
Rough Randomness and its Application

A Mani

Machine Intelligence Unit, Indian Statistical Institute, Kolkata
203, B. T. Road, Kolkata-700108, India

Email: a.mani.cms@gmail.com amani.rough@isical.ac.in
Homepage: https://www.logicamani.in

Orcid: https://orcid.org/0000-0002-0880-1035

Abstract. A number of generalizations of stochastic and information-theoretic randomness
are known in the literature. However, they are not compatible with handling meaning in
vague and dynamic contexts of rough reasoning (and therefore explainable artificial intelli-
gence and machine learning). In this research, new concepts of rough randomness that are
neither stochastic nor based on properties of strings are introduced by the present author.
Her concepts are intended to capture a wide variety of rough processes (applicable to both
static and dynamic data), construct related models, and explore the validity of other machine
learning algorithms. The last mentioned is restricted to soft/hard clustering algorithms in this
paper. Two new computationally efficient algebraically-justified algorithms for soft and hard
cluster validation that involve rough random functions are additionally proposed in this re-
search. A class of rough random functions termed large-minded reasoners have a central role
in these.
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1 Introduction
Rough sets is a formal approach to model vagueness, approximate reasoning, and un-
certainty that has progressed tremendously over the last four decades from both pure
and application perspectives in several directions [29, 28, 34, 26]. In the axiomatic ap-
proach to granular computing [22, 15], due to the present author, approximations are
generated as terms formed from granules. Subjective probabilistic and evidence the-
ory based interpretations/analogies of specific versions of rough sets are known in
the literature [30, 35, 17, 4]. However, these require very restrictive assumptions, and
are of unclear ontology.

A phenomenon is stochastically random if it has probabilistic regularity in the
absence of other types of regularity [13]. On the other hand, a sequence is algorithmi-
cally random if and only if no computational agent recognizes it as possessing some



rare property (that is properties valid over a set of measure zero that could be tested
in a sufficiently effective way) [31, 13]. These ideas are realized in the contexts of
subjective probability, and computability in several ways. Stochastic ideas of rough
randomness that basically generalize measure-theoretic probability are known in the
literature [14]. However, they are essentially a hybrid approach to measure-theoretic
probability, and are not applicable for the purposes of explainable AI and cluster
validation through models. In fact, it is known in the psychology literature that
humans cannot perceive ideas of stochastic randomness and weakenings thereof in
real life to the point that they are very bad at it [2]. This further suggests that the
connections in the rough set literature between specific versions of rough sets and
subjective probability theories (Bayesian or frequentist) are not properly grounded
or mutually inconsistent. It is because rough reasoning, in the contexts, originate in
some comprehension of attributes (their relation with the approximated object in
terms of number or relative quantity and quality) [26, 28].

The central idea of stochastic randomness mentioned above can be generalized
or exported research as follows: A phenomenon is random relative to a method of
interpretation X if it does have some regularity relative to X, and is otherwise appar-
ently random. Such a generalization needs to be consistent, novel, meaningful, and
reasonable processes and predicates should be derivable in the application contexts of
X. In this research, new concepts of rough randomness are introduced over classical,
relation-based, cover-based, and general granular axiomatic rough sets [22, 15] in the
light of the above by the present author. Related concepts of rough random functions
are shown to be useful for systematically representing key aspects of soft and hard
cluster validation, and dynamic information systems by her. These functions cap-
ture a number of associations of general rough approximations with rough objects,
measures relating to semantic features, and thus provide an improved approach to
approximate (including three-way) decision-making. A system of new algorithms to
cluster validation that radically improve the computational complexity are invented
in this research. These algorithms involve rough random functions that are used to
construct a concept of a large-minded reasoner. In fact, the latter is a rough random
function that is mathematically sound.

2 Background

Information tables are representations of structured data in tabular form. They are
additionally referred to as descriptive or knowledge representation systems in the
artificial intelligence and machine-learning (AIML) literature. In general rough sets,



such tables are not absolutely essential, however, they are obviously useful (if avail-
able). For details the reader is referred to [23, 19, 25].

An information table I, is a relational system of the form

I = ⟨O, A, {Va : a ∈ A}, {fa : a ∈ A}⟩

with O, A and Va being respectively sets of objects, attributes and values respectively.
fa : O 7−→ ℘(Va) being the valuation function associated with attribute a ∈ A.
Values may additionally be denoted by the binary function ν : A × O 7−→ ℘(V )
defined by for any a ∈ A and x ∈ O, ν(a, x) = fa(x).

An information table is deterministic (or complete) if

(∀a ∈ At)(∀x ∈ O)fa(x) is a singleton.

It is said to be indeterministic (or incomplete) if it is not deterministic that is

(∃a ∈ At)(∃x ∈ O)fa(x) is not a singleton.

Relations may be derived from information tables by way of conditions in the
following form: For x, w ∈ O and B ⊆ A,

σxw if and only if (Qa, b ∈ B)Φ(ν(a, x), ν(b, w), )

for some quantifier Q and formula Φ. The relational system S = ⟨S, σ⟩ (with S = O)
is said to be a general approximation space. It should be noted that this universal
feature of defining relations in general approximation spaces do not hold always
in human reasoning contexts. Typically, information tables are finite. So it will be
assumed that card(O) = r < ∞, and card(A≈) = n < ∞.

In most applications, the neighborhood granule of a point a ∈ S is taken to be
n(a) = {b : Rba} (or its inverse) because the maximal collections of mutually σ-
related elements (if defined) is/was harder to compute. With recent improvements
in accelerators like the GPU, scalability has considerably improved.

2.1 Distance Functions

A distance function on a set S is a function ρ : S2 7−→ ℜ+ that satisfies

(∀a)ρ(a, a) = 0 (distance)

The collection B = {Bρ(x, r) : x ∈ S & r > 0} of all r-spheres generated by ρ is a
weak base for the topology τρ defined by

V ∈ τρ if and only if (∀x ∈ V ∃r > 0)Bρ(x, r) ⊆ V



Any ϵ > 0 and a distance function ρ determines a tolerance T defined by

Tab if and only if ρ(a, b) + ρ(b, a) ≤ ϵ.

One can define other tolerances through conditions such as

ρ(a, b) + ρ(b, a)
1 + ρ(a, b) + ρ(b, a) ≤ ϵ.

The point is that a function much weaker than a semimetric suffices for defining a
tolerance relation. More complex definitions are often possible.

Proposition 1. For a numeric complete information table I, the following holds:

1. Valuations for each attribute are totally ordered by ≤,
2. O is totally ordered relative to the induced lexicographic order.
3. O is lattice ordered relative to ≤ defined by (a1, . . . , an) ⪯ (b1, . . . , bn) if and only

if &iai ≤ bi with ai, bi ∈ Ran(ν(, Ati).

However, a numeric table is not necessary for any of the three properties to hold.

2.2 Tolerance Relations

Some familiarity with the algebraic theory of tolerances, and its use in general
rough sets [5, 19, 21] will be assumed. If T is a tolerance on a set S, then a pre-
block of T is a subset K ⊆ S that satisfies K2 ⊆ T . The set of all pre-blocks
of T is denoted by pB(T ). Maximal pre-blocks of T with respect to the inclusion
order are referred to as blocks. The set of all blocks of T is denoted by B(T ). If
S = ⟨underlineS, f1, f2, . . . , fn, (r1, . . . , rn)⟩ (S being a set and fi being ri-place
operation symbols interpreted on it) is an algebra, then a tolerance T is said to be
compatible if and only if for each i ∈ {1, 2, . . . n < ∞},

&ri
j=1Tajbj −→ Tfi(a1, a2, . . . ari

)fi(b1, b2, . . . bri
).

When S is a lattice, every tolerance is the image of a congruence by a surjective
morphism : S 7−→ S. Further, if A,B ∈ B(T ), then {a ∨ b : a ∈ A& b ∈ B}, {a ∧ b :
a ∈ A & b ∈ B} ∈ pB(T ). The smallest blocks containing these are unique, and
the resulting lattice of blocks is denoted by S|T . The set UBD(S) = {B(T ) : T ∈
Tol(S)} will be referred to as the universal block distribution (UBD) of S. It can be
assigned the same algebraic lattice order on Tol(S).

A sublattice Z of a lattice S is called a convex sublattice if and only if it satisfies
(∀x, b ∈ Z)(x ≤ a ≤ b −→ a ∈ Z). The blocks of a lattice are all convex sublattices.



If C is a subset of S then ↓ C, and ↑ C will respectively denote the lattice-ideal and
lattice-filter generated by C. The following result [1, 8, 5] is not usable for a direct
computational strategy:
Theorem 1. For a finite lattice L, a collection C of nonempty subsets is the set of
all blocks of a tolerance T ∈ Tol(L) if and only if it is a collection of intervals of the
form {[ai, bi] : i ∈ I}, and

• ⋃
i∈I [ai, bi] = L

• For all i, j ∈ I, (ai = aj −→ bi = bj).
• (∀i, j ∈ I)(∃k ∈ I) ak = ai ∨ aj & bi ∨ bj ≤ bk.

Theorem 2. In the context of Theorem 1,

1. (∀C,E ∈ C) (↓ C =↓ E ⇐⇒ ↑ C =↑ E) .
2. For any two elements C,A ∈ C there exist E,F such that (↓ C∨ ↓ A) = ↓ E,

(↑ C∨ ↑ A) ≤↑ E, ↓ F ≤ (↓ A∧ ↓ C), and (↑ C∧ ↑ A) = ↑ F ).

For finite chains, the following can be said [11]
Theorem 3. 1. A collection C of subsets of the chain

Ln = ⟨{0, 1, 2, . . . n− 1},≤⟩ is the set of all blocks of a tolerance T ∈ Tol(L) if
and only if C is of the form {[ni,mi] : i = 1, . . . k} for some 1 ≤ k ≤ n− 1, with
n1 = 0, mk = n− 1, and ni < ni+1 ≤ mi + 1, and mi < mi+1 for all i = 1, . . . k.

2. A collection C of subsets of the chain Ln = ⟨{0, 1, 2, . . . n− 1},≤⟩ is the set
of all blocks of a glued tolerance T ∈ Glu(L) if and only if C is of the form
{[ni,mi] : i = 1, . . . k} for some 1 ≤ k ≤ n − 1, with n1 = 0, mk = n − 1, and
ni < ni+1 ≤ mi < mi + 1, and mi < mi+1 for all i = 1, . . . k.

3. A collection C of subsets of the chain Ln = ⟨{0, 1, 2, . . . n− 1},≤⟩ is the set of all
blocks of a congruence R ∈ Con(L) if and only if C is of the form {[ni,mi] : i =
1, . . . k} for some 1 ≤ k ≤ n−1, with n1 = 0, mk = n−1, and ni < ni+1 = mi +1,
and mi < mi+1 for all i = 1, . . . k.
In this research, prefix or Polish notation is uniformly preferred for relations and

functions defined on a set. So instances of a relation σ are denoted by σab instead of
aσb or (a, b) ∈ σ. If-then relations (or logical implications) in a model are written in
infix form with −→.

3 Rough Randomness

The meta principle stated in the introduction when specialized to general rough sets
has the following form: A phenomenon is roughly random if it can be modeled by



general rough sets or a derived process thereof. From a more concrete perspective, it
should involve roughly random functions or predicates in some sense. On the basis of
potential application in theoretical and applied studies, this is made precise below.

Definition 1. Let Aτ be a collection of approximations of type τ , and E a collection
of rough objects defined on the same universe S, then by a rough random function
of type-1 (RRF1) will be meant a partial function

ξ : Aτ 7−→ E.

Definition 2. Let Aτ be a collection of approximations of type τ , S a subset of ℘(S),
and ℜ the set of reals, then by a rough random function of type-2 (RRF2) will be
meant a function

χ : Aτ × S 7−→ ℜ.

Definition 3. Let Aτ be a collection of approximations of type τ , and F a collection
of objects defined on the same universe S, then by a rough random function of type-3
(RRF3) will be meant a function

µ : Aτ 7−→ F.

Definition 4. Let Oτ be a collection of approximation operators of type τl or τu,
and E a collection of rough objects defined on the same universe S, then by a rough
random function of type-H (RRFH) will be meant a partial function

ξ : Oτ × ℘(S) 7−→ E.

It is obvious that a RRF1 and RRF2 are independent concepts, while a total
RRF1 is an RRF3, and RRFH is distinct (though related to RRF3). The collection
of all such functions will respectively be denoted by RRF1(S,E, τ), RRF2(S,ℜ, τ),
RRF3(S, F, τ), and RRFH(S,E, τ). The concepts are intended to capture a number
of associations of general rough approximations with rough objects, and various mea-
sures relating to semantic features. Some examples are presented next. The use of a
single universe with as opposed to multiple universes for handling temporal aspects
is not a big issue.

Remark 1. These are not referred to as variables by analogy with probability theory
for technically correct reasons. Moreover, the analogy is very weak.



Examples: RRF

A few classes of examples with roots in the practice of general rough sets are described
in this subsection.

Example 1. Let S be a set with a pair of lower (l) and upper (u) approximations
satisfying (for any a, b, x ⊆ S)

xl ⊆ xu (int-cl)
xll ⊆ xl (l-id)

a ⊆ b −→ al ⊆ bl (l-mo)
a ⊆ b −→ au ⊆ bu (u-mo)

∅l = ∅ (l-bot)
Su = S (u-top)

The above axioms are minimalist, and most general approaches satisfy them.
In addition, let

Aτ = {x : (∃a ⊆ S)x = al or x = au (1)
E1 = {(al, au) : a ∈ S} (E1)

F = {a : a ⊆ S & ¬∃bbl = a ∨ bu = a} (E0)
E2 = {b : bu = b& b ⊆ S} (E2)

ξ1(a) = (a, bu) for some b ⊆ S (xi1)
ξ2(a) = (bl, a) for some b ⊆ S (xi2)

ξ3(a) = (e, f) ∈ E1 & e = a or f = a (xi3)

E1 in the above is a set of rough objects, and a number of algebraic models are
associated with it [19]. A partial function f : Aτ 7−→ E1 that associates a ∈ Aτ

with a minimal element of E1 that covers it in the inclusion order is a RRF of type
1. For general rough sets, this RRF can be used to define algebraic models and
explore duality issues [21], and for many cases associated these are not investigated.
A number of similar maps with value in understanding models [26] can be defined.
Rough objects are defined and interpreted in a number of other ways including F or
E2.

Conditions xi1-xi3 may additionally involve constraints on b, e and f . For example,
it can be required that there is no other lower or upper approximation included
between the pair or that the second component is a minimal approximation covering
the first. It is easy to see that



Proposition 2. ξi for i = 1, 2, 3 are RRF of type-1.

Example 2. In the context of the above example, rough inclusion functions, member-
ship, and quality of approximation functions [32, 10] can be used to define RRF2s.
An example is the function ξ5 defined by

ξ5(a, b) = Card(b \ a)
Card(b) (1)

In the algebraic models based on maximal antichains of definite objects due to the
present author [18], it is useful to study the association of approximation with parts
of maximal antichains. This is expressible with RRF of type H. This is considered in
a separate paper.

Proposition 3. A rough random variable [14] in the sense of Liu, is not a rough
random function of any type.

Proof. In the theory [14], a rough space is a tuple (S,F , Tµ with (S,F , µ being a
measure space, and T ∈ F . A rough variable π is a measurable function from a rough
space into the reals. If B is a Borel subset of R then {x ∈ S; π(x) ∈ B} ∈ F . The
lower and upper approximations of π are πl = {π(x);x ∈ T}, and πu = {π(x);x ∈ S}.
That is a function is approximated by its restricted range – this interpretation is not
cleanly explained in the book [14]. In the perspective of rough sets, some part of the
range of π is approximated, and not π.

The trust associated with an event A is defined as (the mean of upper and lower
trusts): τ(A) = 0.5(µ(A)

µ(S) + µ(A∩T )
µ(T ) . A rough random variable (Liu) is a function χ from

a probability space (X,S, p) to the set of rough variables such that τ{χ(x) ∈ B} is
a measurable function of x for any Borel set B of R. As probability spaces are not
related to any of the domains of RRFs, the concepts are unrelated in general.

4 Application: New Cluster Validation Algorithm

Hard clusters are essentially partitions of a set that satisfy additional conditions
on the partitions, while soft clusters are collections of pairs of subsets of the form
{(Ci, Ei)}. Ci is referred to as the core and Ei as the exterior. Cis are mutually
disjoint, while Ei is disjoint from Ci for each i. Additional conditions are usually
imposed [3, 12]. Cluster validation through rough sets is proposed by the present
author in a recent paper [24]. Here the context of distance based soft/hard clustering
is considered and new algorithms are invented.



4.1 Meta Algorithm-1

This is a meta-algorithm as some steps that require high performance computing can
be implemented in many ways.

Suppose a hard clustering {Ci}k
i=1 or a soft clustering {(Ci, Ei)}k

i=1 [3, 12] obtained
through any method is given.

Distance Specify distinct distance functions by each column (attribute) or between
objects that are meaningful.

Similarity Define a similarity (tolerance relation) for each column or between ob-
jects.

Combination Combine to a single tolerance relation over objects on the table
Similarity Matrix Compute the similarity matrix (several HPC methods are pos-

sible).
Blocks Compute the blocks of the tolerance by a maximal clique algorithm (for

example the modified Bronkerbosch algorithm [7]).
Approximations Compute granular rough approximations of Ci, and Ei for each i

and estimate the closeness of the cluster core or exterior to decide on validation.

If the rough model can explain the soft/hard clustering, then the latter is mean-
ingful and valid.

4.2 Axiomatic Granular Reversed Similarity Based Semi-Supervised
Algorithm (AGRSSA)

This new algorithm requires a total order on each column (attribute), and an order-
compatible metric over objects or one for each column that is compatible with the
order. Specifically, it applies to all numeric (real valued) datasets. The essential steps
are

Distance Specify distinct distance functions by each column (attribute) or between
objects.

Exploratory Statistics Identify q-quantiles at a suitable level of precision. Let
these be {q_1, q2, . . . qf} based on the distance specified earlier.

Interval Boundaries Interval boundaries can be computed through the sequence
⊥, q1 −e1, q1 +e1, q2 −e2, q2 +e2, . . . , qf −ef , qf +ef ,⊤. The quantities e1, e2, . . . ef

being determined as a fraction of the standard deviation, a local standard devia-
tion or other local measures of variation.

Blocks Specify blocks as the intervals according to the minimal scheme or the
exhaustive/selective tolerance discovery algorithm (specified below). The sub-
sequent steps in the latter are different



Approximations Compute granular rough approximations and perform decision-
making. If a set of objects H are to be approximated, then
1. The lower approximation of H is the union of blocks included in it.
2. The lower approximation of H is the union of blocks that have some common

elements with H.
Ontology Determine tolerance relation from blocks, and specify ontology.

It is possible to get the values ei through exploratory statistical methods alone.
However, this involves decisions based on a good understanding of the attribute
values.

The specification of blocks should ideally be a supervised step as it relates to an
understanding of the relation of directional increase or decrease of columns. These
can optionally be deduced based on the decision and label attributes, in which case,
the algorithms become purely data-driven.

Let the set of all permutations of the set ∏n
i=1{1, . . . , ki} be denoted by

Σ(n, k1, . . . kn)

Scheme: Minimal (AGRSSA-M)

For simplicity, suppose that there is exactly one column for decisions and no addi-
tional decision/label columns are present. The necessary steps for constructing the
blocks from the possible intervals of each conditional attribute are as follows:

1. From the q-quantiles form intervals with possibly non-empty intersection, and
subject to the constraint specified in Theorem 3.

2. Determine the interval boundaries for each conditional attribute by analyzing the
gross changes in decisions (this is a heuristic). This may additionally lead to a
good choice of a permutation σ ∈ Σ(n, k1, . . . kn). It being assumed that the ith
attribute has ki blocks (for i = 1, 2, . . . n).

3. Form the blocks of the conditional attributes based on the interval boundaries of
each conditional attribute,
and relative to the permutation operator σ.

In this case, additional exploratory statistical methods can be very useful in deter-
mining the choice of σ.

Exhaustive Tolerance Discovery Algorithm (AGRSSA-LMR)

The mathematical concept of a large-minded reasoner is introduced because of its
role in the exhaustive tolerance discovery algorithm invented below.



Definition 5. By a large-minded reasoner will be meant a partial function ψ :
UB(A1) × UB(A2) × . . .UB(An) 7−→ UB(A).

Basically, it is intended to specify the possibly reasonable collections of blocks in a
situation, with the assumption that the collection is the result of eliminating those
not in dom(ψ).

1. From the q-quantiles form intervals with possibly non-empty intersection, and
subject to the constraint specified in Theorem 3.

2. Eliminate unreasonable interval boundaries for each conditional attribute by an-
alyzing the gross changes in decisions (this is a heuristic).

3. Specify the large minded reasoner ψ
4. Compute relevant approximations and decision regions for every defined instance

of ψ.
5. Select the most or optimally appropriate instance(s) of ψ.
6. Explain the data context on the basis of the associated tolerance(s).

Definition 6. By an interpreted large-minded reasoner associated with ψ of Def. 5
will be meant a partial function ψ∗ : UB(A1) × UB(A2) × . . .UB(An) × ℘(S) 7−→
UB(A), that indicates the granular components or parts of approximations of subsets.

Explanation: For example, if for a subset F , F l is the union of the blocks {Bi},
then ψ∗ says how the Bis are formed from blocks of chains. Since more complex
definitions of approximations are admissible (see [15, 19]), granular components or
parts of approximations are referred to. Term functions generated from basic set-
theoretic operations can be used to write the definition of ψ∗ explicitly. However, the
explicit definitions are not used in this paper.

Theorem 4. Both algorithms AGRSSA-M and AGRSSA-LMR are well-defined, and
they compute the intended tolerance(s).

Proof. AGRSSA-M computes the intended tolerance because Theorem 3, and the
steps of the algorithm ensure that tolerances are initially defined on each column
(attribute). If a lattice L is a direct product ∏n

i=1 Li of the lattices Li, then Tol(L) ≡
Tol(L1) × Tol(L2) × . . . T ol(Ln) (as tolerances on a product of finite lattices are
directly decomposable [27]). This ensures that AGRSSA-M yields a tolerance.

The same results ensure that AGRSSA-LMR yields a subset of the tolerance
lattice.

It is easy to see that

Proposition 4. ψ∗ is a RRF of type H.



4.3 Adaptive/Dynamic Information Tables

Both adaptive and dynamic information tables, that model change or correspon-
dence, are investigated in the literature with mostly computational goals [33, 6, 36, 9]
in mind. Changes in knowledge representation, and meaning are considered through
correspondences [16] and models [15, 19] in the present author’s work. In these con-
texts, the axiomatic granules at each stage may be transformed in subsequent stages,
and then it may be necessary to speak of correspondences between granules too.

If a dynamic process can be modeled by a finite sequence of information tables,
then the tables at each step are likely to differ from the table in the preceding step.
These changes may occur in following ways:

1. Objects are added (O+), deleted (O−) or both added and deleted (O±),
2. attributes are added or deleted (At+, At− or At±), and
3. the values associated with object-attribute pairs are modified (V+).

Correspondences between information tables may reflect changes of the above
type. A finite sequence of information tables can also be written as a 3rd order ten-
sor with tensor-dimensions objects, attributes and timestamps. Note that for each
timestamp, the projection on the first two tensor-dimensions can be an indeterminis-
tic information table. In most ML literature, the term dimension refers to the number
of attributes. Therefore, the idea of a sequence of information tables may be easier
for the reader.

Corresponding to each table, a finite number of lower and upper approximations
may be associated. However, for simplicity, it suffices to take a sequence of two
information tables with two pairs of corresponding lower and upper approximations.
For this understanding, auxiliary maps between objects are essential for keeping track
of changes.

Arguably, the easiest representation would be to combine all information tables
into one and associate a finite sequence of partial lower and upper approximation
maps. This corresponds with the intent in generalized granular operator spaces and
variants studied by the present author in the papers [15, 19, 20].

In all the mentioned cases, one or more rough random functions of different types
can be used to model the process or context.

5 Remarks and Directions

In AIML practice, mathematical objects and concepts are often badly approximated
or estimated because of computational constraints, or the very algorithm (such as



those in deep learning or swarm optimization) may not be tractable. A major prob-
lem is to invent fully explicable models with algorithms in most situations. Cluster
validation, in particular, has always been relative to arbitrary measures (or to ground
truth subject to availability), except for recent work [24] that tries to compare with
meaningful algebraic models. The present research is an extension of this approach.
The best part is that the proposed algorithms match the mathematical intent of the
computation.

All the three algorithms are intended to help in specifying at least one rough set
model, and therefore a validation of the classification under consideration. The main
advantage of the AGRSSA-LMR are as follows:

1. Tolerances defined by relatively complex conditions can possibly be isolated.
2. The algorithm is computationally light, and
3. It is algebraically explicable.

In this research, new concepts of rough randomness of different types are invented
and shown to be applicable in studying algebraic models, and computing the validity
of soft and hard clusters. Applications to dynamic information tables, clustering, and
other application contexts of general rough sets are naturally motivated. In future
work, finer aspects of large minded reasoners, and a more detailed evaluation of
rough randomness for meaning evolution in rough reasoning contexts and dynamic
information tables from a granular perspective will be investigated.
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WOS-A/PM-22/2019 of the Department of Science and Technology.
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