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Abstract 
State-of-the-art underwater imaging systems provide an exciting opportunity to observe billions 

of individual organisms in their natural habitats at unprecedented spatiotemporal resolution. To 

unlock the full potential of these advances, we require new analysis pipelines that go beyond 

classifying organisms by taxonomic groups, and quantify functional traits and biological 

phenomena from images. Critically, these tools must be made accessible to domain specialists 

without programming expertise and deployable at scale on modern supercomputing systems. We 

develop such an image analysis pipeline, manually annotate functional groups, traits and 

biological processes in images, and train convolutional neural networks (CNNs) to automate and 

scale analysis of massive zooplankton image datasets. Our pipeline, implemented on a high-

performance computing (HPC) system and combining multiple existing open-source frameworks 

and libraries, provides an intuitive web interface for browsing, searching and annotating images, 

and allows multiple simultaneous users to work on a single copy of the data online. Images and 

annotations are then used for both supervised and unsupervised training of convolutional neural 

networks (CNNs), with the results made available in the web interface. We demonstrate this 

approach by classifying ~700,000 images to identify functional groups (copepods, diatom chains, 

Noctiluca scintillans, marine snow, etc). Organisms are further annotated for relevant functional 

traits. Using these trait annotations, future work will further train CNNs for object detection and 

feature extraction, thereby iteratively fine-tuning CNNs to perform increasingly complex trait 

extraction from images. We foresee that these tools will enable new avenues of investigation in 

aquatic research, ecosystem modelling and global biogeochemical flux estimations, revealing 

previously inaccessible relationships between species biodiversity, zooplankton traits and 

seasonal variations in environmental conditions.   

 

Introduction 

Zooplankton are essential for aquatic food webs and make important, yet incompletely 

understood, contributions to biogeochemical cycles1,2. Understanding how changing 

environmental conditions affect distribution, abundance and physiology of zooplankton allows us 

to decode the effects of climate change on biodiversity, ecosystem dynamics and global carbon 

cycles3–5. High-throughput, underwater in situ imaging techniques are now frequently deployed to 

generate billions of high-quality observations of organisms in their natural habitats. This opens up 

aquatic ecosystems to more detailed study than previously possible. Furthermore, in situ images 

provide information about individual organisms’ survival, growth, reproduction and resource 

acquisition from the visual signatures of the underlying traits4,7 such as feeding behavior, lipid 

reserves8, egg clutch sizes9, appendage extension7, and body posture7. Hence, underwater in 

situ observation of plankton can be used to extend traditional, species-centric, classification 
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approaches to include information on functional characteristics or ‘traits’ of organisms5. Recently, 

zooplankton traits analyzed during spring ice-melts in the Arctic Ocean have revealed complex 

ecosystem responses to environmental changes7.  

 

Analysis of high-throughput in situ plankton images by experts is time and effort intensive and is 

a major challenge for a large-scale analysis of ecosystems5. Machine learning techniques are a 

promising tool for the automated information extraction from hundreds of millions of images, but 

require large numbers of labeled images for training CNNs8. Semi-supervised, machine-learning 

paradigms allow a performance boost in label-scarce contexts by effectively utilizing the large 

number of unlabeled images in an unsupervised pre-training step, followed by a supervised, fine-

tuning with labeled images9,10,11. Active-learning paradigms can further aid effective labeling in 

highly unbalanced datasets. In this approach, a small, randomly selected subset of labeled data 

is used to train a CNN. The CNN model is then used to predict classes in the whole dataset, and 

a confidence or certainty metric reported by the CNN for every prediction is then used to select 

the least confident predictions (i.e. the most informative images) for further labeling8.    

 

However, to truly realize the potential of these sophisticated imaging and machine learning 

techniques, we need a framework that allows domain experts with little or no programming 

expertise to (1) efficiently store, browse, filter and interact with a large number of images, (2) 

manually annotate highly unbalanced datasets to generate training data, (3) train CNNs using 

semi-supervised or supervised machine learning paradigms, (4) evaluate CNN performance to 

pick neural network architectures and machine-learning paradigms to develop a CNN most suited 

for a specific task, and (5) implement active-learning paradigms using confidence estimates of 

CNN predictions to select images for labeling from highly unbalanced data to iteratively streamline 

analysis.  

 

State of the art 
 

Our pipeline, implemented in a high-performance computing (HPC) system, incorporates an 

open-source, labeling platform Label-Studio with a PostgreSQL backend that allows multiple 

concurrent users to browse, filter and label millions of images on a single copy of the data online. 

Label-studio can be implemented with an integrated ML-backend or labels and annotations can 

be exported for CNN-training. Using Label-Studio implemented on our HPC, we manually 

annotated ~ 15,000 images for the purpose of classification into relevant taxon units.  

We used a custom-built CNN classifier (Schanz et al. in press), henceforth referred to as 

‘Plankton-classifier’ with a ResNet50 feature extractor for label-free pre-training on ~700000 

images, followed by supervised fine-tuning with manually annotated labels (Plankton-classifier 

repository will be made public upon publication of Schanz et al. in press).  We also provide jupyter 

notebook-based tools for formatting annotations for CNN-training, evaluating CNN performance, 

incorporating CNN predictions back into Label-Studio projects, filtering CNN predictions based on 

certainty/confidence metrics.    

  

https://labelstud.io/
https://www.postgresql.org/
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Figure 1: A consolidated data analysis pipeline D1 built to classify in situ plankton images, extract 

morphological features and guide users through semi-automated trait segmentation. 



 

 

4 

 

Outcome 

 
1. Image Analysis Pipeline (D1):  

We provide detailed documentation of our image analysis pipeline (deliverable D1, Figure 1). 

Such a consolidated pipeline does not currently exist for trait extraction and will be an invaluable 

tool for marine researchers.  This includes: 

1. Implement a labeling interface: While any web-based tool would fit our pipeline, we used 

an existing, open-source platform (Label-Studio). We provide instructions to implement an 

instance of Label-Studio with a PostgreSQL backend on an HPC. We include instructions 

and code to generate file lists for local file-serving, and import into Label-Studio. Detailed 

templates (HTML tags, CSS styling) interface for plankton classification, CNN evaluation, 

trait and biological process annotation.  

2. Generate training and validation data: Manual classification of randomly-selected images 

in the implemented interface. We provide documentation and jupyter notebooks to support 

information exchange between Label-Studio and a CNN (in this case, our custom-built 

plankton classifier).  

3. Train a basic CNN for classification: We used a custom-built CNN (referred to as 

‘Plankton-classifier) and implemented a semi-supervised machine learning paradigm10, 

code for the Plankton-classifier will be available upon publication (Schanz et al. in review).  

4. Use CNN performance metrics to evaluate and choose between machine learning 

paradigms and hyper parameters. We provide out experiment results and documentation 

to enable researchers to choose the machine learning approach. 

5. Run the CNN model on the entire dataset to predict classes or functional groups with a 

high conditional accuracy. 

6. Further manual annotation of visual signatures of functional traits for class-specific trait 

annotation. 

   

 

2. Annotated class and trait datasets (D2) 

We applied D1 to images acquired during research expeditions in the North Sea to produce an 

annotated class-labels dataset (~6000 images, Kordübel et al. in prep). We trained our Plankton-

classifier on these labels, evaluated CNN accuracy on withheld labels and used the CNN to infer 

predictions on the entire dataset (all ~700000 images, Figure 1). To each image, the Plankton-

classifier assigns probabilities for each class, and the class assigned the maximum probability 

(max_p) is the predicted label. We then selected all images with max_p < 0.4 ( ~7000 images) for 

manual labeling. We provide ~14000 class annotations (images will be made available upon 

publication) and their max_p values as the deliverable D2.  

 

The Plankton classifier predictions were used to extract classes with high conditional accuracy 

such as Noctiluca, diatom chains, marine snow, etc. (Figure 1). We are currently generating 

relevant trait annotations for these classes and will add the trait annotations to the deliverable D2 

upon completion.   
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3. Plankton-classifier CNN (D3) 

All the labels generated (D2) were used to train the plankton classifier (CNN, D3) in collaboration 

with Hereon’s Model-Driven Machine Learning group (MDML). The code repository D3 will be 

made public upon publication (Schanz et al. in review).  

 

4. Code Repository (D4) and Jupyter notebook tutorial (D5) 

Documentation and code for our data analysis pipeline (D1) are provided in the current version of 

our code repository (D4). Upon publication of the Plankton-classifier (Schanz et al, in press), we 

will provide a Jupyter notebook tutorial (D5) of our data analysis pipeline to guide users through 

annotation for classification, trait segmentation, CNN training and data visualization. 

 

 

 

 Outlook and Summary 
 

In collaboration with the Helmholtz AI Cooperation Unit (Helmholtz AI), we are currently working 

on incorporating a conversion to binary formats to scale our data analysis pipeline to deal with 

larger datasets (~108 images). Additionally, we are generating trait annotations that capture 

information about relevant characteristics or morphological and behavioral properties in images. 

These annotations will be used train a CNN for automated object detection and feature extraction, 

in collaboration with the MDML group at Hereon. To improve accessibility by non-programming, 

domain experts, we plan to develop a GUI for our data pipeline.   

 

Automatic taxonomic classification and trait extraction (D1/D3) will be valuable for marine 

biologists, ecologists and image analysts. We hope that the tools developed here will enable 

domain experts in aquatic research, ecosystem modelling and global biogeochemical flux 

estimations, to analyze previously inaccessible relationships between biodiversity, zooplankton 

biology, seasonal variations in environmental conditions and impact by climate change.  
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