A changeset-based approach to assess source code density and developer efficacy
A step towards data-driven software cost- and effort estimation models

Sebastian Honel, Morgan Ericsson, Welf Lowe, Anna Wingkvist
Data-driven Software and Information Quality Group — Centre for Data Intensive Sciences and Applications

Linnaeus University, 351 95 Vaxjo, Sweden
{sebastian.honel, morgan.ericsson, welf.lowe, anna.wingkvist}@Inu.se

Context

6 pri Semaphore startLock; e 2 /// <summary>
b/ et GlErE 1eEs 135 - /// Initialize the client with the specific address, port and format.
48 private Semaphore shutdownLock; 136 - /// </summary> 50
49 pri Semaphore lockShutdown; 80 + /// Initialize the client with the specific address, port and format.
; 81 + /// </summary:>
185 - this.startLock = new Semaphore(l, 1); " . "
106 - this.shutdownLock = new Semaphore(®, 1); & * {/J <param name="multicastAddress">< fparam> 8
this.lockStart = new Semaphore(®, 5); 83 + /// <param name="multicastPort"></param> icastPor
this.lockShutdown = new Semaphore(@, 2); 84 + /// <param name="waveFormat"></param>
GE - DesiredLatency = 89 85 + public UdpWaveStreamPlayer(IPAddress mu lticastAddress, int multicastPor 40
11e + DesiredLatency = 5@ 86 + { I
87 + this.multicastAddress = multicastAddress;
varj localep = EndPoint(IPAddress.Any, this.multicastPort); 88 0 this.multicastPort = multicastPort;
using (var ms = new Memor yStream o) j
1 89 + this.waveFormat = waveFormat; I Dea CO e
var localEp = new IPEndPoint(IPAddress.Any, this.multicastPc 90 +
. el N . N . N . 91 + this.startLock = new Semaphore(1, 1);
this.udpClient.Client.Sets topt S| toptionL .S t 9
h%s udg l%en 11en :nd?; € lpp)on(SO A A 92 + this.shutdownLock = new Semaphore(@, 1); -
this.udpClient.JoinMulticastGroup(this.multicastAddress); 93 o this.output = new WaveOut() ‘ ’ I Wh Itespace
121+ this.udpClient.Client.SetSocketOption(SocketOptionLevel.Sock 94 + {
122 + this.udpClient.Client.Bind(localEp); 95 + DesiredLatency = 8@ O
123 + this.udpClient.JoinMulticastGroup(this.multicastAddress); 96 + T C t
H I m m
123 - var rsws = new BufferedWaveProvider(new WaveFormat()) 97 . J O e n S
124 - { 98 + this.udpClient = new UdpClient
125 - BufferDuration = TimeSpan.FromMilliseconds(50@) 99 + { -
b 100 + ExclusiveAddressUse = false
var rsws = new BufferedWaveProvider(new WaveFormat())
{ 101 + };
128 + BufferDuration = TimeSpan.FromMilliseconds(50@) 102 +
s -
129 + 5 103 + this.Volume = 100;
=1 i 10 ross size
144 - this.shutdownLock.WaitOne(); 185 +
148 + this.lockShutdown.Waitone(); 166 + /// <summary>

0

The Density D is the ratio between the Functionality F and the Size S. A density of 1 means that Typical segmentation of lines of code (LOC) between two versions of the same file

F
D = S all code contributes to the functionality. Therefore, the notions of D,,,,, and D,,;,, relate to the

net- and gross-size of the software (S, Sy). The gross size is determined by the plain count of lines of code. Removing unnecessary comments,

e D =S The effort, when measured using functionality instead of size, is more meaningful. The equation zg?t(\:f/ alrlenes, dead and unreachable code as well as any cloned functionality yields the net size of the

t E = /. is therefore equivalent.
p = E The Productivity P for software is defined as Effort per Size, according to ISBSG!. We can We are focusing on examining how close the gross size of changes is compared to the net size using
S hence deduce a direct correlation between productivity and density using the equation P = P/, various methods, such as clone detection or string similarity measures to find the density of contained

functionality. We want do examine which method Is the most suitable for determining the density.

Money Developer Skill Ime Productivity
85000

(/N 65000
V@ $F

. J L y 45000
T (I <3

25000
Commits can be associated with one developer. This Is important for effort- and cost-estimation models, so 5000
that the planner can assess the productivity of their mixed-skill team more accurate. When analyzed as a time
series, the density can be forecast, allowing the planner to adjust the (ongoing) project’s estimates and to -15000
prevent fallouts and plan resources accordingly.

-35000

Public repository hosting services allow us to freely access and analyze millions of commits across a variety
of programming languages, project setups and developer capabilities. We are fetching a great number of 55000
changesets and try to determine their densities. We expect to unearth correlations between the different aspects

f th jects.
of those projects 75000

LISBSG. “Software size as the main input parameter to cost estimation models.* http://isbsg.org/software-size/ 0 Added (gross) @ Deleted (gross) Added (net) = Deleted (net)

Evaluation ek

* We learned about the significance of density and how it impacts large and small changesets. * \We can detect typical developer commit-behavior and how it negatively
* We were able to identify the most and least suitable methods to determining density. Impacts time estimates and leads to distortions of measurements of
* We learned which methods can best approximate a certain notion of time using a certain notion of size. productivity.
 We have analyzed about 1,650 open-source software repositories with ~80k commits across various * \We have unveiled shortcomings in automatically deducing spent time from
programming languages and project setups. Large deviations in gross- and net-size were discovered. commit timestamps using git-hours and found better-than-default settings
by denoising the data.

* Currently, the distorted measurements of time do not allow to correlate any
(specific) notion of size to It.

10600
10000
10000

5000
5000
5000

Three different notions
productivity, based on gross-
size and default settings for
time logging with clear
irregularities (left), then
obtained for the worst-
performing dataset (middle)
and the best-performing
dataset, with clearly improved
density and less noise (right).

2000
2000
2000

niu

1000
1000
1000

500
500

sratEProductvity PostClone

df’ hasInitalEProductivity
0

df bestbProduchvityNoComme

df w

df bestEHonm
d0_30KHoum
[

df hasInitialFHoum

20
20
20

&f_hasInitialSHours ¢f_worst3Hours

Ingdex Index Index

Th ree dlffe rent n OthﬂS Of density.default{x = df_hasInitialSHours) density.default(x = df_bestSHours) density.default{x =d0_305Hours)
time, as obtained by git- -]
hours using the default
settings and no filtering -+
(left), using the best-
working settings of 480 |
minutes and filtering _ .| i R
(middle) and the most * d] &]
normally-distributed notion
of time (right) based on 30
minute-sessions and
filtering.

08

nin

snthProductivity PostClone

df hasInitialEProductivity
I

df besthProductivity N oCommes

0.4

df w

0.2

N =81697 Bandwidth =0.0683 N=40425 Bandwidth = 0.1355 N =16220 Bandwidth =0.01477

%2 Linnasus University

®® Centre for Data Intensive Sciences and Applications
Data-driven Software and Information Quality Group

https://www.researchgate.net/publication/330881875

