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Titan’s ionosphere was sampled by the mass spectrometer of the Cassini spacecraft many times during the course of the mission. Mass spectrometer analysis 
can be complicated, and identifying in which way a specie contribute to a mass peak is challenging. It is easier to fit the most abundant species, and trace species 
are often left unanalysed. Here we focus our work for now on 3 major species (N2,CH4, H2) and 1 trace specie (Ar).

Consequences and prospectives
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● Calibration of INMS data using recommendations from previous works1,2,3,4,5

● MS deconvolution code6

→ Randomisation of the species fragmentation patterns between the allowed 
incertitudes
→ Monte-Carlo simulation. The code then try to fit at once all m/q peaks using the 
species in our database. 

→ 100000 simulations
→ Allowed incertitude of 5% for the major species, and 30% for Argon. 

→ Mean of the 5% best simulations.

 Global scale temporal variation clearly visible

→ Steady decrease of N2 mixing ratio and density until 
the vernal equinox. It increases until 2014 then 
decreases again.
→ Nightside/Dayside and Latitude/Longitude effects on 
the global scale variation are minor.

Influence of the solar flux

→ N2 mixing ratio and density increase with periods 
of intense solar flux.
→ CH4 density increases with periods of intense solar 
flux, but proportionally less than N2.

N2

→ Isotope ratio 14N/15N = 197 ± 1.3 constant over the 
years.
→ Mixing ratio decreases when altitude increase.
→ molecular density changes with time.

Figure 3: Nitrogen density (cm-3) as a function of altitude and 
time. The gray line is the solar F10.7 cm flux in solar flux 
units.
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Figure 2: Mixing ratios of Nitrogen, Methane, Argon and Hydrogen as a 
function of time and altitude.
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Figure 1: 100000 simulations of gases mixing ratio results for flyby T126 at each altitude (low 
to high altitudes represented as a colour variation from yellow to blue). 

Figure 4: Mixing ratios of Nitrogen for flyby T27, T43, T59, and T83 used in our 
analysis. The gray area represents the altitude of the homopause graphically 
determined.

Figure 5: Homopause altitude as a 
function of time.

→Homompause altitude globally decreases over the years.

→ The altitude variations of the homopause follow the mixing ratio 
variations between each flyby.

How to determine it ?

1: Above the homopause the molecular density of 
N2 can be written as :

With

R: gas contant
T: temperature
M: molar mass
g: acceleration of gravity
z: altitude

When we can’t fit the data anymore using these 
parameters, we can place the upper boundary of 
the homopause.
 → We can extract the temperature when fitting the 
exponential at high altitude : 250 to 450 K.

2: Localising the change of slope in N2 mixing ratio 
with the altitude using tangents graphically 
determined, or using the derivative of the power law 
fitting the data.

Risk: Confusing the change of slope due to the 
separation of the gases according to their molecular 
weight, and a change of slope due to 
(photo)chemical reactions changing the mixing 
ratios.
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Influence of Saturn-Sun distance

→Solar flux influence more important when Titan is 
closer to the sun (Fig. 2 and 3) : lesser solar flux 
needed to increases N2 density.

Evidence of a homopause

→Ar decreases 10 times faster with the altitude than  
N2→segregation depending on the molecular weight.  

→ Changes of slopes in mixing ratios with altitude.

CH4

→ Mixing ratio increases with altitude
Argon
→ Not found above 1150 km of altitude
→ Like N2, Ar mixing ratio decreases 
when altitude increases
H2

→ Mixing ratio increases with altitude

Consequences:
The season and solar cycle can change the column 
density of the upper part of the atmosphere 
atmosphere by a factor of 10 → Impacts future 
missions landing on Titan that need to be slowed 
down significantly in the upper part of the 
atmosphere.

The changes in N2-CH4 mixing ratio can influence the 
altitude of synthesis and composition of Titan’s 
aerosols.

Future work:

Analysis of traces species (HCN, C2H2, C2H6…)
Storing the results in a public database
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