
LIFE can detect the potential biosignature CH4 in an Earth-twin atmosphere. 

Testing our ML P-T Model in an Atmospheric Retrieval

We validated that our ML P-T model (two parameters) outper-
forms a classical 4th order polynomial P-T model (five para-
meters) in a retrieval. For each P-T model we ran one retrieval on
the simulated mid-infrared emission spectrum of an Earth-like
planet orbiting a Sun-like star at a distance of 10 pc (spectral
resolution R = 200, photon-noise signal-to-noise ratio S/N = 10 at
11.2 μm). In addition to the P-T profile parameters, we retrieved
for 10 additional parameters, including the planet’s radius, and
themass fractions of different atmospheric gases.

The results from this retrieval test are shown in Fig. 3 (retrieved
P-T profiles) and Fig. 4 (residuals of fitted spectra). We find:

1. The P-T structure of the atmosphere is retrieved better with
our ML P-T model than with the polynomial baseline. At high
pressures (≥10-3bar), the ML P-T model accurately reproduces
the true P-T profile. At low pressures (<10-3bar), the ML P-T
model tends to underestimate the true temperature. Since
low pressure regions do not contribute strongly to the exo-
planet’s spectrum (see contribution function in Fig. 3), the low
pressure regions are hard to constrain in retrievals.

2. Form the inlay plot in Fig. 3, we see that our ML P-T Model
yields better constraints for both surface pressure P0 and
the surface temperature T0. Especially the P0 constraint is
stronger and less biased than for the polynomial baseline.

3. The retrieval results for the additional non-P-T parameters
show no strong dependence on the choice of P-Tmodel.

4. The spectrum residuals in Fig. 4 show that both retrievals
accurately reproduce the Earth-like spectrum, despite the
differences in the P-T models. Both residual are centred on
truth, and are significantly smaller than the 1𝜎 noise level.

5. The retrieval using our ML P-Tmodel was significantly faster
than the polynomial baseline due to the reduced number of
P-T profile parameters. The total runtime was reduced by an
approximate factor of 3.2.

We highlight two benefits of our ML P-T model. First, it reduces
the number of P-T parameters in retrievals, which lowers the
computational cost and allows to retrieve additional parameters
of interest. Second, it allows us to use more realistic physically
consistent P-T profiles in retrievals.

Learning-Based Pressure-Temperature Model

One key component of an atmospheric retrieval is the pressure-
temperature (P-T) profile. It describes the thermal structure of
the atmosphere. Simple functions (e.g., polynomials [1,2]) are
commonly used to model the P-T profile. Such models require a
large number of parameters (increases retrieval runtime) and
may produce unphysical P-T structures.

We devised a Machine-Learning (ML) approach for a physically
consistent P-T profile model, which requires fewer parameters
than classical P-T models (Fig. 1). We train our ML model on P-T
profiles from the PyATMOS dataset [3], which consists of 124’314
physically consistent P-T profiles (generated with Atmos [4,5]) of
Earth-like planets orbiting solar-type stars. During training, our
ML method uses an encoder network E to map the P-T profiles in
the training dataset onto a set of N latent variables zi (here, we
use N=2). We then use the zi to train a decoder network D, which
generates a P-T structure corresponding to a set of zi. During
training, we condition D such that it minimizes the difference
between the P-T profiles from the PyATMOS dataset and the
ones that it generates from a set of zi. When running retrievals,
we use D to generate P-T profiles for zi values proposed by the
Bayesian parameter estimation routine.

Background – Atmospheric Retrievals

An atmospheric retrieval finds the best fit of a model for the
exoplanet’s spectrum to the observed spectrum. Additionally, it
retrieves Bayesian estimates and uncertainties for the model
parameters (Fig. 2). These model parameters describe the exo-
planet’s bulk and atmospheric properties, such as the exoplanet
radius, the pressure-temperature structure, the surface con-
ditions and the abundances of atmospheric gases. Our retrieval
routine [1,2] relies on two subroutines:

1. A radiative transfer code (petitRADTRANS [6]) to calculate
the spectrum corresponding to a 1D atmosphere structure
described by a set of model parameter values.

2. A Bayesian parameter estimation routine (MultiNest [7] via
pyMultiNest [8], which is based on Nested Sampling [9]), to
find the set of parameters (with uncertainties) that best fits
the observed spectrum.

Figure 2: Retrieval procedure. By running a retrieval on an observed exoplanet spectrum we
can characterize an Exoplanet by inferring planetary and atmospheric properties.
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Can an artificial intelligence learn exoplanet climates to improve retrievals?  
Figure 3: Left: P-T profile retrieved from the MIR thermal emission spectrum of an Earth-like
planet for different P-T models (purple areas – our ML P-T model; blue lines – polynomial P-T
model [1,2]). The inlay in the top-right corner shows the retrieved surface conditions. Right:
Contribution of different atmospheric layers to the Earth-like thermal emission spectrum.

Figure 4: Relative difference between the Earth-like spectrum and the spectra correspond-
ing to the retrieved parameter values. ([true spectrum - simulated spectrum]/true spectrum).
Top: retrieval using our ML P-Tmodel; Bottom: retrieval using a polynomial P-Tmodel [1,2].

Figure 1: Schematic illustration of our ML P-T model. During training, the encoder network E
maps a P-T profile (N pressure values pi, N temperature values Ti) onto latent variables z1 and
z2. With the latent variables we train a decoder network D, which predicts the temperature
Tp,i corresponding to a pressure pi. After training, we can use D as P-Tmodel is retrievals.
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