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Exoplanet mass and radius inferences, and therefore internal structure

constraints, are based on host star mass and radius inferences. Accurate,

precise, homogeneous, and self-consistent exoplanet internal structure

constraints theretore demand accurate, precise, homogeneous, and

self-consistent host star mass, radius, and elemental abundance

inferences. Published terrestrial exoplanet internal structure constraints have

often been based on host star mass, radius, and elemental abundance

inferences that are not self-consistent. For 20 solar-type stars known to host

terrestrial exoplanets, we use all available astrometric and photometric data

plus high-resolution optical spectroscopy to infer accurate, precise,

homogeneous, and self-consistent photospheric and fundamental stellar

parameters as well as elemental abundances. We infer updated planetary

masses and radii using these data plus Doppler and transit observables

and then use our complete data set to derive the strongest possible

constraints on the internal structures of these terrestrial planets. We

repeat these same analyses using the high-quality catalogs of photospheric
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stellar parameters and elemental abundances from SDSS DR17 APOGEE
and Brewer et al. (2016, 2018) to assess the impact of differing photospheric

Table 1. Table containing all 20 stars in our sample, as well as their final inferred photospheric

. stellar parameters, stellar masses and radii, and planet masses and radi.
stellar parameters and elemental abundance inference approaches on

terrestrial exoplanet internal structure modeling.
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Figures 1 and 2. We inferred accurate, precise,
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homogenous, and self-consistent photospheric and
fundamental stellar parameters using a process that
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combines both the spectroscopy-only and the stellar
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isochrones approach. Using these results and Doppler and
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transit observables, we can derive the strongest possible
constraints on the masses and radi of the planets orbiting
these stars. These figures compare the planetary masses and

radi1 produced from our analysis and those based on the
APOGEE DR17 and Brewer et al. (2016, 2018) catalogs. In
both the mass and radius comparison, we find no
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significant difference between results, suggesting our
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Spectroscopic Analysis Isochrones Posteriors

Using the results from the spectroscopic

I | I I I I I I I I I I I I

K2-106 (ESPRESSO) | 2-141 (UVES)
K2-265 (ESPRESSQO) H W
8 K2-38 (ESPRESSO) u _W
K2-229 (ESPRESSO) u Kepler-107 (HIRES)
ey ) (A (VS P A DV -—\W"W
HD 15337 (ESPRESSO)

Kepler-10 (ESPaDONS)

high-resolution, WWWMWW
Optical instruments tO 55 Cnc (ESPaDONS) HD 213885 (FEROS)
leam ab OUt the 54166 54168 54170 54172 54174 54176 54178 5480 54166 54168 54170 54172 54174 54176 54178 5480

. Wavelength (4) Wavelength (4)
chemical structure of
that star.

analysis, we can begin the next part of the
process.

The first part of the
process mvolves a
spectroscopic
analysis. We used
available
spectroscopic data
from various

This part uses an algorithm that 1s
summarized as follows:

1. Gather the EWs of 1ron lines from the
spectroscopic analysis
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. With an 1nitial guess of the temperature

Normalized Flux

(Teft), surface gravity (logg), metallicity
([Fe/H]), and microturbulence (vt) of
the star and the iron EWs, we use the

Mass (My)

python-based package g2 to get a model

Radius (Rg)

atmosphere of stellar parameters.

. Feed that result into the python-based

Figure 3. Comparison of normalized spectra between instruments, package isochrones, which fits the

organized within each instrument by decreasing [Fe/H].

i I S i Bk model and accompanying photometric

Fefh data onto stellar model grids
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Using the python-based program iSpec, we fit Gaussian curves to known (isochrones), giving us a posterior

absorption lines of various elements and measure their equivalent widths
(EWs), most importantly those of iron. We also measure oxygen,
magnesium, silicon, calcium, and nickel EWs, elements that, with 1ron,
together make up 97% of the Earth's bulk composition (and each
comprise >1%).

Figure 4. Corner plot for the physical parameters of star K2-38.

This plots the 5422 posterior points produced by isochrones. distribution of the star's inferred stellar

parameters.

4. We repeat this process until the model [Fe/H] from g2 and the inferred [Fe/H] from isochrones
agree within their uncertainties.

5. Once they agree, we randomly sample 200 points from the isochrones posterior distribution, use

g2 to find a model atmosphere for each, and the resulting median is our result!




