
One Script to Rule Them All: Unifying Build
Processes Across Platforms
A whitepaper for the 2020 Collegeville Workshop on Scientific Software, focussing
on Developer Productivity.

Jason M. Gates, Josh Braun, David Collins; Sandia National Laboratories

The Electromagnetic Plasmas in Realistic Environments (EMPIRE) team
at Sandia National Laboratories focuses on next-generation electromag-
netic/electrostatic/fluid dynamic code development. The codebase consists
of seven actively developed main repositories, is built on top of Kokkos
and Trilinos, and is intended to run on everything from Linux desktops to
high-performance computers (HPCs) to bleeding edge testbed platforms. A
year ago, our BuildScripts repository was a bit of an unorganzied mess. It
had grown organically over time, with bash scripts here and there for running
on different platforms, with different configurations, etc. In addition to what
had been collected in the repository, developers also had their own scripts
lying around for setting up their environment and configuring the code. In
the summer of 2019, we undertook an effort to unify our build process across
platforms and create a “one build script to rule them all,” so to speak. The
need for modern scientific codes to consistently build and execute in such
diverse computing environments, and to migrate swiftly to new environments,
points to the need for such a unified build system. Investing the time, money,
and energy in developing such an infrastructure pays dividends in productivity,
both the scientific developer and the DevOps engineer.

Language
We chose Python as the scripting language (specifically version 3.6+, in order
to take advantage of f-strings; see PEP 498) for two primary reasons: documen-
tation and unit testing. Python has agreed-upon conventions for documenting
your code with docstrings (see PEP 257). We decided to utilize the Google doc-
string format to document all modules/classes/functions, and then use Sphinx
(the documentation engine behind ReadTheDocs and the Python documenta-
tion) to generate easy-to-use HTML documentation for our build infrastructure.
Emphasis was also placed on keeping functions small, contained, and as read-
able as possible. The other substantial benefit of Python is the ability to unit
test with pytest. Though unit testing in bash is possible, it’s not nearly as
friendly or full featured as all that pytest provides. The consistent documenta-
tion, unit testing, and code style (see PEP 8) significantly reduce the burden
on the DevOps engineers maintaining this infrastructure.

1

https://collegeville.github.io/CW20/
mailto:jmgate@sandia.gov
mailto:josbrau@sandia.gov
mailto:dcollin@sandia.gov
www.sandia.gov
https://github.com/kokkos/kokkos
https://github.com/trilinos/Trilinos
https://www.gnu.org/software/bash/
https://en.wikipedia.org/wiki/DevOps
https://www.python.org
https://www.python.org/dev/peps/pep-0498/
https://www.python.org/dev/peps/pep-0257
https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings
https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings
https://www.sphinx-doc.org/en/master/
https://readthedocs.org/
https://python.readthedocs.io/en/latest/
https://python.readthedocs.io/en/latest/
https://docs.pytest.org/en/latest/
https://www.python.org/dev/peps/pep-0008/


Replicability
The ability to easily replicate a build and debug a failure was at the forefront of
our minds as we designed this script, so we built in a number of useful features
to make that process as painless as possible.

Since cloning, configuring, and building a code ultimately requires interacting
with the shell, we built what we’ve called our Logger utility. Any print state-
ment or shell command is executed via a Logger object, which captures useful
information:

• The command being executed
• A message describing why the command is being executed (encouraging

good documentation)
• The start time and duration
• The current working directory
• stdout and stderr
• The return code

When the Logger is finalized, all this information is processed into a HTML log
file so you have a thorough record or what was done, when, where, and why,
which significantly eases debugging.

While the Logger can show you what happened last time, it doesn’t provide you
with the ability to do the exact same thing again. To that end, we built in a
replay capability. When the script is run, it will drop a .build_empire_replay
file containing a dict of all the options the script was run with, whether passed
in at the command line, or set by default. If you need to replay exactly what
heppened last time, simply pass the replay file to the script.

To ensure you know exactly what was done, the script finishes by printing a
high-level execution summary:

• What script was run
• What machine it was run on
• What command line arguments were specifically passed to it
• What was cloned where
• What was configured, where, and how
• What was built and where
• What was tested and where, including a high-level results summary
• Which SHA1s were used
• How long everything took

While knowing what was done is helpful, something notoriously difficult in our
context is ensuring you have the right environment established before doing
anything. For this our script builds on top of the work done by the Ad-
vanced Technology Development & Mitigation (ATDM) DevOps team within
Trilinos (see here and here). In any build or install directory you’ll find a
load_matching_env.sh script. Source it, and you’ll get the exact same envi-

2

https://github.com/trilinos/Trilinos/blob/master/cmake/std/atdm/README.md
https://github.com/trilinos/Trilinos/wiki/ATDM-Trilinos-Builds


ronment that was used to create whatever build/install directory you’re in. If
you need to need to use somebody else’s build, whether created by another
developer or Jenkins, source that script and then you’re off to the races.

Now if a developer runs into a problem and they need help with it, they can
file an issue in GitLab, include the script execution summary, attach the replay
and log files, and a teammate should be able to reproduce the problem in no
time. No more time wasted to, “What machine were you on? What was your
environment? How did you configure? What’s the error you’re seeing?” It’s all
right there, and it works at the push of a button.

Modularity
While we fully intended for this script to be used by all EMPIRE users and
developers, we also designed it with Jenkins in mind. “Amplifying feedback
loops,” the second of The Three Ways of DevOps, was a guiding principle when
designing our top-level Jenkins Pipeline architecture. As such, we wanted the
ability to fail as fast as possible, and to pick up where we left off if neces-
sary. This meant designing our pipeline, and the underlying Python script,
with modularity in mind. Any given stage would need to be able to be executed
independently of the others. While a user might want to run build_empire.py
--stage clone configure build ctest pytest vvtest extest, the modu-
larity built in gives Jenkins the ability to fire off the various test stages in parallel,
for instance. And while Jenkins probably always wants to start by cloning the
repositories, a user would likely want the ability to point to local clones with
work in progress, and that flexibility is afforded here as well.

Flexibility
As mentioned previously, the EMPIRE code consists of a number of repositories,
and as such the team consists of a number of sub-teams that handle different
collections of those repositories. When doing daily development, a team member
will likely only be dealing with a small subset of the repositories, so it’d be ideal
to not have to build everything all together. At the same time, most of our
Jenkins testing exists to ensure that everything builds together all the time. By
default, therefore, the script will turn on all the repositories at once, but the
user has the ability to turn on only the repositories they’re working with.

Another significant boon has come from building in the ability to grab whatever
git references (branches, SHA1s) you desire. By default, the script will check out
develop in all our repositories, but the flexibility is there to, e.g., check out the
branch you’re working on in a particular repository, or in multiple repositories.
This also affords us the flexibility to easily check out the SHA1s that were used
in a previous run of the script, even if run by another developer, as given in the
script execution summary. As an added bonus, this allowed us to stand up a

3

https://www.jenkins.io
https://about.gitlab.com
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://www.jenkins.io/doc/book/pipeline/


merge request testing infrastructure relatively easily.

A final significant design consideration was we wanted the ability to run the
script in dry-run mode. When doing so the script would go through all the
motions, but just tell you what it was going to do instead of actually doing
it. For the application developer, that means you have the ability to see what
you’re about to execute before doing so, so you don’t have to wait an hour or
two to find out you ran the wrong thing. For the DevOps team, that means
we have the ability to functionally test the infrastructure in dry-run mode and
see if things look right in minutes, compared to running one of our pipelines for
real, which would take up hours on multiple machines.

Discussion
We started building our “one script to rule them all” a year ago. A small
subset of developers began using it last fall, contributing feedback to improve
the feature development and polish. We officially rolled all this out to the team
after integrating it into our Jenkins Pipeline infrastructure in January. Members
of the team have enjoyed the ability to get up and running on any of the machines
we support (seven different platforms, with a variety of configurations) easily.
It’s as close as we can get to Staples’ “easy button” for a high-performance
scientific codebase consisting of multiple repositories intended to run on next-
generation architectures.

For the DevOps team, this has been an absolute game-changer. It enabled
us to modularize our Jenkins Pipeline infrastructure, spread our testing out
across multiple machines, and fail as quickly as possible. That, in turn, has
made developers more responsive to failures, so as a team we spend less time
debugging and more time developing the scientific capabilities of the code. The
maintainability and extensibility improvements have also accelerated the pace
of development on our DevOps infrastructure. We’ve been able to stand up
additional pipelines to, e.g., run more in-depth testing, or deploy builds to
a variety of platforms, and we were able to do so relatively quickly. These
improvements mean the code is generally more stable, and the team is able to
spend less time configuring and building the code and more time doing real
work.

The effort to unify our build process across platforms was substantial, requiring a
number of months of work before starting to reap the benefits. The productivity
gains for scientific developers and DevOps engineers alike are substantial, which
tells us our hypothesis at the beginning—that investing the time, money, and
energy in developing such a unified build infrastructure would be well worth
the effort—was spot on. Given the need to continuously be productive in our
ever-evolving and increasingly diverse environment, we see it as the only way to
go.

4



Acknowledgements

This paper describes objective technical results and analysis. Any subjective
views or opinions that might be expressed in the paper do not necessarily rep-
resent the views of the U.S. Department of Energy or the United States Gov-
ernment. Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S. De-
partment of Energy’s National Nuclear Security Administration under contract
DE-NA0003525. SAND2020-6668 C

5


	One Script to Rule Them All: Unifying Build Processes Across Platforms
	Language
	Replicability
	Modularity
	Flexibility
	Discussion
	Acknowledgements


