Method and data treatment

• **Calibration of INMS data** using recommendations from previous works^{1,2,3,4,5} • MS deconvolution code⁶

Titan's ionosphere was sampled by the mass spectrometer of the *Cassini* spacecraft many times during the course of the mission. Mass spectrometer analysis can be complicated, and identifying in which way a specie contribute to a mass peak is challenging. It is easier to fit the most abundant species, and trace species are often left unanalysed. Here we focus our work for now on 3 major species (N₂,CH₄, H₂) and 1 trace specie (Ar).

Results

About the homopause

References

Consequences and prospectives

 \rightarrow Steady decrease of N₂ mixing ratio and density until the vernal equinox. It increases until 2014 then decreases again.

→ Nightside/Dayside and Latitude/Longitude effects on the global scale variation are minor.

1: Cui, Jun, *et al.* "Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements." Icarus 200.2 (2009): 581-615. 2: Cui, J.*, et al.* "The CH4 structure in Titan's upper atmosphere revisited." *Journal of Geophysical Research: Planets* 117.E11 (2012) 3: Mandt, Kathleen E., *et al.* "Ion densities and composition of Titan's upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations." *Journal of Geophysical Research: Planets* 117.E10 (2012). 4: Magee, Brian A., *et al*. "INMS-derived composition of Titan's upper atmosphere: analysis methods and model comparison." *Planetary and Space Science* 57.14-15 (2009): 1895-1916. 5: Teolis, B. D., *et al*. "A revised sensitivity model for Cassini INMS: Results at Titan." Space Science Reviews 190.1 (2015): 47-84. 6: Gautier, Thomas, *et al*. "Decomposition of electron ionization mass spectra for space application using a Monte‐Carlo approach." *Rapid Communications in Mass Spectrometry* 34.8 (2020): e8684. **Aknowledgment** The funding for this research was provided by ANR (ANR "TOMTA"- ANR-20-CE49-0004-01) and PNP

 \rightarrow Isotope ratio $^{14}N/^{15}N = 197 \pm 1.3$ constant over the years.

- \rightarrow Mixing ratio decreases when altitude increase.
- \rightarrow molecular density changes with time.

e $\mathbf \Omega$

້ອ)

Figure 4: Mixing ratios of Nitrogen for flyby T27, T43, T59, and T83 used in our analysis. The gray area represents the altitude of the homopause graphically determined.

1: Above the homopause the molecular density of N2 can be written as :

→ **Randomisation of the species fragmentation patterns** between the allowed

incertitudes

When we can't fit the data anymore using these parameters, we can place the upper boundary of the homopause.

 \rightarrow We can extract the temperature when fitting the exponential at high altitude : 250 to 450 K.

→ M**onte-Carlo simulation**. The code then try to fit at once all m/q peaks using the species in our database.

> **2:** Localising the change of slope in N₂ mixing ratio with the altitude using tangents graphically determined, or using the derivative of the power law fitting the data.

- → **100000 simulations**
- → **Allowed incertitude of 5%** for the **major species**, and **30%** for **Argon**.
- → **Mean of the 5% best simulations.**

Global scale temporal variation clearly visible

Influence of the solar flux

 $rac{\theta}{\theta}$ $\bm{\mathsf{c}}$

> **→** N² **mixing ratio** and **density** increase with periods of intense solar flux.

> \rightarrow CH4 density increases with periods of intense solar flux, but proportionally less than N_2 .

The changes in N_2 -CH₄ mixing ratio can influence the altitude of synthesis and composition of Titan's aerosols.

N2

Analysis of traces species (HCN, C_2H_2 , C2H6...) Storing the results in a public database

ular d

sity (c

Figure 2: Mixing ratios of Nitrogen, Methane, Argon and Hydrogen as a function of time and altitude.

Figure 1: 100000 simulations of gases mixing ratio results for flyby T126 at each altitude (low to high altitudes represented as a colour variation from yellow to blue).

→Homompause altitude globally decreases over the years.

→ The altitude variations of the homopause follow the mixing ratio variations between each flyby.

How to determine it ?

Risk: Confusing the change of slope due to the separation of the gases according to their molecular weight, and a change of slope due to (photo)chemical reactions changing the mixing ratios.

With $H = \frac{RT}{M}$ $\bm{M}_{\bm{N}_2} \bm{g}$

Influence of Saturn-Sun distance

 \rightarrow Solar flux influence more important when Titan is closer to the sun (Fig. 2 and 3) : lesser solar flux needed to increases N_2 density.

Evidence of a homopause

 \rightarrow Ar decreases 10 times faster with the altitude than $N_2 \rightarrow$ segregation depending on the molecular weight.

 \rightarrow Changes of slopes in mixing ratios with altitude.

CH⁴

 \rightarrow Mixing ratio increases with altitude

Argon

- \rightarrow Not found above 1150 km of altitude
- \rightarrow Like N₂, Ar mixing ratio decreases when altitude increases

H2

 \rightarrow Mixing ratio increases with altitude

Consequences:

The season and solar cycle can change the column density of the upper part of the atmosphere atmosphere by a factor of 10 → Impacts future missions landing on Titan that need to be slowed down significantly in the upper part of the atmosphere.

Future work:

