
  

pyDockDNA: a new web server for energy-based protein-DNA docking 
and scoring  

Luis Ángel Rodríguez-Lumbreras1,2, Brian Jiménez-García1,3, Silvia Giménez-Santamarina1,4 1 
and Juan Fernández-Recio1,2* 2 

1Barcelona Supercomputing Center, Barcelona, Spain 3 
2Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-UR-Gobierno de La Rioja, Logroño, 4 
Spain. 5 
3Zymvol Biomodeling SL, Barcelona, Spain 6 
4ICMol, Universitat de València, Paterna, Spain 7 

 8 

* Correspondence:  9 
Juan Fernández-Recio 10 
juan.fernandezrecio@icvv.es 11 

Keywords: Structural modeling, Ab initio docking, protein-DNA interaction, Scoring function, 12 
Nucleotide parameters, Docking benchmark.  13 

Abstract 14 

Proteins and nucleic acids are essential biological macromolecules for cell life. Indeed, interactions 15 
between proteins and DNA regulate many biological processes such as protein synthesis, signal 16 
transduction, DNA storage, or DNA replication and repair. Despite their importance, less than 4% of 17 
total structures deposited in the Protein Data Bank (PDB) correspond to protein-DNA complexes, and 18 
very few computational methods are available to model their structure. We present here the 19 
pyDockDNA web server, which can successfully model a protein-DNA complex with a reasonable 20 
predictive success rate as benchmarked in a standard dataset of proteins in complex with DNA in B-21 
DNA conformation. The server implements the pyDockDNA program, as a module of pyDock suite, 22 
thus including third-party programs, modules, and previously developed tools, as well as new modules 23 
and parameters to handle the DNA properly. The user is asked to enter PDB files for protein and DNA 24 
input structures (or suitable models) and select the chains to be docked. The server calculations are 25 
mainly divided into three steps: sampling by FTDOCK, scoring with new energy-based parameters and 26 
the possibility of applying external restraints. The user can select different options for these steps. The 27 
final output screen shows a 3D representation of the top 10 models and a table sorting the model 28 
according to the scoring function selected previously. All these output files can be downloaded, 29 
including the top 100 models predicted by pyDockDNA. The server can be freely accessed for 30 
academic use (https://model3dbio.csic.es/pydockdna). 31 

  32 

1 INTRODUCTION 33 

Proteins and nucleic acids are fundamental biological macromolecules whose functions and 34 
interactions are vital to regulating cell’s life. Their interactions regulate many biological processes such 35 
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as protein synthesis, signal transduction, DNA storage, and DNA replication and repair, among others. 36 
Learning how protein and DNA interact is fundamental to fully elucidate many central biological 37 
processes and disease mechanisms, and can also support the discovery of novel therapeutic targets. 38 
Although 192,025 structures have been experimentally determined and deposited in the June 2022 39 
release of Protein Data Bank (PDB), only 10,480 of them correspond to protein-nucleic acid complexes 40 
(this includes 6,732 protein-DNA complexes). Thus, the number of protein-DNA structures 41 
experimentally determined is clearly much smaller than the number of protein-DNA complexes that 42 
are expected to be formed in cells. This gap is partially explained by the difficulty of the experimental 43 
determination process, i.e. a very time-consuming process in the best scenarios or impossible in many 44 
cases due to limitations on the experimental techniques. For this reason, a computational approach on 45 
modelling protein-DNA interactions could be of enormous help. 46 

Even though theoretical models of macromolecular structures are usually less accurate than direct 47 
experimental measurements, they can yield sufficient information to build a working hypothesis, 48 
complementing experimental approaches in elucidating protein-DNA interactions and guiding further 49 
experimental analyses to identify essential amino acids or nucleotide residues. From a computational 50 
point of view, there are two main approaches to model the structure of a protein-DNA complex: 51 
template-based modelling and ab initio docking. Template-based modelling aims to model a complex 52 
based on the structure of a homologous complex. The popularity of template-based methods has 53 
increased in the past years, especially for modelling protein-protein complexes, thanks to the 54 
development and support of many structural databases of protein interactions that can provide the 55 
required templates, such as 3D Complex (Levy et al., 2006), Dockground (Kundrotas et al., 2018), or 56 
Interactome3D (Mosca et al., 2013). However, the quality of template-based predictions clearly 57 
depends on the availability of suitable templates, not particularly high in the case of protein-DNA 58 
interactions (see for instance PDIdb (Norambuena and Melo, 2010), which makes these methods of 59 
very limited applicability. On the other hand, ab initio docking methods aim at predicting the three-60 
dimensional structures of macromolecular complexes, starting from the atomic coordinates of their 61 
components. Ab initio docking methods do not depend on a priori in external information which makes 62 
them more useful in the actual protein-DNA context.  63 

The methodology for prediction and modelling of protein-protein complexes is very well established 64 
despite there are still many challenges to be addressed. Numerous protein-protein docking methods 65 
have been developed and assessed as shown in the Critical Assessment of PRediction of Interactions 66 
(CAPRI) community-wide experiment. During the past editions of the CAPRI experiment (Janin et al., 67 
2003), targets other than protein-protein complexes were proposed: protein-RNA complex (Lensink 68 
and Wodak, 2010) (T33, T34), protein-peptide (T60-64) or protein-heparin (T57) among others. 69 
However, protein-DNA docking received limited attention from the CAPRI community and developers 70 
of computational methods. Macromolecular docking protocols that accept protein and DNA 71 
coordinates as input include FTDock (Gabb et al., 1997), GRAMM-X (Tovchigrechko and Vakser, 72 
2006), HEX (Macindoe et al., 2010), PatchDock (Schneidman-Duhovny et al., 2005; Macindoe et al., 73 
2010) and NPDock (Tuszynska et al., 2015), HDock (Yan et al., 2017), ClusPro (Comeau et al., 2004) 74 
and HADDOCK (Van Zundert et al., 2016) servers. From this list of tools, only NPDock and HDock 75 
were originally developed for protein-nucleic acid docking; the rest were developed as protein-protein 76 
docking tools that also accept nucleic acids coordinates, but they lack an intrinsic scoring function 77 
dedicated to assessing protein-DNA interactions. These protocols usually report high predictive rates 78 
in bound conditions, i.e. when the co-crystallized partners in a known complex structure are separated 79 
and re-docked. However, despite bound docking is useful for testing and development purposes, it does 80 
not represent realistic conditions and therefore it is of limited practical value for biology. Therefore, it 81 
is important to have available datasets to test protein-DNA docking tools in unbound conditions. 82 
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Compared to protein-protein docking, where the most recent release of the Weng’s group Protein-83 
Protein Docking Benchmark 5.5 (Vreven et al., 2015) has 257 entries, and to protein-RNA docking, 84 
where there are different reported benchmarks (Barik et al., 2012; Pérez-Cano et al., 2012; Huang and 85 
Zou, 2013; Nithin et al., 2017), for protein-DNA docking there is only one available benchmark, which 86 
contains 47 complexes (van Dijk and Bonvin, 2008). Using this benchmark, protein-DNA docking 87 
protocols report moderate success rates in unbound conditions. For instance, on a subset of 23 cases 88 
from this benchmark, HDock success rate for top 10 models (i.e. at least one near-native structure 89 
within the top 10 models) is less than 10%, while success rate for top 100 is slightly over 30% (Yan et 90 
al., 2017). NPDock reports a maximum success rate (i.e. at least one near-native conformation found 91 
in the entire prediction set) of 7/47 (15%) (Tuszynska et al., 2015). Protein-DNA docking with 92 
HADDOCK reported an excellent performance (van Dijk and Bonvin, 2010) when using restraints 93 
from the real interface. This represents a very promising approach, but in a realistic scenario, lack of 94 
knowledge on the actual complex interface might limit its application. A more recent coarse-version 95 
of HADDOCK protein-DNA docking shows similar accuracy with ~6-fold speed increase over 96 
atomistic calculations  (Honorato et al., 2019). The need of new computational tools to address 97 
unbound protein-DNA docking is clear. We present here a new web server that implements the 98 
pyDockDNA protein-DNA docking and scoring protocol, as a new module of pyDock version 4 99 
(upcoming publication). The original pyDock docking and scoring approach (Cheng et al., 2007), 100 
which showed excellent performance for the prediction of protein-protein docking (Lensink et al., 101 
2019; Rosell et al., 2020), has been rewritten in Python 3 and extended for its application to protein-102 
DNA docking, with new functionalities to handle the nucleic acid structures and upgraded atomic 103 
solvation parameters for a more accurate scoring of protein-DNA interactions.  104 

 105 

2 MATERIALS AND METHODS 106 

Data Sets: protein-DNA docking benchmark and external case studies 107 

In order to test the new pyDockDNA docking protocol, we used a previously developed protein-DNA 108 
docking benchmark (version 1.2) (van Dijk and Bonvin, 2008). The benchmark contains bound and 109 
unbound x-ray crystallography and NMR structures for 47 protein-DNA complexes, in which DNA is 110 
in B-DNA conformation. These are classified as ‘easy’, ‘intermediate’ or ‘difficult’ cases, based on the 111 
interface RMSD values between the bound and unbound components of the complex. 112 

An additional set of case studies was compiled following the criteria selection of the above described 113 
protein-DNA docking benchmark. This test set is composed of ten protein-DNA complexes, where 114 
both bound and unbound structures are available for each reference complex, and the sequences are 115 
different from those in the first protein-DNA docking benchmark. Protein-DNA complex and unbound 116 
structures were compiled from the Protein-DNA Interface Database (PDIdb) (Norambuena and Melo, 117 
2010) and the Protein Data Bank (PDB) (Berman et al., 2000). Only complexes that meet the following 118 
conditions were considered: i) DNA sequence length larger than eight base pairs, and ii) proteins 119 
without mutations in the core of the complex interface. To find the protein unbound structures of the 120 
protein-DNA complexes selected, all the PDB entries containing only protein structures were retrieved, 121 
including structures solved by NMR. Crystallographic structures with a resolution worse than 3.0 Å 122 
were not considered. To avoid redundancy, entries with sequence similarity larger than or equal to 90% 123 
were discarded. PDBeFOLD (Krissinel and Henrick, 2004) was used to find correspondences between 124 
bound and unbound protein structures. This tool performs structural alignments between two (pairwise 125 
alignment) or more (multi-alignment) molecules using their 3-dimensional structures. The alignment 126 
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is based on the Secondary Structure Matching algorithm (Krissinel and Henrick, 2004). Alignments 127 
with a Q-score higher than 8.0, high P-score and sequence similarity around 90-100% were accepted 128 
as the corresponding unbound. Then, both bound and unbound structures for each case, were post-129 
processed  according to the protocol followed in a previously developed protein-DNA docking 130 
benchmark, for instance by checking consistency between unbound and bound coordinates in chain 131 
IDs, residue numbers and atom names (van Dijk and Bonvin, 2008). The unbound DNA models were 132 
generated by using the software 3DNA (Lu and Olson, 2003; Lu and Olson, 2008), in canonical B-133 
DNA conformation (fiber model 4).  134 

This additional test set (Table 1) is freely available at the "Help" section of the server 135 
(https://model3dbio.csic.es/pydockdna/info/faq_and_help#extended_bechmark). 136 

[INSERT HERE TABLE 1] 137 

Sampling 138 

In this first step, the input files with the coordinates in PDB format for the structures (or models) of a 139 
protein and a DNA molecule (which can be B-DNA or any other conformation) are checked for 140 
potential format errors, missing side-chains in the protein are rebuilt with SCWRL 3.0 (Bower et al., 141 
1997), and the electrostatics Amber94 force field (Cornell et al., 1995) is loaded, assigning the charges 142 
to the atoms. Then, rigid-body docking poses between the protein and the DNA, represented as 3D 143 
grids, are generated with a faster and parallelized version of the original FTDock (v2.0) software (Gabb 144 
et al., 1997) in which the number of cells in the grid is optimized for maximum computing efficiency 145 
(Jiménez-García et al., 2013). The molecule with the longest maximal distance between any pair of 146 
atoms is considered the receptor, that is, the fixed molecule, and the other one is the ligand or mobile 147 
molecule. By default, the program uses 0.7 Å grid cell size, 1.3 Å surface thickness, 12º rotation 148 
sampling, and keeps the best 3 poses for each rotation. For each target, a total of 10,000 docking poses 149 
were generated.  150 

Scoring  151 

Finally, the protein-DNA docking poses are ranked using a scoring function composed of electrostatics, 152 
desolvation and van der Waals energy. This new pyDockDNA scoring function is adapted from the 153 
previously pyDock scoring function for protein-protein docking (Grosdidier et al., 2007; Jiménez-154 
García et al., 2013), which now includes atom types for nucleotides from Amber94 force field (Cornell 155 
et al., 1995) in order to calculate for the modelled protein-DNA complexes. The nucleotide AMBER 156 
atom types have been mapped to the previously defined atom types in pyDock within a new parameter 157 
set (nuc.dat). 158 

Implementation of pyDockDNA web server 159 

The program pyDockDNA is built as a module of the new pyDock 4.0 version (upcoming publication), 160 
thus include the same third-party programs, modules and tools from previous versions of pyDock as 161 
well as new functionalities to handle the nucleic acid structures properly. The user can select the chains 162 
to be docked, the energetic scoring function, and even include external information (from available 163 
experimental data or using predictive methods such as the DBSI server [REF: 164 
https://doi.org/10.1093/bioinformatics/btw315]) as residue-nucleotide distance restraints to rescore 165 
docking models as previously described for pyDockRST (Chelliah et al., 2006). The output will be a 166 
set of docking models represented in different formats: i) the 3D structure of the best-scoring 10 167 
docking models in terms of scoring can be visualized in the output screen, ii) the PDB files for the best-168 
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scoring 100 models can be directly downloaded, and iii) the rotation/translation vectors are provided 169 
to generate up to a total of 10,000 docking poses. A summary of the docking results can be visualized 170 
as a plot with the distribution of the different energy values obtained for all docking poses (Figure 1). 171 

[INSERT HERE FIGURE 1] 172 

Clustering of protein-DNA docking models in benchmarking  173 

When testing this software (see Results) we have run several docking executions in parallel, using 174 
different initial random rotations for the input structures, and the best-scoring 100 resulting models for 175 
each individual run were merged into a single pool. To avoid redundancy in the final set, all docking 176 
orientations were clustered by pyProCT analysis software (Gil and Guallar, 2014), which implements 177 
the GROMOS clustering algorithm (Daura et al., 1999). Distance matrix is built with pyRMSD with 178 
the option "QCP OMP CALCULATOR" to compute the ligand root-mean-square deviation (L-RMSD) 179 
values for all pairs of docking orientations after their receptors were superimposed 180 
(https://github.com/victor-gil-sepulveda/pyRMSD/). The L-RMSD cut-off value 4.0 Å was used to 181 
define the clusters. For each defined cluster of models, the orientation with the lowest docking score is 182 
defined as the cluster representative. 183 

Docking performance 184 

We have evaluate the predicted performance of pyDockDNA in different conditions as the success 185 
rates for the obtained top N docking models, which is the % of benchmark cases in which a near-native 186 
(acceptable) solution is found within the top N docking models. A near-native solution is defined as a 187 
docking orientation model with L-RMSD ≤ 10 Å with respect to the reference structure. 188 

 189 

3 RESULTS AND DISCUSSION 190 

Performance of pyDockDNA evaluated on the protein-DNA docking benchmark 191 

The pyDockDNA web server has been tested on the 47 cases of a previously reported protein-DNA 192 
docking benchmark (see Methods). It is known that using different randomly rotated input structures 193 
can slightly affect docking predictions in FFT-based docking protocols as in FTDOCK, because this 194 
can modify the mapping of the atom positions on the 3D grids (Garzon et al., 2009; Pallara et al., 2016). 195 
To check for convergence, we applied pyDockDNA to 10 different random rotations of the initial input 196 
structures for each benchmark case and computed the predictive success rates for the results obtained 197 
from each randomly rotated input structures. The results indicate even more differences in the 198 
predictive values than previously reported for protein-protein docking (Table S1). For instance, the 199 
success rates for the top 10 models ranged from 12.8% to 21.3%. Therefore, for a more robust 200 
evaluation, we merged the results of all 10 docking executions and clustered the obtained docking 201 
models to remove similar orientations (see Methods). Figure 2 shows the predictive success rates of 202 
the cluster representatives resulting from merging these 10 docking runs. The predictive success for 203 
the default pyDock scoring function (including parameters for nucleotide atoms, see Methods) are 204 
better than those obtained for the individual docking runs, which means that increasing sampling 205 
variability when using different random initial rotations, followed by redundancy removal with 206 
clustering, have improved the docking results.  207 

[INSERT HERE FIGURE 2] 208 
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We further analyzed whether a scoring function previously developed for protein-protein docking was 209 
really optimal for protein-DNA docking, since for the latter, electrostatics energy term is expected to 210 
have a larger contribution to binding energy due to the higher overall charge of DNA molecules. 211 
Moreover, desolvation atomic parameters were previously derived for protein-protein docking in 212 
pyDock, but they were not specifically optimized here for nucleotide atoms. To analyze the role of 213 
desolvation in protein-DNA scoring, we rescored the generated docking models with the pyDockDNA 214 
scoring function but excluding desolvation energy. This greatly improved the success rates, as the curve 215 
pyDockDNA (no desolv) shows in Figure 2. This indeed indicates that desolvation is not really needed 216 
for the scoring of the protein-DNA docking models generated by FFT-based sampling, perhaps because 217 
the parameters have not been yet optimized for nucleotide atoms, or because electrostatics is more 218 
relevant in protein-DNA interactions than in protein-protein complexes, as above discussed. We tested 219 
other solvation parameters for protein-DNA reported in the literature (Kagawa et al., 1989), but the 220 
docking results did not improve (we are currently working on the optimization of these parameters in 221 
search of a better desolvation for protein-DNA).  222 

In addition, we have also tried other combinations of energy terms, for instance, increasing the factor 223 
for van der Waals to 1.0 (we previously found that geometrical complementarity was very important 224 
in protein-RNA; (Pérez-Cano et al., 2016), or removing desolvation and van der Waals terms from the 225 
scoring function to test the relevance of elecrostatics scoring alone, but none of these new combined 226 
scoring functions improved the prediction rates (Figure S1).   227 

In a rigid-body docking approach as pyDock, it is known that protein flexibility upon binding is perhaps 228 
the most determinant factor for docking success. To further analyze whether the docking performance 229 
of pyDockDNA is affected by the flexibility of the protein or the DNA input molecules during the 230 
complex formation, we have grouped the docking results on the protein-DNA docking benchmark 231 
according to the flexibility of the protein or the DNA, that is, based on the RMSD between the unbound 232 
molecules and the corresponding ones in the complex. Regarding protein flexibility, in order to make 233 
groups of similar size, we defined these three categories: low (unbound-bound RMSD < 1 Å), medium 234 
(1 Å ≤ unbound-bound RMSD < 3 Å) and high (unbound-bound RMSD ≥ 3 Å) flexible cases. As for 235 
DNA flexibility, we defined these three categories: low (unbound-bound RMSD < 3 Å), medium (3 Å 236 
≤ unbound-bound RMSD < 5 Å) and high (unbound-bound RMSD ≥ 5 Å) flexible cases. The results 237 
are shown in Figure 3. We can observe that the docking predictive performance does not get worse 238 
when protein flexibility is higher (actually, for pyDockDNA with no desolvation, success rates increase 239 
when protein flexibility is medium or high). However, we can see that the docking performance for 240 
highly flexible DNA molecules is dramatically low. We should note that in this benchmark, proteins 241 
in general show smaller unbound-bound RMSD values (average 2.6 Å) than DNA (average 4.2 Å). In 242 
addition, due to the different RMSD cut-off values used for proteins and for DNA, the unbound-bound 243 
RMSD values for high flexible proteins (average 4.8 Å) are much smaller than those for DNA (average 244 
7.8 Å), which could explain the much worse predictive rates in the group of highly flexible DNA. 245 

[INSERT HERE FIGURE 3] 246 

Application to external case studies 247 

For further testing, we have applied pyDockDNA to a set of ten additional protein-DNA cases (Table 248 
1) where the structures for the complex and the unbound protein were available at PDB, and the 249 
unbound DNA was modelled in canonical B-DNA conformation (see Methods). 250 
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For each case study, we have performed a single pyDockDNA execution on the randomly rotated 251 
unbound protein and DNA structures, a realistic scenario, since the pyDockDNA server only provides 252 
results for a docking execution (randomly rotated input structures should be provided to the server in 253 
independent executions for a more thorough docking study similar to the benchmark performance 254 
analysis above shown). Overall, we obtained predictive success rates of 10% and 30% (for the top 10 255 
and 100 models, respectively) when using pyDockDNA scoring function, and 10% and 60% (for the 256 
top 10 and 100 models, respectively), when using pyDockDNA without desolvation. Given the small 257 
number of cases of these additional set, these values are within the expected range according to the 258 
larger docking benchmark set. 259 

The most successful case is the complex between the DNA binding domain of Early B-cell Factor 1 260 
(Ebf1) bound to a 22bp DNA (PDB 3MLO), where a near-native docking model (L-RMSD 3.33 Å 261 
with respect to the reference) is found with rank 5 when using pyDockDNA (no desolvation) scoring 262 
function (Figure 4A). When using pyDockDNA (including desolvation) scoring function, this docking 263 
model is ranked 6, so it is still within top 10 models. This case has low-flexible protein but high-flexible 264 
DNA. 265 

[INSERT HERE FIGURE 4] 266 

Another case is the complex between the catabolite gene activator protein and a 11bp DNA (PDB 267 
1O3R), where we found an almost acceptable docking model (L-RMSD 10.76 Å with respect to the 268 
reference) with rank 5, when using pyDockDNA either including solvation or not (Figure 4B). This 269 
case has also low-flexible protein but medium-flexible DNA. If this case had been considered 270 
acceptable, the success rates for the top 10 would have been 20%. However, these percentage values 271 
are perhaps not very meaningful considering the low number of cases in this external test set. 272 
Interestingly, when using van der Waals term with weighing factor 1.0 (instead of the default factor in 273 
pyDock and pyDockDNA, that is 0.1), we find near-native solutions in 3 more cases, in addition to 274 
3MLO: i) 5JLT (L-RMSD 7.08 Å) with rank 1 when using desolvation; ii) 2NTC (L-RMSD 7.25 Å) 275 
with rank 3 not using desolvation, and iii) 2PI0 (L-RMSD 6.63 Å) with rank 3 and 2, when using 276 
desolvation or not using it, respectively. Therefore, for half of these external case studies, we found 277 
near-native docking models within the top 10 models with pyDockDNA, using different variants of the 278 
scoring function.    279 

In summary, we present here the pyDockDNA web server to model protein-DNA complexes, which 280 
implements a docking method based on pyDock, with new parameters for DNA. We have evaluated 281 
the performance on unbound proteins and modelled DNA molecules in canonical B-DNA 282 
conformation, using a known protein-DNA docking benchmark. The results show near 40% success 283 
rate for the top 10 models when using the pyDockDNA (no desolvation) scoring function, after merging 284 
the results from 10 docking executions using different randomly rotated initial structures, and 285 
clustering the models to remove redundant ones. The method has been applied to external case studies, 286 
with similar predictive performance. 287 

 288 
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FIGURE LEGENDS 427 

Figure 1. Schematic representation of the pyDockDNA web server main functionalities. 428 

 429 

Figure 2. Predictive performance for the top N=1, 5, 10, 100 models of pyDockDNA (with and without 430 
desolvation) on the protein-DNA docking benchmark. 431 

 432 

Figure 3. Predictive performance for the top 10 models of pyDockDNA (with and without desolvation) 433 
on the protein-DNA docking benchmark when cases are grouped according to (A) protein flexibility 434 
(low: RMSD < 1 Å; medium: 1 Å ≤ RMSD < 3 Å; high: RMSD ≥ 3 Å), and (B) DNA flexibility (low: 435 
RMSD < 3 Å; medium: 3 Å ≤ RMSD < 5 Å; high: RMSD ≥ 5 Å). See more details about flexibility 436 
definition in main text. 437 

 438 

Figure 4. Application of pyDockDNA to case studies. (A) Near-native model (in yellow) obtained by 439 
pyDockDNA docking between a modelled 22bp DNA (receptor) and Ebf1 (ligand). This model was 440 
ranked 5 with pyDockDNA (no desolvation) scoring function and has L-RMSD 3.33 Å with respect to 441 
the reference (PDB 3MLO; in red). (B) Reasonable model (in yellow) obtained by pyDockDNA 442 
docking between the catabolite gene activator protein (receptor) and a modelled 11bp DNA (ligand). 443 
This model was ranked 5 with pyDockDNA (either with desolvation or with no desolvation) scoring 444 
function and has L-RMSD 10.76 Å with respect to the reference (PDB 1O3R; in red).  445 

 446 
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TABLES 455 

Table 1: List of case studies  456 

PDB 
complex 

Protein PDB 
unbound 
protein 

RMSD 
unbound-
bound protein 

DNA RMSD 
unbound-
bound DNA 

5JLT phage T4 MotA 
DNA-binding 
domain 

1KAF 0.83a 22bp dsDNA 1.89 

2X6V TBX5 2X6V 0.55 11bp DNA 2.03 
3POV SOX 3FHD 1.46 19bp DNA 2.26 
4UUV ETV4 DNA-

binding ETS 
domain  

5ILU 1.24 10bp DNA 2.81 

2NTC sv40 large T 
antigen 

2FUF 1.13a 21-nt PEN element of 
the SV40 DNA origin 

2.96 

2ITL sv40 large T 
antigen 

4NBP 5.37a 24-nt PEN element of 
the SV40 DNA origin 

3.84 

3MFK Protein C-Ets1 1GVJ 5.61a stromelysin-1 
promoter DNA 

4.34 

2PI0 IRF-3 3QU6 0.76a PRDIII-I region of 
human interferon-B 
promoter strand 1 

4.46 

1O3R catabolite gene 
activator 
protein 

4R8H 0.65 11bp DNA 4.77 

3MLO Ebf1 3LYR 0.71a 22bp DNA 5.11 
a In cases with more than one protein-DNA interface in the x-ray structure, the average value is 457 
provided. 458 
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