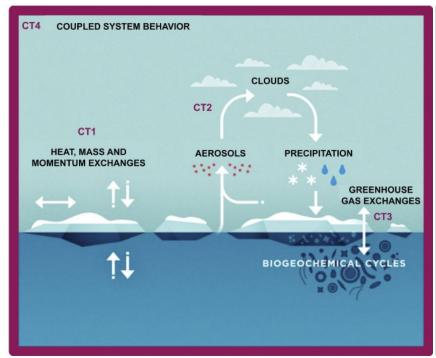
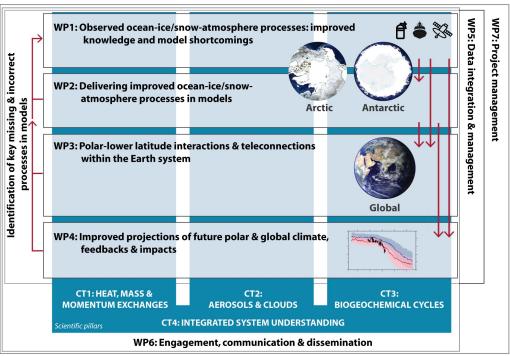
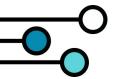

Risto Makkonen, FMI, <u>risto.makkonen@fmi.fi</u>
Jennie Thomas, IGE/CNRS, <u>jennie.thomas@univ-grenoble-alpes.fr</u>
on behalf of project team

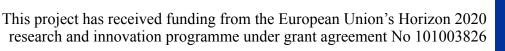
Project website: https://www.crices-h2020.eu/

EU Polar Cluster meeting meeting, ASSW 18 Feb 2023


CRiceS presence in MOSAIC SC, ASSW, EGU, ...







Research highlights

Preprints / Preprint tc-2021-307

An indicator of sea ice variability for the Antarctic marginal ice zone

Marcello Vichi1,2

¹Department of Oceanography, University of Cape Town, 7701, Rondebosch, South Africa

²Marine and Antarctic Research centre for Innovation and Sustainability (MARIS), University of Cape Town, 7701, Rondebosch, South Africa

Correspondence: Marcello Vichi (marcello.vichi@uct.ac.za)

Abstract. Remote-sensing records over the last 40 years have revealed a large year-to-year global and regional variability in Antarctic sea ice extent. Sea ice area and extent are useful climatic indicators of large scale variability, but they do not allow to quantify regions of distinct variability in sea ice concentration (SIC). This is particularly relevant in the marginal ice zone (MIZ), which is a transitional region between the open ocean and pack ice, where the exchanges between ocean, sea ice and atmosphere are more intense. The MIZ is circumpolar and broader in the Antarctic than in the Arctic. Its extent is inferred from satellite-derived SIC using the 15-80% range, assumed to be indicative of open drift or partly closed sea ice conditions typical of the ice edge. This proxy has been proven effective in the Arctic, but it deemed less reliable in the Southern Ocean, where sea ice type is unrelated to the concentration value, since wave penetration and free drift conditions have been reported with 100% cover. The aim of this paper is to propose an alternative indicator for detecting MIZ conditions in Antarctic sea

Research highlights

Nudging allows direct evaluation of coupled climate models with in-situ observations: A case study from the MOSAiC expedition

Felix Pithan [6], Marylou Athanase 1, Sandro Dahlke [6], Antonio Sánchez-Benítez [6], Matthew D. Shupe [6], Anne Sledd [6], Matthew D. Shupe [6], Anne Sledd [6], Anne Sledd [6], Matthew D. Shupe [6], Matthew D. S

Received: 29 Jul 2022 - Discussion started: 15 Sep 2022

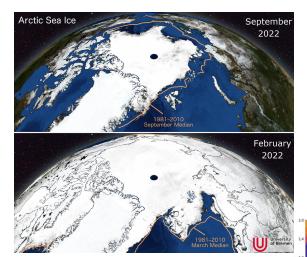
¹Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven/Potsdam, Germany

²Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

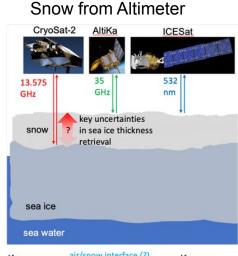
³National Oceanic and Atmospheric Administration Physical Science Laboratoriy, Boulder, Colorado

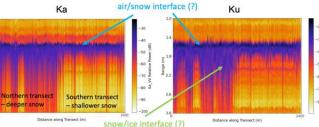
⁴Jacobs University Bremen, Bremen, Germany

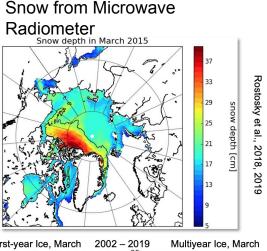
⁵Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

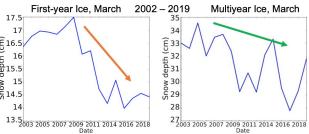

⁶Institute of Environmental Physics, University of Bremen, Bremen, Germany

Remote sensing of sea ice & snow

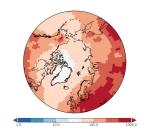

Sea ice and snow - We use existing, long-term sea ice remote sensing observations to evaluate climate models and develop new and improved remote sensing methods and datasets. Our team also contributes to preparing for new missions (e.g. CIMR, CRISTAL).

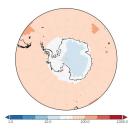

Sea Ice Concentration





University of Bremen




Global Climate / ESMs / Global weather prediction	
EC-Earth	European community ESM based on ECMWFs seasonal forecasting system aimed at climate information/services
NorESM2	Norwegian Earth System Model, v2
CNRM-CM	Global climate model developed by Meteo France/CNRM
UKCA	UK community atmospheric chemistry-aerosol global model
CanESM5	Canadian Earth System Model, v5 With ocean ecosystem models CMOC and CanOE
CMCC- ESM2	CMCC Earth System Model
CESM2	NCAR lead, community developed global climate/ESM
OpenIFS	Weather forecast model based on ECMWF global IFS

We are developing and applying an extensive multiscale modeling platform

Model developments include

Snow on sea ice, sea ice leads, polar aerosol formation and aerosol-cloud interactions, polar ocean and sea ice biogeochemistry, ...

