Anomaly Detection for Monitoring the Health of Wind Onshore and Offshore Turbine Foundations

Who are we?

- A global business providing predictive maintenance technologies
- Focus on wind turbines and industrial machinery
- A trusted and independent perspective
- A long heritage of rotating machinery design, monitoring and lubrication

Common Onshore Foundation Variants

	Piled / Deep Foundations	Gravity / Spread / Shallow Foundations	Rock Anchored Foundations
Ground Conditions	Compressible layers below the foundation	General conditions	Shallow bedrock

Common Offshore Foundation Variants

	Shallow	Transition Depth	Deep Water
Types of foundations	Monopiles, gravity base, etc	Jacket or other stiffer substructure	Spar, semisubmersible, TLP

The Foundation as Part of the Dynamic System

Decomposing Observation – Soil-Foundation-Structure Interaction

- X Observed rotation, $\tilde{\theta}$, consists of multiple components
- X Fixed base component, θ_1 , is dominated by the turbine itself
- × Rocking component, θ_R , is dominated by the support structure/foundation
- X Changes in either will change the observation
- X Like rotation, both stiffness and frequency can be decomposed into components

Relating Stiffness and Frequency

- × Essentially a series spring $\frac{1}{\tilde{f}^2} = \frac{1}{f_1^2} + \frac{1}{f_R^2}$
- Frequency is proportional to mass and stiffness

 \propto

N
 X Degradation in either the tower or the foundation will influence the observed frequency

Damage Mechanisms

Onshore foundation damage mechanisms

- × Foundation damage
 - Crack development
 - Concrete
 - Rebar
 - Material crushing
 - Concrete
 - Grout
 - Material bursting
 - Concrete
 - Grout
 - Loss of anchor tension
- X Geotechnical damage
 - Soil cracking
 - Settlement
 - Erosion

Example offshore damage mechanisms

- X Structural damage
 - Cracking
 - Corrosion
- X Geotechnical damage
 - Local scour loss of soil immediately around the foundation
 - Global scour loss of soil regionally
- \times Others depending on foundation type

Some example failure modes

Geotechnical Failure

Grout Failure

Concrete Cracking

Pedestal Pullout CBC - https://www.cbc.ca/news/canada/new-brunswick/cracksin-foundation-led-to-wind-turbine-collapse-1.6312668

Experimental Basis and Field Verification

Observation and attribution of damage

3/4/2023

13

Observation and attribution of damage

- X Measurements showed a global frequency decline as stronger events occurred
- X Detailed analysis split decline into
 - Tower damage
 - Reduction in rotational stiffness

Repaired Turbine Population

X Repair (anchor re-tensioning) is obvious in the frequency measurement of all the repaired turbines

Observing Stiffness and Frequency Directly

- X Daily average stiffness from strain gauges and inclinometers
- X Daily average frequency from ONYX ecoCMS units
- Foundation repair conducted during the monitoring period
 - × Re-tensioned rock anchors
 - X Increase in stiffness and frequency follows expected trends

Comparison of measure and estimated stiffness

Some discrepancies, but overall good correlation

Putting it Into Practice

Foundation Monitoring is Historically Data-poor

- × Rotational stiffness measurement equipment instrumentation is:
 - Relatively expensive
 - Time-consuming to install (i.e., expensive)
- X Due to expense:
 - Limited data collection period
 - Limited sample set
 - Unusual to have continuous monitoring
- X Comparing theoretical required stiffness values to measured can result in erroneous conclusions
 - A degraded foundation may exhibit a stiffness higher than that required by the aero-elastic loads analysis

Addressing Data Availability

Simplify the Sensor

Expand the Dataset

Seasonality Confounds Interpretation

- Onshore seasonality tends to be periodic on an annual basis and dominated by
 1.006
 1.006
 1.006
- X Tidal variation (water depth) drive offshore seasonality for fixedbase turbines
- Seasonal variation can overwhelm variation due to damage

Leverage the Situation

Unique

Similar Population

Group and Self Comparison

Evaluating statistics of the group clarifies the picture and minimizes seasonal noise

- Some turbines are simply "healthier" than others
 - Stiffer soils
 - Higher strength concrete
 - Variation in foundation design
 - Variation in towers
 - etc.

Data-driven Foundation Management

- X Comparison of the rate of changes shows outliers that are likely the first to experience unacceptable performance
 - When to conduct more detailed measurements
 - What foundations to inspect
 - Determine how much longer before thresholds are crossed
 - Defer or eliminate retrofits and repairs on stable foundations

	WTG03	WTG09	W	ΓG12	WTC	G15	WTG	17	WTG1	L9	WTG23	N	VTG38	WTG48	Average
Frequency Slope	0.0002	0.0005	0.0	0001	0.00	003	-0.00	03	0.000	0	0.0002	-C	0.0010	-0.0003	0.0000
Group Health Slope	0.08	0.36	0	.07	0.1	18	-0.1	.4	0.00)	0.09	-	-0.54	-0.11	0.00
Self Health Slope	0.05	0.17	0	.06	0.1	10	-0.1	.3	0.02		0.08	-	-0.31	-0.11	-0.01
Minimum Frequend	y WTG	03 WT	G09	WTO	G12	WT	G15	W	TG17	N	/TG19	WT	G23	WTG38	WTG48
Current	1.000	0.9	973	1.00	005	0.9	983	0.	9977	1	.0014	1.0	002	0.9983	0.9981
Projected 1 Year	1.000	0.9	973	1.00	005	0.9	983	0.	9974	1	.0014	1.0	002	0.9973	0.9978
Projected 2 Years	1.000	0.9	973	1.00	005	0.9	983	0.	9971	1	.0014	1.0	002	0.9963	0.9975
Projected 3 Years	1.000	0.9	973	1.00	005	0.9	983	0.	9968	1	.0014	1.0	002	0.9953	0.9972

Conclusions

- X The industry is currently relying on periodic inspections and measurements on a subset of the total wind farm, which results in:
 - Un-inspected turbines
 - Long periods of possibly un-observed degradation
 - Qualitative results that are difficult to map to decision criteria
 - Possibly erroneous decisions by comparing theoretically required stiffness to measured stiffness
- × Frequency/stiffness is an indicator of health
- X Some CMS systems can monitor the frequency
- X Ongoing frequency monitoring with proper analysis can identify foundation degradation both onshore and offshore
 - Failure mechanisms differ but a similar monitoring approach can be employed

