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Abstract

As the complexity of computer networks increases to accommodate the demand for massive connectivity and cloud services, so
does the probability of fault occurrence and the surface of attacks. Hence the need for constant monitoring of network devices
and accurate analysis of traffic patterns to ensure the highest performance and maximum security. This requires collecting and
processing telemetry data from many sources in the network which leads to extra bandwidth usage and strains the CPU at the
monitoring system resulting in scalability issues as the network grows. In this paper, we propose a two-stage postcard telemetry
collector based on data plane programmability using the P4 language to address the scalability issues. We show a decrease in the
CPU load of the telemetry server by over 70% while lowering the bandwidth to less than 7% in the most extreme scenario, at the
cost of variable delay introduced in the collection of the postcards.
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1. Introduction

The complexity of computer networks is always increasing
to meet the needs for an ever-growing traffic [1], and to support
the rise in demand for ultra-low-latency applications [2], these
factors and many others impose the necessity for a well-planned
and scalable network design not only to keep up with the cur-
rent demand but also to provide solid grounds for future growth.
Thus, comprehensive monitoring of network performance and
traffic patterns is key to detecting misbehavior in the network
or parts of it which can potentially result in an outage conse-
quently costing the network operator a loss based on the size
and type of organization and can be as high as millions of US
dollars [3]. In this regard, it makes economic sense for organi-
zations to invest in network resilience to avoid such losses [4]
so it is important to gather telemetry data from devices within
the network. Also, the collection of historical data and anal-
ysis of traffic patterns and trends is essential for the design of
the network and the implementation of traffic engineering mea-
sures to provide fault tolerance, and to avoid overloaded links
and servers via load-balancing measures [5], and to plan the
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evolution of the network [6]. There are different methods in the
literature to collect telemetry data from the network, accord-
ing to [7] those different methods can be sorted into the three
following categories based on their technologies.

1. Traditional methods include Ping and Traceroute.

2. SDN methods [8].

3. Network telemetry leveraging the programmability of data
plane (PDP) [9].

In this research, we will concentrate our focus on taking ad-
vantage of the recent developments in the programmability of
the data plane for providing advanced collection and processing
of telemetry metadata in network devices. Considering that the
comprehensive collection of network data made available by
PDP opens the door for many possible applications in the net-
work and brings in Artificial Intelligence (AI) to the decision-
making. Where the AI can have an important role in steering
user traffic to the best serving node for lower latency and better
Quality of Service (QoS) as in [10], or even provide filtering of
traffic based on signatures that are generated from packet fea-
tures for enhanced detection and mitigation of DDoS attacks
[11].
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1.1. Motivation
At the time of writing this paper, we found that Postcard-

Based Telemetry (PBT) solutions, even if considered by chipset
vendors, have not been widely analyzed in the literature yet,
contrary to solutions that leverage embedding the telemetry data
in user packets. A comparison between the two aforementioned
modes of telemetry is done in a survey paper in [12] which
shows that PBT has certain advantages as the user packets re-
main unchanged and that embedding the telemetry data in user
packets has potential vulnerabilities such as eavesdropping and
tampering while PBT packets tolerate extra processing for en-
hanced security. However, PBT suffers from a higher band-
width overhead compared to embedding the telemetry data in
user packets [12]. In both modes of telemetry and especially in
PBT, the excessive generation and transport of telemetry data
can consume a high percentage of links’ capacity and may re-
quire significant processing power that a typical data center
needs to dedicate thousands of CPU cores just for simple packet
I/O operations [13]. This problem has been discussed in the lit-
erature and various solutions have been suggested. However,
most of these solutions rely on the selectivity of the generation
of telemetry data and follow a top-down approach as indicated
in [14], while others tried to apply the selectivity within the
telemetry server as in [15]. Per comparison, our solution aims
to reduce the telemetry bandwidth and the subsequent process-
ing overhead without compromising the granularity of the ex-
ported telemetry data. We aim to achieve this reduction by ag-
gregating R payloads of the telemetry packets in a single larger
packet taking advantage of the hardware acceleration offered by
the programmability at the data plane, as explained in detail in
the following sections of this paper.

1.2. Our Early Work
This paper is based on our previous work in [16] in which

we presented the concept of the two-stage telemetry collector
where the first stage is a P4 aggregation switch whose purpose
is to aggregate the telemetry reports from various packets in one
larger packet and forward it to the telemetry server. In our previ-
ous work, we performed a fixed-level aggregation at a single P4
aggregation switch and demonstrated a reduction in bandwidth
and CPU load on the telemetry server. Also, we mentioned the
possibility of aggregating or correlating the telemetry reports at
the P4 aggregation switch by either flow-id, switch-id, or both
at the same time.

1.3. Paper Contribution
We can summarise the contribution of our work on this paper

in the following key points:

1. We provide the details of our implementation of the two-
stage telemetry collector including the algorithms we used
for the different levels of aggregation at the P4 aggrega-
tion switch. Also, we explain the implementation of the
telemetry server in different cases.

2. We investigate the feasibility of each aggregation level
based on the hardware resources needed to perform each

level of aggregation. In addition, we introduce the con-
cepts of distributed aggregation and priority-based aggre-
gation and

3. We provide a comprehensive set of experimental results
that evaluate the aspects of the different aggregation lev-
els in terms of CPU load at the telemetry server, network
bandwidth usage, introduced overall delay, and collector
intra-switch latency.

1.4. Organization of This Paper

The rest of the paper is divided into sections and is organized
in the following way: In Section 2 we briefly go through the
main technologies and previous works relevant to the genera-
tion and collection of telemetry data in the network. In Sec-
tion 3 we describe in more detail the concept of the Two-Stage
Telemetry Collector. We describe our implementation and the
test bed used to conduct the experiments in Section 4, while
the results of our experiments are introduced and discussed in
Section 5. Finally, the conclusions and a discussion on possible
future improvements are presented in Section 6.

2. Background

2.1. Software Defined Networking (SDN)

As networks grow, they become difficult to configure and
manage, and the inefficiency of traditional routing starts to be-
come evident as routing based on network topology alone leads
to unbalanced load distributions on links and servers, resulting
in congestions to happen which in turn leads to transmission de-
lays or even packet drops. Therefore, to improve path selection
in the network, there is a persistent need for an all-out view of
the network at a central node in charge of optimizing network
operation. This led to the emergence of SDN [17] where the in-
telligence in the network is moved from each individual device
to a centralized controller that has a full view of the network al-
lowing it to manage the packet forwarding policies and commu-
nicate these policies to the forwarding devices using a standard
Application Programming Interface (API) such as OpenFlow
[18] and P4Runtime [19].

2.2. Programmable Data Plane (PDP)

Traditional forwarding devices had their logic hard-coded in
the hardware and they could only recognize and manipulate a
limited set of standardized headers, and the processing logic
of the forwarding device could not be changed without mak-
ing changes to the hardware itself, which is in many cases very
expensive or not even possible. This characteristic of the tradi-
tional devices strictly limited the flexibility of the network and
made introducing upgrades to the network a slow and expensive
process. With PDP the processing logic can be dynamically
enforced to support new non-standard headers and functions.
This led to the creation of Programming Protocol-independent
Packet Processors (P4) language [20] [21] with the goal to al-
low programmers to change the logic of network devices af-
ter they are deployed without being restricted to the use of any
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specific set of legacy protocols and to make the description of
packet processing functionality independent from the underly-
ing hardware.

2.3. In-Band Network Telemetry (INT)
In-band network telemetry is a set of tools and protocols with

the goal of gathering information about network state by the
data plane without needing intervention from the control plane
[9]. INT provides for an extensive collection of data about indi-
vidual packets as they travel through the network. The analysis
of this data can give valuable information about the network
state allowing to trace these individual data packets [22] to de-
tect forwarding loops and network black holes, also to enable
congestion control [23] [24]. In addition, INT allows end hosts
to embed instructions within the data packets called Tiny Packet
Programs (TPP) [25], able to query the state of the network or
even introduce changes in order to meet certain application re-
quirements. The P4.org specifications [9] defines three modes
of In-Band Network Telemetry: 1. INT-XD (eXport Data): the
telemetry data is exported in a separate packet (postcard) with-
out the modification of the original packet. 2. INT-MX (eMbed
instruct(X)ions): an INT source node adds an instruction header
to the packet and later nodes in the network follow the instruc-
tions to export their telemetry data. 3. INT-MD (eMbed Data):
both telemetry instructions and data are inserted into the packet.

The INT-XD and INT-MX modes of telemetry are also
known as postcard-based telemetry. In this case, the teleme-
try data are collected at the network nodes and are exported
in separate packets towards a telemetry collector. The teleme-
try data to be collected and exported, referred to as metadata,
varies according to the application and can be any network- or
device-related information of interest. However, the specifica-
tion in [9] defines a set of useful metadata that can be made
available on many devices, including: 1. Node ID: to iden-
tify the source node at which the telemetry report was gener-
ated. 2. Ingress Interface ID: identifies the network interface on
which the packet was received. 3. Ingress Timestamp: the de-
vice’s local time at which the packet was received on the ingress
interface. 4. Egress Interface ID: identifies the network inter-
face through which the packet was sent. 5. Egress Timestamp:
the device’s local time at which the packet was processed by
the egress interface. 6. Hop Latency: the time taken by the
packet to be switched by the network node. 7. Queue Depth:
queue depth information when the packet entered and/or left
the queue. The Telemetry Report is defined in the P4.org spec-
ifications [26] as a message generated by a network device that
supports In-Band Network Telemetry for a certain packet and is
sent to the telemetry collector. The report aims to set a standard
for interoperability between different network devices. More-
over, it carries the metadata collected from the network device
for a certain data packet. In case the INT-MD mode of opera-
tion is used, the report can additionally carry telemetry meta-
data from the upstream nodes when exported by the sink node.

2.4. Telemetry Collection
After the telemetry metadata is generated by the network de-

vices, it is packaged in a telemetry report and forwarded to a

telemetry collector, in charge of extracting the telemetry data,
correlating them, and possibly storing them in a database. In
addition, such data may be consumed by the SDN controller to
perform routing decisions based on the current network status.
When the number of telemetry reports generated by network
devices is very high (this is especially the case with postcard-
based telemetry), the collector will require more resources to
process data from the reports and might incur high CPU usage.

2.5. Related Work on Overhead Reduction

To detect and diagnose problems within the network in a
near real-time manner, a huge amount of telemetry data need
to be generated at any given moment. This huge amount of data
is mostly redundant and carries no useful information for the
management system, for this purpose there exist many works
in the literature to address this issue [27][28][29][13][15]. For
example, the work in [27] employs a Postcard-Based Telemetry
Marking (PBT-M) to propose a Traffic-Aware Network Teleme-
try (TANT) framework that manages to reduce the teleme-
try overhead by over 75% in exchange for reduced granular-
ity of telemetry data. The TANT framework uses a Machine-
Learning based classifier in the telemetry controller to config-
ure the granularity of the exported telemetry data at the network
nodes. In the TANT approach network nodes can assume three
different roles. First, a telemetry source node marks the data
packets with a special mark to indicate to the downstream nodes
the granularity of the telemetry export for that type of traffic,
the source node also exports its own data. Second, a telemetry
transit node exports its telemetry data based on the granularity
indicated by the sink. Finally, a sink node removes the mark
from the data packet and forwards the packet to its next hop, in
addition to exporting its own telemetry data.

Meanwhile, the work in [29] proposes the Probabilistic In-
band Network Telemetry (PINT) framework employs a prob-
abilistic sampling approach to spread the telemetry data over
multiple packets to reduce the per-packet overhead.

Another telemetry framework that aims to reduce the teleme-
try overhead is DeltaINT [28] in which telemetry data are
embedded in the data packets (INT-MD mode of INT). In
DeltaINT each node compares its last exported state with the
current state and only exports parameters whose change (Delta)
exceeds a predefined threshold. The authors of DeltaINT com-
pare their solution to the PINT and show that DeltaINT offers
multiple improvements in various use cases such as congestion
control, path tracing, and latency measurements.

Other works focused on solving the CPU overhead issues
at the telemetry collectors. One example is the work in [13]
that proposes a solution called Distributed Aggregation of Rich
Telemetry (DART). DART works by leveraging Remote Direct
Memory Access (RDMA) to write telemetry data directly in
the collector’s memory bypassing the CPU, it uses a hash func-
tion to generate a stateless mapping between telemetry data and
memory addresses. The authors show that their implementation
uses 30.0 GB for storing telemetry data coming from up to 100
million flows assuming a data length of 160-bit in addition to a
32-bit checksum for detecting overwritten data.
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Another work was done in [15] where the authors proposed
an INT collector made of two data processing paths, a fast path,
and a normal path. The fast path runs at the kernel level to
achieve a high rate of packet processing, it parses every packet
to extract the telemetry report and runs the report through an
event detector. When the fast path detects a networking event,
the event is then sent to the normal path for processing and ex-
porting the data to a database.

3. A Two-Stage Telemetry Collector

The exhaustive monitoring of flows in the network and the
generation of a telemetry report for each packet at every switch
can produce plenty of telemetry reports which in turn can con-
sume a great amount of bandwidth at the network links and
strain the CPU at the telemetry collector. We propose a so-
lution to mitigate this problem by implementing a two-stage
telemetry collector, as shown in Figure 1, leveraging the data
plane programmability using the P4 language. The first stage

Figure 1: A two-stage telemetry collector in the dashed line with the first stage
being a P4 aggregation switch and the second stage a telemetry server running
on a general purpose computer.

of the collector is a P4 capable switch based on the v1model
architecture per P4 standards [30], whose purpose is to perform
aggregation on telemetry packets coming from various sources
in the network. Specifically, the proposed idea is to extract the
telemetry reports from these packets and aggregate the reports
in one larger packet before forwarding it to the telemetry server.

3.1. Different Aggregation Levels

We propose and discuss different levels of aggregation to be
performed by the P4 aggregation switch in Figure 1, where an
aggregation level refers to the number of telemetry reports ag-
gregated in one packet and if further processing is applied to
these reports. The proposed aggregation levels are the follow-
ing:

1. Agg(R): This is the simplest level of aggregation and re-
quires only one generic buffer. In this solution, the P4 ag-
gregation switch extracts and aggregates R telemetry re-
ports in one larger packet and forwards it to the telemetry
server regardless of the flow that triggered the generation

of the telemetry report and regardless of the switch that
originated the telemetry report.

2. AggN(R): This is a slightly more complicated solution that
extracts and aggregates telemetry reports based on the net-
work node where they originated. This solution requires N
buffers at the aggregation switch where each buffer stores
the telemetry reports that originated from a distinct node.

3. AggN,F(R): This is the most complicated solution in which
the P4 switch has N buffer banks where N corresponds to
the number of network nodes that are generating teleme-
try reports. Each buffer bank has F buffers where F is
the number of flows that flow through that network node.
This solution can greatly reduce the subsequent correla-
tions that need to be performed by the telemetry server.

Figure 2: an illustration of different scenarios of aggregation with Agg(2) in the
top box, Agg2(2) in the middle box, and Agg2,2(2) in the bottom box.

We can illustrate the different aggregation concepts using
Figure 2, in which we have two switches in the network and
two monitored flows with arbitrary directions. One postcard is
generated by each switch for every packet that belongs to one
of the monitored flows. In the dashed rectangle on top of Fig-
ure 2 the Agg(2) scenario is depicted, where the P4 switch has
only one buffer and is aggregating reports from both switches
and both flows in the same buffer. Once that buffer is full then
a new packet is generated with reports from both switches. The
middle dashed box in Figure 2 represents the Agg2(2) scenario,
where the P4 switch has two buffers to sort reports by their orig-
inating switch. Once a buffer is full its content is emptied into a
new aggregated packet and forwarded to the telemetry server. In
this scenario, the aggregated packet contains only reports gen-
erated by the same switch. The bottom dashed box represents
the Agg2,2(2) scenario, where the P4 switch has four buffers to
sort the reports by flow and by originating switch. Once a buffer
is full its contents are emptied into a new aggregated packet. In
this case, the aggregated packet only contains reports that be-
long to the same flow and are generated by the same switch.

3.2. Correlation of Telemetry Reports
In some scenarios, where it is not critical to collect compre-

hensive information about the network or about certain low-
priority flows at every moment, the P4 aggregation switch can
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perform extra functionality to provide only peak, minimum, and
average values. This aims to further decrease the bandwidth
used by the postcards and reduces the CPU cycles needed to
process the collected data. For this reason, based on the three
aggregation levels described in the previous section, it is possi-
ble to derive three new solutions. That is, by performing corre-
lations on the telemetry data at the P4 aggregation switch. The
purpose is to calculate maximum, minimum, and average val-
ues of the network and switch metadata, such as queue lengths,
latency experienced by packets traversing a certain switch, traf-
fic at network interfaces, and any other relevant parameter.
These three solutions can be explained as follows:

1. Cor(R): This aggregation level is based on Agg(R) men-
tioned in Section 3.1. The P4 switch performs the cor-
relations on telemetry reports from various switches and
various flows. The information generated by this solution
has a large granularity and offers insights about the entire
network or at least the aggregation segment (aggregation
segments are discussed in Section 3.4).

2. CorN(R): This aggregation level is based on AggN(R) men-
tioned in Section 3.1. The P4 aggregation switch performs
the correlations on telemetry reports that are organized by
the originating network node. This solution offers a better
granularity than Cor(R) as the correlation process offers
per switch details.

3. CorN,F(R): It is based on AggN,F(R) and performs corre-
lation on reports organized per-flow and per switch. This
solution offers the best granularity and greatly reduces the
work required by the telemetry server.

Figure 3: a representation of the Cor2,1(R) case

Figure 3 shows the Cor2,1(R) solution with two switches and
one flow. Each generated postcard contains a report with two
values Val1 and Val2. When the P4 aggregation switch re-
ceives a postcard it increases the relevant counter (Figure 3 only
shows the counter and registers for switch S1 for simplicity rea-
sons but a similar set exists for the switch S2) and then the
switch extracts the report and adds the values Val1 and Val2
to their respective sum registers and then compare each value

with its max and min and updates the relevant register accord-
ingly. When the counter is full the values are extracted into a
new correlated packet where the average values are calculated
by dividing the sum values by the number of postcards corre-
lated (the counter value).

We can illustrate the difference between different aggregation
levels in terms of the number of packets and bandwidth usage in
Figure 4. With no aggregation, R telemetry reports are sent in R
packets. When performing aggregation it is possible to remove
R − 1 set of headers consisting of Ethernet, IP, and UDP. This
removal saves redundant bytes from being sent and reduces the
number of sent packets by a factor of R.

Figure 4: comparison between different aggregated packets,

3.3. Processing of Telemetry Reports
The second stage of the telemetry collector is the teleme-

try server which can be either software running on a general-
purpose server or specialized hardware. The exact functionality
of the telemetry server is open to different implementations. A
generic telemetry server receives the telemetry reports, checks
for non-ordinary values, stores the received data in a database
and make it available to the SDN controller, and shows the data
in a human-readable way.

In the case of Agg level of aggregation, the telemetry server
can perform the additional functionality of calculating mini-
mum, maximum, and average values from the data contained in
the aggregated reports. This can reduce the amount of data that
needs to be displayed and stored in the database while slightly
affecting the view granularity of the network state.

In the case of Cor level of aggregation, the telemetry server
receives the data already correlated by the P4 switch and does
not need to perform any extra calculations on the received data.
Thus, it can store directly in the database, significantly saving
processing efforts.

3.4. Distributed Aggregation of Telemetry Reports
When small networks with a limited amount of traffic are

considered, a single P4 aggregation switch may be able to han-
dle the process of extracting and aggregating telemetry reports
from numerous packets. As the number of switches and mon-
itored flows in the network grow, so do the memory require-
ments at the P4 aggregation switch for the aggregation levels
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that require having per-switch and per-flow dedicated registers,
as discussed in Section 5.4. Additionally, not all switches in the
network may offer an advanced level of programmability. For
these reasons, the two-stage telemetry collector shown in Fig-
ure 1 can be extended to a distributed model where multiple P4
switches capable of aggregating the telemetry reports are placed
at specific points in the network in such a way the aggregation
domain is segmented as in Figure 5. This segmentation reduces
the memory requirement for the higher aggregation levels, as
the number of memory registers required at each aggregation
switch is proportional to the number of network switches in its
aggregation segment as discussed in Section 5.4. As an exam-
ple, consider that the aggregation level AggN(R) is applied in
Figure 5 in which the top P4 switch is dedicated for aggrega-
tion, and the two P4 switches in the middle take part in the for-
warding (thus generate their own postcards). Now we can com-
pare two scenarios, in the first scenario, the two P4 switches
in the middle do not perform an aggregation, hence the top
P4 switch requires 9 registers to store the telemetry reports in
AggN(R). In the second scenario, the two P4 switches perform
aggregation in addition to forwarding, hence each P4 switch re-
quires 3 registers to perform the same AggN(R). This segmen-
tation does not affect the CPU results obtained in Section 5.1
as the total number and size of aggregated packets that arrive at
the Telemetry Server remain unchanged, while the bandwidth
savings can be calculated as discussed in Section 5.2.

The aggregation segment is defined within the P4 aggrega-
tion switch using a match-action table where the aggregation
switch after detecting a postcard, matches the source of the
postcard (e.g. IP address) to see if it originated from a network
node within its aggregation segment.

In the case of distributed aggregation of telemetry reports,
each P4 switch handles the aggregation of the telemetry reports
generated at its specific segment. In other words, the P4 switch
can forward the traffic packets normally in the network like any
other switch, and using a match-action table the P4 switch can
detect that a telemetry packet is sent to the telemetry server and
that the packet is generated at the switch’s segment. when such
a packet is detected the switch will then extract and aggregate
the telemetry report contained in the aforementioned packet as
in Figure 5. This distributed aggregation of telemetry reports
eases the hardware requirements of the P4 switches and saves
part of the bandwidth otherwise consumed by headers of the
telemetry packets headed toward the telemetry server. One im-
portant point to note is that even though the aggregation can be
added as an extra functionality to any P4-capable switch, the
current and future load on the P4 switch must be taken into
account. For example, the additional processing at the switch
pipeline introduced due to aggregation might add some latency
[31]. As our implementation is done only in software, we left
out this point to be investigated on a hardware implementation
in the future.

The P4 language allows the programmer to write custom
and flexible match-action tables to be implemented in each P4
switch, and the matching of the packets can be done based on
the destination IP address and the port number. This way, the
P4 switch can understand that the matched packet contains a

telemetry report, and by matching the source IP address the P4
switch can determine whether or not this packet was generated
inside its aggregation domain. A central controller with an ex-
tensive view of the network (e.g., traffic engineering database)
can program each P4 switch with the relevant match-action
rules through the P4Runtime API [19].

Figure 5: The telemetry aggregation domain is segmented and each P4 switch
handles the aggregation of telemetry reports from its segment.

3.5. Priority-Based Aggregation

It makes practical sense to assign different priorities to
telemetry packets that belong to different flows and that are gen-
erated by different switches in the network [32]. A higher pri-
ority in this case corresponds to a lower aggregation level with
the highest priority flows being forwarded without any type of
aggregation. The reason is that storing the telemetry reports at
the P4 switch will introduce a delay in the forwarding of the re-
ports to the telemetry server. Depending on the application, the
priority can be inferred at the P4 aggregating switch in differ-
ent ways. One way to infer the priority is using a flow ID field
included in the headers of the telemetry report for a per-flow
priority assignment. Alternatively, the priority can be inferred
using the ID of the switch that originally exported the telemetry
report for a per-switch priority assignment. Another way for
introducing a priority-based aggregation is to assign priorities
by the switch from which the telemetry report originated. The
latter case will require a dedicated field in the headers of the
telemetry report for priority assignment.

Figure 6: Using different buffers to store telemetry reports based on their prior-
ity
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3.6. Multiple Variable-Size Buffers
The P4 aggregation switch has multiple buffers in its stateful

stages which are used to temporarily store the telemetry reports
extracted from the incoming packets. When a buffer is full its
content gets encapsulated in the payload of a new packet and is
forwarded to the telemetry server. The P4 aggregation switch
uses one of the methods mentioned in Section 3.5 to determine
the priority of the telemetry report and whether to store it in a
buffer to perform the aggregation or just forward the packet as
is without any further manipulation as in Figure 6.

4. The Implementation

In this section, we refer to Figure 1 to explain our implemen-
tation of the P4 aggregation switch along with a description
of the implementation of the network switches that are used
to generate the postcards and the telemetry server. The work-
flows described in Sec. 3 have been mapped into P4-suitable
algorithms. The implemented algorithms are described as Al-
gorithm 1, showing the process of AggN(R), and Algorithm 2
showing the process of CorN(R).

4.1. The P4 Aggregation Switch
The program of the P4 aggregation switch is written using

P416 and is compiled with the P4 compiler [33], the output of
the P4 compiler is a JSON file that can be fed to the P4 switch.
The architectural model of the switch is shown in Figure 7 and
it consists of a pipeline with a few processing blocks starting
with a parser for dissecting and extracting the packet head-
ers, an ingress processing block, an egress processing block,
and finally a deparser that puts the headers back in the packet.
The pipeline blocks can communicate a set of predefined stan-
dard metadata to pass the information on the state of the current
packet, in addition to user-defined metadata.

Figure 7: The P4 architecture of the aggregation switch.

4.1.1. The Parser
The processing pipeline of the switch architecture starts with

a parser that dissects the packet headers and treats the payload
that carries the telemetry data as another header. The parser
detects the existence of a telemetry report in the packet based on
the destination IP address and the port number of the transport
layer protocol. When a telemetry report is detected the parser
of the P4 program extracts the telemetry report from the packet
and adds it to the headers structure object which can be accessed
in the P4 program to manipulate the headers.

Algorithm 1 AggN(R) Algorithm

Define: R,N ▷ aggregation level, number of switches
Reserve: aggregation register( size = [N,R × report.length
]);
Reserve: sequence number(size = bit < 22 >)
for each packet do ▷ for all received packets

headers = packet.extractHeaders()
if report in headers then ▷ packet is a postcard

nodeIndex = mapNodeIdToIndex( head-
ers.report.srcNode )

aggregation register.append( headers.report, position
= nodeIndex )

if aggregation register[ position = nodeIndex ].isFull
then

headers.update( Eth, IP, UDP, Report Group )
headers.append( aggrega-

tion register.extractAllReports )
sequence number++

else
dropPacket()

end if
else

headers.update( Eth, IP )
end if
packet.attachHeaders( headers )
forwardPacket()

end for

4.1.2. The Ingress
The ingress checks if the current headers include the teleme-

try report header: if so, and in the case of AggN(R) aggrega-
tion, then the P4 program stores the extracted report header in
a reserved register bank (the aggregation buffers) and checks if
the end of the buffer is reached. If the end of the buffer is not
reached then the current telemetry packet is assigned to the de-
fault drop interface to be dropped at the switch. The drop of
the packet does not lead to a loss of its content as the teleme-
try report has already been extracted and stored in the buffer,
and the related metadata will later be forwarded to the teleme-
try server in an aggregated packet. When a buffer is full then
a new header is created from the telemetry reports included in
that buffer. This header will then replace the payload of the
last received telemetry packet (i.e., the telemetry packet that
contains the telemetry report which filled the last position in
the aggregation buffer). In addition, the headers of that packet
will be modified to update the relevant fields, for example, the
Time to Live (TTL), the Source IP, and the Length fields in the
IP header. Finally, the egress interface will be assigned to the
packet to be forwarded to the telemetry server.

The register bank can be visualized as a table with R columns
and N rows (buffers), the row is determined by a match action
table based on the source IP address of the node that generated
the postcard. While the P4 program uses a ”cursor” variable to
keep track of the last column stored in the register bank.

The process for performing the correlation of the telemetry
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Algorithm 2 CorN(R) Algorithm

Define: R,N ▷ aggregation level, number of switches
Reserve: N ×3 registers (min[N], max[N], sum[N]) for each
correlated value
Reserve: sequence number, postcardCount[N]
for each packet do ▷ for all received packets

headers = packet.extractHeaders()
if report in headers then ▷ packet is a postcard

nodeIndex = mapSwitchIdToIndex( head-
ers.report.srcNode )

for correlatedValue in report do
updateRegistersOfValue( min, max, sum,

value, position =
nodeIndex )

end for
postcardCount[ nodeIndex ]++
if postcardCount[ nodeIndex ] == R then

correlatedHeader = makeCorrelatedHeaders-
FromRegisters()

headers.update( Eth, IP, UDP, Report Group, cor-
relatedHeader )

postcardCount[ nodeIndex ] = 0
sequence number++

else
dropPacket()

end if
else

headers.update(Eth, IP)
end if
packet.attachHeaders(headers)
forwardPacket()

end for

reports (i.e., a Cor level of aggregation) at the P4 aggregation
switch is obtained by reserving three registers for each measure-
ment parameter: a first register for holding the sum of the read-
ings, a second register for holding the minimum value, and a
third register for holding the maximum value. When the teleme-
try report is detected and extracted by the P4 aggregation switch
each reading in the report is added to the first register storing
the sum of the values, and then the reading is compared against
the current minimum and the maximum values to evaluate if
they need to be updated. When the selected aggregation level
is reached, the values within those registers are extracted and a
new payload is constructed that contains a correlated telemetry
report. This payload then replaces the payload of the last re-
ceived telemetry report packet, and the headers of that packet
are updated accordingly.

4.1.3. The Egress
In the P4 program related to the aggregation and correlation

of the telemetry reports the egress block remains empty as no
further processing is needed at this stage.

4.1.4. The Deparser
The deparser block checks for valid headers. A header is

valid if it has been extracted earlier at the parser or if it has been
constructed during the processing of the packet in the pipeline
either at the ingress or at the egress blocks. If the headers are
found to be valid, then they are re-attached to the packet in the
correct order and the packet is sent to the proper egress inter-
face.

4.2. Correlation on the P4 Aggregation Switch

The P4 switch can perform correlations on the contents of
the telemetry report to calculate and send maximum, minimum,
and average values to offload this process from the telemetry
server’s CPU and to reduce the traffic on the links toward the
telemetry server. For calculating the average value x we use
the equation x =

∑
p,v

R where
∑

p,v is the sum of the value read-
ings v that belong the parameter p that we want to average and
R is the number of value readings which equals the number of
aggregated reports. In the previous equation, it is worth select-
ing R = 2y where y is a positive integer. When the number of
value readings is a power of two, then the division process is
just a matter of shifting the value to the right by a number of
bits which avoids time-demanding calculations.

4.3. The Telemetry Server

The telemetry server is a basic implementation written in
Python3 using the Scapy library. Other tools might have been
used for the telemetry server, for example, a server written in
C that leverages a DPDK implementation for quick extraction
and parsing of the aggregated telemetry reports. However, as
our experiment mainly focuses on the implementation of the P4
aggregation switch and uses bmv2 [34] software switches, the
performance offered by Scapy is sufficient to support our appli-
cation and demonstrate the benefits of aggregation.
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The code of the telemetry server uses multi-threading for
handling different packets. The server listens to the network
interface for incoming telemetry packets and when a telemetry
packet is detected its content is then dissected and the values
are written to a local InfluxDB database.

4.4. The Network Switch

The network switch has the functionality of forwarding the
data packets to their destination based on IP addresses. In ad-
dition, they are programmed to generate postcards (telemetry
packets) and send them to the server. Flow rules are installed
at each switch to properly forward the packets and trigger the
generation of telemetry reports based on matching the source
IP address and port number of each packet passing through the
switch.

5. Results

Using the testbed in Figure 1 we evaluated the perfor-
mance of our proposed telemetry server. The testbed comprises
three network switches each of which supports data plane pro-
grammability through P4. The purpose of the network switches
is to generate the telemetry reports and send them via telemetry
packets (Postcards) to the two-stage telemetry collector. The
testbed is also composed of the two-stage telemetry collector
with the first stage being the P4 aggregation switch and the
second stage being the telemetry server. Each of the switches
we used in our testbed is a bmv2 software switch based on the
v1model architecture and is running on its own general-purpose
Ubuntu server (CPU AMD EPYC 7262 8-core 3.4GHz, 16GB
RAM).

A traffic generator is used to generate traffic that traverses the
network in Figure 1 at a rate of 10,000 pps (packets per second).
This traffic triggers the generation of 10,000 postcards at each
network switch, thus a total of 30,000 postcards are sent to the
telemetry server.

The number of generated postcards may not be representa-
tive of a real network scenario, as our experiment uses software
switches running on general-purpose hardware and have per-
formance limitations. The number has been selected to be high
enough to overload the CPU of the telemetry server and allow
the comparison between the various proposed solutions.

The WireShark capture of Figure 8, recorded at the P4 col-
lector, shows the AggN(16) packet along with the last two post-
cards originated from the same switch (i.e., with IP address
1.1.1.1) subject to aggregation. Each postcard has a payload
of 68 bytes where 8 bytes belong to the telemetry group header
and the other 60 bytes belong to the report. Another Wireshark
capture is shown in Figure 9, referred to as the CorN(2) packet
conveying the minimum, maximum, and average values of the
collected intra-switch latency.

5.1. CPU Load of the Telemetry Server

We evaluate the capability of the proposed schemes to re-
duce the number of packets that need to be decapsulated and
sent to higher layers at the telemetry server, as the number of

Figure 8: WireShark captures showing the payload of an AggN (16) along with
the payload of the last two received postcards.

Figure 9: WireShark captures showing the payload of a CorN (2) along with the
payload of the two correlated postcards.

such packets greatly affects the telemetry server CPU load. Fig-
ure 10a(a) shows the results obtained in the testbed as a com-
parison between three aggregation levels. The Agg(0) case is
considered as a baseline, as the P4 aggregation switch just for-
wards postcards to the telemetry server without any modifica-
tion. From Agg(0) we can clearly see a CPU overload event
(i.e., 100% CPU) which can be explained by the need to dissect
a high number of packets received at the network interface.

(a) (b)

Figure 10: (a) Comparing the load on the CPU for different aggregation levels,
and (b) time in seconds taken by the telemetry server to process 1000 packets
from a .pcap file

The second case considers the P4 aggregation switch per-
forming Agg(15). Results show a reduction of the CPU load
down to around 50% due to the reduced number of received
packets, accounting for a reduction factor of around 15.

The third case is Agg(25) when the number of received pack-
ets is reduced by a factor of around 25 and we observe even
further reduction in the CPU load down to less than 30%.
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For reference, we ran a tcpdump process [35] which is a high-
performance tool for reading packets from a network interface.
The numbers we obtained when measuring the CPU usage of
the tcpdump process were 13% when no aggregation was ap-
plied, and 8% for the Agg(25) aggregation level. that shows a
5% reduction in CPU usage or a 38% improvement. However,
in the case of tcpdump no further dissecting or writing to the
database was performed.

We can conclude that the decapsulation process of the re-
ceived packets is a very expensive task in terms of CPU usage
and reducing the rate of received packets by performing aggre-
gation at the P4 switch frees a significant amount of CPU cycles
that can be allocated to other useful tasks. It is worth noting that
in each case there is no actual loss of any information and the
benefit is obtained merely by aggregating the reports from mul-
tiple packets in one.

In the next step, we compare the impact of Agg and Cor so-
lutions at the telemetry server. In Agg, the telemetry server is
receiving an aggregated packet, extracts all the different val-
ues, and computes the statistics (i.e., average values in addi-
tion to maximum and minimum values). In Cor, the calculation
of minimum, maximum and average values is done by the P4
aggregation switch before sending the correlated packet to the
telemetry server.

We did not measure a significant difference in the CPU load
on the telemetry server between the two cases of correlation
when the packets are received by the network interface of the
telemetry server due to the fact that most of the load on the
CPU was caused by the decapsulation process of the received
packets, and since the number of the packets is the same in both
cases the CPU load was almost identical.

For this reason, we conducted a similar experiment; however,
instead of reading packets from the network interface at the
telemetry server, we read the packets from two packet-capture
files (a .pcap file). Both files include a total of 1000 packets.
The first .pcap file contains 1000 telemetry packets, each ag-
gregating 16 telemetry reports originating from a single node.
The reports are not modified and are kept as they were exported
by their original node with no correlation inside the reports. In
this case, the telemetry server reads the sixteen reports from
each packet and calculates the minimum, maximum, and aver-
age values. At the end of each packet, the calculated values are
written to a local database. The second .pcap file contains 1000
telemetry packets that originated from a single node in the net-
work. However, each packet contains a correlated telemetry re-
port in which only the minimum, maximum, and average values
for the 16 telemetry reports that otherwise should be carried in
the packet’s payload. We show the impact carried by Cor levels
of aggregation by feeding .pcap files to the telemetry server and
thus skipping the reading of the packets from the network inter-
face. The result is a reduction of the processing time of 1000
telemetry packets taken by the telemetry server from an average
time of 2.969 seconds down to an average time of 2.6255 sec-
onds, reaching about 11.57% reduction of the processing time
as shown in Figure 10b(b).

5.2. Bandwidth Usage

The aggregation of report packets leads to the removal of
packet headers encapsulating individual reports, which in turn
leads to a reduction of the bandwidth. we can derive a simple
formula for calculating such reduction. Let HO be the length
of the headers encapsulating the payload which contains the
telemetry report, this can be assumed as a stack of an Ethernet
header followed by an IP and UDP headers. Assuming mini-
mum lengths, HO = 14 + 20 + 8 = 42 bytes. A single telemetry
report, according to [26], has a group header with length HG

= 8 bytes (used to identify the source node and the hardware
that generated the report) and an individual report header with
length HR = 60 bytes for a report carrying the entire set of P4
metadata [26]. Thus, the total postcard length is 110 bytes. In
the case of Agg(R), the total length of an aggregated packet will
be: HO +R× (HG +HR) where R is the level of aggregation, in-
stead of R×(HO+HG+HR) in case of no aggregation. Using the
above numbers, the normalized bandwidth can be derived as a
function of the aggregation level: BWn = (42+R×68)/(R×110).
The plot of the normalized bandwidth consumption for different
values of R for an Agg(R) level of aggregation is shown in Fig-
ure 11. Figure 12a shows the normalized usage of bandwidth

Figure 11: Agg(R): normalized bandwidth consumption for different values of
R.

for different Agg(R) levels of aggregation, and we can see the
total bandwidth used by the telemetry packets is reduced to 66%
for Agg(8) while the bandwidth usage is down to only 63% of
its original amount when using Agg(25) level of aggregation.

When performing the correlation at the P4 aggregation
switch, it is possible to achieve higher bandwidth savings due
to the fact that most of the data inside the telemetry reports
are discarded. For example, neglecting timestamps and inter-
faces and sending only minimum, maximum, and average val-
ues, only HR+HG = 68 bytes are necessary for a total telemetry
packet length of 110 bytes. We can see the benefits of correla-
tion in terms of bandwidth savings in Figure 12b, which shows
the usage of the normalized bandwidth in cases of Cor(8) with
a reduction to only 110/(8×110) = 12.5% of the original band-
width consumed by telemetry packets, and Cor(16) which can
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achieve a further reduction to less than 7% of the original band-
width used.

(a) (b)

Figure 12: (a) Normalized bandwidth usage for different Agg(R) levels of ag-
gregation. (b) Normalized bandwidth usage for different Cor(R) levels of ag-
gregation

5.3. Delay

Besides CPU load and bandwidth occupancy, each proposed
solution has a different impact in terms of the delay of the whole
telemetry process. The delay includes the time needed to wait
for the reception and the aggregation of subsequent telemetry
packets, and the time needed at the aggregation switch to pro-
cess the single postcards reports and generate the aggregated
version.

The maximum queuing delay (i.e., the time elapsing between
the arrival of the first and last postcard in the queue) can be es-
timated using the formula D = R/A where A is the arrival rate
of the telemetry packets measured in packets per unit time and
R is the aggregation level, i.e. the number of reports that need
to be stored in memory before building the aggregated packet
to the telemetry server. R can be set in terms of priority where
lower values of R correspond to higher priorities, and R = 0
corresponding to D = 0 is the highest possible priority with no
extra delay introduced in the arrival of telemetry reports. We
calculate in Table 1 the queuing delay in milliseconds intro-
duced by the aggregation process at the P4 aggregation switch
for different aggregation levels and different arrival rates.

Rate (pps) Agg(4) Agg(8) Agg(16) Agg(25)
2000 2 4 8 12.5
5000 0.8 1.6 3.2 5
10000 0.4 0.8 1.6 2.5

Table 1: Different delays in milliseconds at the P4 aggregation switch for dif-
ferent arrival rates

Another source of delay referred to as aggregation delay, is
introduced in the P4 aggregation switch due to the processing of
the aggregated packet, including reading the aggregated packet
from memory and the deparsing of the headers. The aggrega-
tion delay is measured as the time elapsing between the arrival
of the last postcard in the queue and the transmission of the
aggregated packet out of the output interface. We measured

the aggregation delay inside the P4 aggregation switch (i.e.,
a BMv2 software switch) and we observed a similar perfor-
mance between different aggregation levels for a certain post-
card arrival rate, around 60µs. This result is interesting and
confirms that the P4 aggregation switch implementation intro-
duces a fixed delay regardless of the selected aggregation level.
The maximum delay in the arrival of a telemetry report will be
equal to the sum of queuing delay plus the aggregation delay.

5.4. Scalability

We evaluate the resources needed by the P4 aggregation
switch in order to perform the various aggregation levels. For
all levels of aggregation, the P4 aggregation switch must detect
the existence of a telemetry report via the parser and by match-
ing the flow through the destination IP address and UDP port
number. Thus, a new state is needed at the parser state machine,
and the amount of resources needed for every aggregation level
is quantified as follows:

1. Agg(R) : for the aggregation of the telemetry reports the
P4 aggregation switch needs a register bank of capacity
R× Lr where Lr is the length of the telemetry report and R
is the number of aggregated reports. An addition register
of size Lp is required for storing the variable that points to
the last location of the register bank in which a telemetry
report was written. In this case, the resources needed at
the P4 aggregation switch are independent of the number
of switches and flows in the network.

2. AggN(R) : for this level of aggregation the switch requires
a register bank of the capacity of N×R×Lr where N is the
number of monitored switches as well as a match-action
table with N entries for setting a switch ID to identify the
register to which the telemetry report must be written. In
addition, a register bank of size N × Lp is required to store
the different variables needed to point to the locations in
the register banks of each switch to which it was written
last. In this aggregation level the hardware requirements
scale with the number of monitored switches in the net-
work.

3. AggN,F(R) : in this aggregation level a register bank of the
capacity of F×N×R×Lr is needed where F is the number
of monitored flows assuming the same number of moni-
tored flows at every switch. In addition to the previous
register bank, another bank of registers of size F × N × Lp

is needed to keep track of various pointers that belong to
different switches and different flows. Also, two match-
action tables are needed for the setting of switch ID and
flow ID for the identification within the P4 program of the
proper registers within the P4 aggregation switch. In this
solution the hardware requirements scale with the product
between the number monitored of flows and the number of
monitored switches.

4. Cor(R) : for this aggregation level in our implementation
three registers of adequate size (variable per the monitored
parameter) were needed to store the maximum, minimum,
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and the sum of values of every monitored parameter the
average values are then calculated by dividing the sum by
the number of aggregated reports. In addition, a single reg-
ister is needed to hold the value of a counter variable for
detecting when the correlation level is reached. The hard-
ware requirements are constant regardless of the network
size and the number of flows.

5. CorN(R) : for this solution the number of registers needed
is the same number as Cor(R) multiplied by the number of
monitored switches in the network N. In addition to requir-
ing a match-action table with N entries for setting identi-
fying the correct registers in the P4 program. The hard-
ware requirements for this solution scale with the number
of monitored switches in the network.

6. CorN,F(R) : for this solution the number of the required
register is the same as the number needed by CorN(R) mul-
tiplied by the number of flows F, assuming the same num-
ber of flows at every switch. In addition, a second match-
action table is required for adding the flow ID and cor-
rectly identifying the register to which the values must be
written. The hardware requirements of this solution scale
with the product between the number of switches times
and the number of flows. This solution may not realistic in
the majority of cases. However, a network manager might
still choose to implement this solution for a selected con-
figurable number of flows to collect only a summary of the
telemetry data.

Among the different solutions that we have shown in this pa-
per, we conclude that the Agg(R) solution is the easiest to im-
plement in the P4 aggregation switch as the needed hardware
resources do not change with the number of the switches and
the number of flows in the network and requires a static number
of registers; in addition, the Agg(R) solution does not compro-
mise any of the information included in the telemetry reports.
Meanwhile, the Cor(R) solution blurs all the details about the
network state and only offers a general insight which may not
be very useful in most cases.

The AggN(R) and solution could also be feasible for a low
and known number of switches in the network. The same thing
can be said about the CorN(R) solution in case the network op-
erator can tolerate the loss of some info due to the correlation
process.

On the other hand, the AggN,F(R) along with CorN,F(R) solu-
tions may not be practical as the costs of such implementations
may overwhelmingly outweigh any benefits.

6. Conclusions

In this paper, we proposed pre-processing postcard teleme-
try messages at a dedicated P4 capable switch forming the first
stage of a two-stage telemetry collector. We demonstrated the
potential CPU load reduction at the telemetry server and band-
width savings in the network at the cost of an extra, limited,
introduced delay due to the postcards queuing behavior. The

different levels of aggregation, along with the concept of dis-
tributed telemetry aggregation allows to adapt the application
to the hardware available at the P4 switch and makes the appli-
cation suitable for various hardware capabilities. We proposed
a complete P4 design for the aggregation switch and evaluated a
proof of concept in an SDN network testbed using the P4 refer-
ence software switch. We introduced the Agg(R) solution which
offers the greatest scalability independently from the number of
switches and flows in the network and we demonstrated that it
is possible - using the Agg(25) solution to reduce the load of the
CPU by around 70% and the bandwidth consumed by telemetry
packets by almost 35% at the cost of a maximum added delay
of around 72.5µs for an arrival rate of 2000 pps. By perform-
ing correlations in the P4 aggregation switch we showed that
it is possible to reduce processing time in the CPU by around
11% and reduce the bandwidth consumption by up to over 93%
at the cost of losing some of the information contained in the
telemetry reports. The next research steps will investigate im-
plementations using commercially available P4 switches in the
market and explore the true feasibility and limitations of our
application.
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