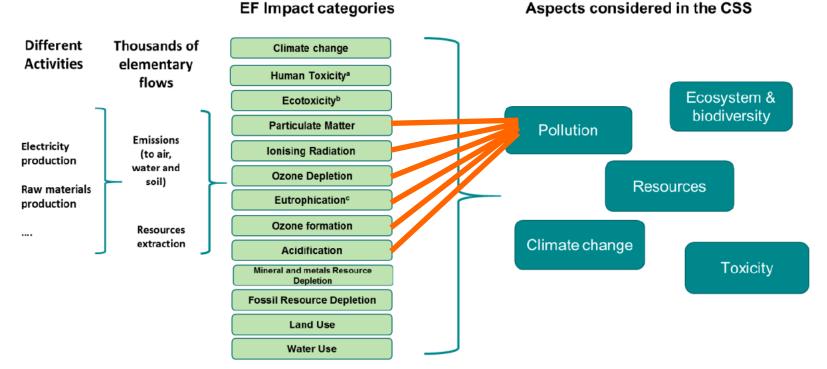


Technology & Society Laboratory

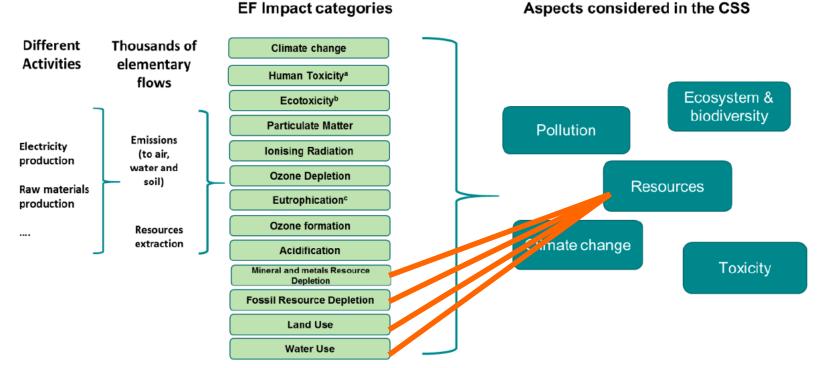
Technology & Society Laboratory



^a two impact categories: cancer and non-cancer; ^b freshwater; ^c three impact categories: terrestrial, freshwater, and marine eutrophication

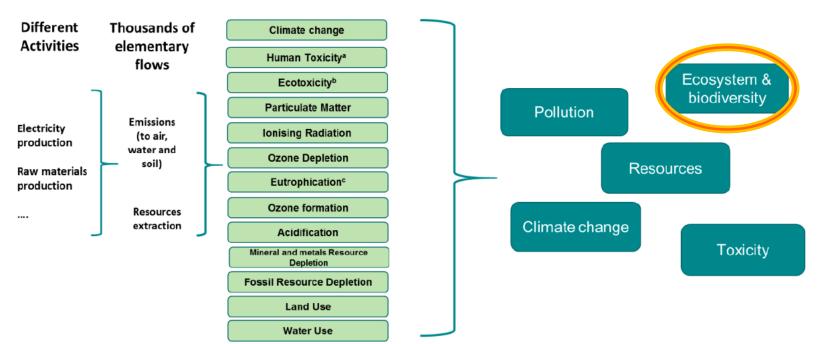

Technology & Society Laboratory

^a two impact categories: cancer and non-cancer; ^b freshwater; ^c three impact categories: terrestrial, freshwater, and marine eutrophication


Technology & Society Laboratory

^a two impact categories: cancer and non-cancer; ^b freshwater; ^c three impact categories: terrestrial, freshwater, and marine eutrophication

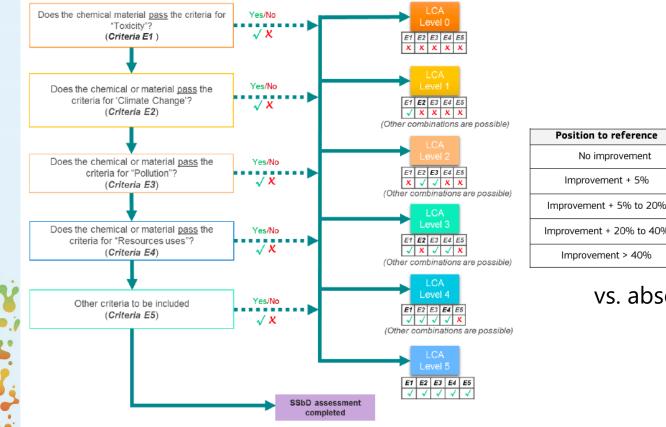
Technology & Society Laboratory



^a two impact categories: cancer and non-cancer; ^b freshwater; ^c three impact categories: terrestrial, freshwater, and marine eutrophication

Technology & Society Laboratory

Aspects considered in the CSS


EF Impact categories

^a two impact categories: cancer and non-cancer; ^b freshwater; ^c three impact categories: terrestrial, freshwater, and marine eutrophication

Technology & Society Laboratory

Position to reference	Score	Colour code	
No improvement	0		Fail the
Improvement + 5%	1	1 crite	
Improvement + 5% to 20%	2		Pass the
Improvement + 20% to 40%	3		criteria
Improvement > 40%	4		

vs. absolute sustainability?

Step 5. Social and Economic Sustainability

- Can rely on existing life-cyclebased methodologies, namely the Life Cycle Costing (LCC) and the Social Life Cycle Assessment.
 - However, they are less mature than the environmental one.

Stakeholder category	Social aspect	Number of frameworks including the aspect
Workers	Child labour	8
	Fair salary	8
	Forced labour	8
	Health and Safety	8
	Freedom of association and collective bargaining	7
	Working hours	7
	Equal opportunities / discrimination	7
Local community	Community engagement	6
	Local employment	6
Consumers	Health and safety	7
	Responsible communication	6

Table 10, List of stakeholder categories, social aspects and occurrence in the social frameworks under investigation

 \rightarrow Further work is needed in order to ensure applicability in SSbD: e.g., quantiative assessment vs. social safeguards

Overall Evaluation

Adherence with SSbD design principles

SSbD Design principles	£
SSbD 1, Indicator 1.1	1
SSbD 2, Indicator 2.1	~
SSbD 3, Indicator 3.2	~

Safety and Sustainability Assessment

Dimension	Aspect	Results (Life Cycle Stage, if applicable)			Criteria		
Dimension	Aspect	Raw material	Production	Use	EoL	Cilteria	
Hazard properties	H1 						
Human health and safety aspects (production & processing phase)	OSH1		This table contains				
Human health and environmental aspects (application phase)	SD 1			,			
Environmental sustainability	E1						
Social & Economical Sustainability							

Y

Safe and sustainable by design (SSbD) Dashboard

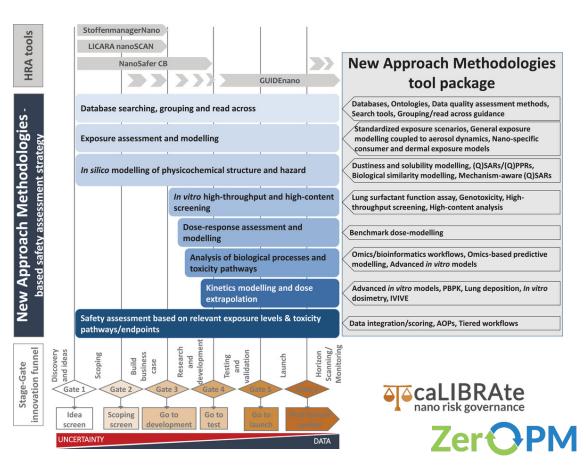
Dimension	Aspect	Level	Score
	H1	~	3
izard properties iman health and safety aspects roduction & processing phase) iman health and environmental aspects	H2	1	2
	H1	~	3
	OSH1	~	4
	OSH2	~	4
Human health and safety aspects (production & processing phase)	H1 H2 H3 OSH1 OSH2 OSH3 OSH4 OSH4 OSH5 SD1 sblity E1 E2 E3 E4 E4	~	4
(house of proceeding proces)	OSH4	~	4
	OSH5	1	4
Human health and environmental aspects	SD1	~	4
(application phase)	SD2	x	1
	E1	x	1
	E2	~	3
Environment Sustainability	E3	x	1
	E4	~	3
Social & Economical Sustainability		x	1

Technology & Society Laboratory

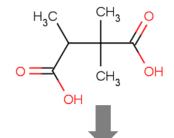
Zer

Should we always follow the five steps, or have varied combinations for different TRL with appropriate tools?

https://www.abaco.com/technology-readiness-level


Technology & Society Laboratory

10	00-1000 t/year (annexes VII + VIII + IX)		
10-100 t/year (ann	nexes VII + VIII)		
 1-10 t/year (annexe VII) Skin irritation or skin corrosion (<i>in vitro</i>) Eye irritation (<i>in vitro</i>) Skin sensitisation Mutagenicity (<i>in vitro</i>, gene mutation bacteria) Acute toxicity (oral route) 	 Skin irritation (<i>in vivo</i>) Eye irritation (<i>in vivo</i>) Mutagenicity (<i>in vitro</i>, cytogenicity mammalian cells or micronucleus) Mutagenicity (<i>in vitro</i>, gene mutation mammalian cells) Acute toxicity (inhalation) Acute toxicity (dermal route) Repeated dose toxicity (28 days, one species) Reproductive toxicity (screening, 	 Repeated dose toxicity (28 days, one species)* Repeated dose toxicity (90 days, one species, rodent) Reproductive toxicity (pre-natal development, one species) Reproductive toxicity (two generations, one species) 	 Reproductive toxicity (developmental, one species) Reproductive toxicity (two generations, one species)* Carcinogenicity study
2	 one species) Toxicokinetics (assessment from available information) 	* These studies have to be carried out it lower tonnage band because of waiving	-



Should the low TRL already include in silico screening for hazards and environmental sustainability?

https://onlinelibrary.wiley.com/d oi/full/10.1002/smll.201904749

10 molecular descriptors, e.g.,

- molecular weight
- number of nitrogen/halogen atoms
- number of total functional groups

Life cycle environmental impacts

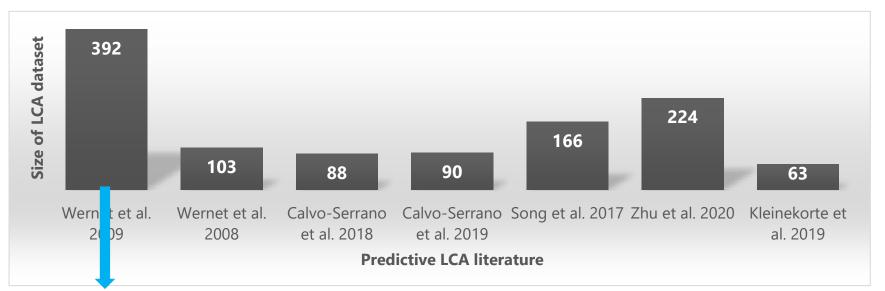
- cumulative energy demand (CED) √
- global warming potential (GWP) 🗸
- eco-indicator 99 🗸

Fine Chem

The Finechem Tool

Finechem is a software tool to estimate the resource use and environmental impacts of petrochemical production based on the molecular structure, circumventing the need for a process analysis. Due to the limited amount of input information, results cannot replace a thorough process analysis. Nevertheless, Finechem can be of use if there is a lack of process data, e.g.

PAPER


www.rsc.org/greenchem | Green Chemistry

Bridging data gaps in environmental assessments: Modeling impacts of fine and basic chemical production[†]

Gregor Wernet, ** Stavros Papadokonstantakis,
* Stefanie Hellweg b and Konrad Hungerbühler
*

Received 19th March 2009, Accepted 7th August 2009 First published as an Advance Article on the web 7th September 2009 DOI: 10.1039/b905558d

https://emeritus.setg.ethz.ch/research/downloads/software---tools/fine-chem.html

Empa

Materials Science and Technology

- A small training set: mostly small molecules (average molecular weight 160 g/mol); all based on petrochemical synthesis; old energy mixtures
- Does not take different synthesis routes into consideration
- Old machine learning algorithms

Question 2: How to Balance the Criteria

Technology & Society Laboratory

Safe and sustainable by design (SSbD) Dashboard

Dimension	Aspect	Level	Score
	H1	~	3
Hazard properties	H2	~	2
	НЗ	~	3
	OSH1	~	4
	OSH2	~	4
Human health and safety aspects (production & processing phase)	H1 H2 H3 OSH1 OSH2 OSH3 OSH4 OSH5 OSH5 SD1 SD2 E1 E2 E3 E3 E4	~	4
(Production processing process)		~	4
		~	4
Human health and environmental aspects	SD1	~	4
(application phase)	SD2	x	1
	E1	x	1
	E2	~	3
Environment Sustainability	E3	x	1
	E4	~	3
Social & Economical Sustainability		x	1

How to weigh the criteria? Who decides?

	LDPE average, reused as waste I	
	Climate Change	All indicators
LDPE simple, reused as waste bag	0	1
LDPE rigid handle, reused as waste bag	0	0
Recycled LDPE, reused as waste bag	1	2
PP, non-woven, recycled	6	52
PP, woven, recycled	5	45
Recycled PET, recycled	8	84
Polyester PET, recycled	2	35
Biopolymer, reused as waste bag or incinerated	0	42
Unbleached paper, reused as waste bag or incinerated	0	43
Bleached paper, reused as waste bag or incinerated	1	43 ⁴
Organic cotton, reused as waste bag or incinerated	149	20000
Conventional cotton, reused as waste bag or incinerated	52	7100
Composite, reused as waste bag or incinerated	23	870
ps://medium.com/@parkpoomkomet/breaking	a-down-the-danish	-study-on-the-

https://medium.com/@parkpoomkomet/breaking-down-the-danish-study-on-theenvironmental-impacts-of-grocery-carrier-bags-b8c97eb6c8fb

Technology & Society Laboratory

Feedback and inputs are more than welcome!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101036756.

