
Using the glossr package

Mariana Montes

2022-08-18

Contents
1 Introduction 1

2 Basic usage 2

3 PDF-only features 3

4 About the formats 4

References 4

1 Introduction
The {glossr} package offers useful functions to recreate interlinear glosses in R Markdown texts. The im-
mediate solution for a 𝐿𝑎𝑇 𝑒𝑋 output is to use a specific library, such as {gb4e} (the one I knew when this
package was born) or {expex} (the one this package uses now). If PDF output is enough for you, you can
still use this package to automatically print them in an R-chunk, minimizing typos1, and even generate them
automatically from a dataframe with your examples! But chances are, PDF is not enough for you, and you
would also like a nice rendering (or at least some rendering) of your interlinear glosses in HTML as well…
and why not, MS Word! This offers some challenges, because you would need to figure out how to render
them to begin with, and neither the way to print them nor the way to reference them are compatible across
output formats. I took that pain and packaged it so you don’t need to feel it.

You can start using glossr in an R Markdown file by calling the library and then use_glossr() to acti-
vate some background stuff. Mainly, this function informs all the other functions whether you are using
𝐿𝑎𝑇 𝑒𝑋, HTML2 or neither, in which case it assumes you have Word output. This vignette has been
run in all three formats by changing the output format to bookdown::pdf_document2, which renders
a PDF file; bookdown::html_document2 and rmdformats::readthedown, which render HTML files; and
officedown::rdocx_document, which renders an MS Word file (Xie 2022; Gohel and Ross 2022; Barnier
2022). As you can see in vignette("styling"), use_glossr() also takes some variables to set up document-
wide styling options for specific parts of your glosses. The code below sets the name of the source to render
in boldface and the first line of each gloss in italics.
library(glossr)

use_glossr(styling = list(
source = "b",
first = "i"
1Most of my code is designed to avoid typos. Let’s just say that this package would have taken a few hours less if I didn’t

constantly write leizpig instead of leipzig.
2You can also choose between the default HTML implementation, with leipzig.js, or a “legacy” implementation with simple

tooltips and up to two glossing lines; do so by running use_glossr("tooltip").

1

https://github.com/montesmariana/glossr/tree/main/inst/examples
https://github.com/bdchauvette/leipzig.js/

))
#> Setting up the `latex` engine.

2 Basic usage
When you want to include an example, create a gloss with as_gloss() and call it inside a normal chunk.
There are currently four named, optional arguments that will be treated specially:

• label will be interpreted as the label for cross-references;

• source will be interpreted as text for a non-aligned first line, e.g. a reference to the source of your
example;

• translation will be interpreted as text for a free translation;

• trans_glosses indicates what character should surround the translation, by default ". (See
vignette("styling").)

All other values will be interpreted as lines to be aligned and reproduced in the order given, but only up to
3 lines are allowed.3

my_gloss <- as_gloss(
" 她 哇的一聲 大 哭起來，",
"tā wā=de-yì-shēng dà kū-qǐlái,",
"TSG waa.IDEO-LINK-one-sound big cry-inch",
translation = "Waaaaa, she began to wail.",
label = "my-label",
source = "ASBC (nº 100622)"

)
my_gloss

(1) ASBC (nº 100622)

她
tā
TSG

哇的一聲
wā=de-yì-shēng
waa.IDEO-LINK-one-sound

大
dà
big

哭起來，
kū-qǐlái,
cry-inch

“Waaaaa, she began to wail.”

The label given to as_gloss() allows you to cross-reference the example: in PDF this looks like example
(\@ref(my-label)), whereas in HTML and Word you would use example (@my-label). What should
YOU do? gloss() can be used inline to generate a reference for either PDF or HTML, depending on the
output of your file: (1) in this case.

If you have many examples, you might want to keep them in their own file, if you don’t have them like that
already. glossr offers a small dataset for testing, called data(glosses).
library(magrittr)
library(dplyr) # for select() and filter()
data(glosses)
glosses <- glosses %>%

select(original, parsed, translation, label, source) %>%
mutate(source = paste0("(", source, ")"))

glosses

3Note that if you use Chinese characters you will need to add some 𝐿𝑎𝑇 𝑒𝑋 packages (namely {fontspec} and {xeCJK}). You
can do that either by adding them to the header-includes section or to the extra_dependencies list inside the pdf_document
output section in your YAML. Thanks to Thomas Van Hoey for offering me the example and pointing this out.

2

https://bookdown.org/yihui/rmarkdown-cookbook/latex-preamble.html
https://bookdown.org/yihui/rmarkdown-cookbook/latex-extra.html

#> # A tibble: 5 x 5
#> original parsed trans~1 label source
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Mér er heitt/kalt "\\te~ I am h~ feel~ (Eina~
#> 2 Hace calor/frío "make~ It is ~ amb-~ (Pust~
#> 3 Ik heb het koud "\\te~ I am c~ feel~ (Ross~
#> 4 Kotae-nagara otousan to okaasan wa honobonoto ata~ "repl~ While ~ hear~ (Shin~
#> 5 Ainiku sonna shumi wa nai. Tsumetai-none. Kedaru-~ "unfo~ Unfort~ lang~ (Shin~
#> # ... with abbreviated variable name 1: translation
glosses$label
#> [1] "feel-icelandic" "amb-spanish" "feel-dutch" "heartwarming-jp"
#> [5] "languid-jp"

Assuming you have them in a table with columns matching the arguments of as_gloss(), you can give
it to gloss_df() directly and it will do the job. That is: columns named “translation”, “source”, “label”
and “trans_glosses” will be interpreted as those arguments, and all the others will be read as lines to align
regardless of their column names. This table has more columns than we need, so we will only select the right
ones and print the glosses of the first three rows. Note that the values in the “label” column will be used as
labels: `r gloss("feel-icelandic")` will return (2).
gloss_df(head(glosses, 3))

(2) (Einarsson 1945:170)

Mér
1sg.dat

er
cop.1sg.prs

heitt/kalt
hot/cold.a

“I am hot/cold.”

(3) (Pustet 2015:908)

Hace
make.3sg.prs

calor/frío
heat/cold..n.a

“It is hot/cold; literally: it makes heat/cold.”

(4) (Ross 1996:204)

Ik
1sg

heb
have

het
3sg

koud
cold.a

“I am cold; literally: I have it cold.”

3 PDF-only features
This package also offers a few extensions when working on PDF output. On the one hand, gloss_list()
allows you to nest a list of glosses and have both a reference for the list and for each individual item. This
will not work in HTML or Word, which will just keep the numbering on the top level. But on PDF,
given the function on some examples from Shindo (2015), we can use `r gloss("jp")` to reference (5), or
`r gloss("heartwarming-jp")` and `r gloss("languid-jp")` to reference (5a) and (5b).
filter(glosses, endsWith(label, "jp")) %>%

gloss_df() %>%
gloss_list(listlabel = "jp")

3

(5) a. (Shindo 2015:660)

Kotae-nagara
reply-while

otousan
father

to
and

okaasan
mother

wa
top

honobonoto
heartwarming

atatakai2
warm

mono
thing

ni
with

tsutsum-areru
surround-pass

kimochi
feeling

ga
nom

shi-ta.
do-pst

“While replying (to your question), Father and Mother felt like they were surrounded by something
heart warming.”

b. (Shindo 2015:660)

Ainiku
unfortunately

sonna
such

shumi
interest

wa
top

nai.
not.exist

Tsumetai-none.
cold-emph

Kedaru-souna
languid-seem

koe
voice

da-tta.
cop-pst

“Unfortunately I never have such an interest. You are so cold. (Her) voice sounded languid.”

Finally, it might be the case that you want to apply 𝐿𝑎𝑇 𝑒𝑋 formatting to a long string of elements for your
first lines of glosses, e.g. set half of your example in italics. In order to facilitate applying the same formatting
to each individual element, this package offers you gloss_format_words(), which you can implement to the
strings given to as_gloss().

Internally, glossr will try to parse 𝐿𝑎𝑇 𝑒𝑋 formatting into HTML but currently it doesn’t parse it to Word
or read HTML/markdown tags. (But see vignette("styling").)
gloss_format_words("A long piece of text", "textit")
#> [1] "\\textit{A} \\textit{long} \\textit{piece} \\textit{of} \\textit{text}"

my_gloss <- as_gloss(
original = gloss_format_words("Hace calor/frío", "textbf"),
parsed = "make.3SG.PRS heat/cold.N.A",
translation = "'It is hot/cold'",
label = "formatted"

)
my_gloss

(6) Hace
make.3SG.PRS

calor/frío
heat/cold.N.A

“ ‘It is hot/cold’ ”

4 About the formats
The Latex output writes your glosses with the format required by the {expex} package. The default HTML
rendering uses leipzig.js 0.8.0 (and, of course, {htmltools} (Cheng et al. 2021) to read it with R). The Word
output is an invisible table generated with {flextable} (Gohel 2022). Note that if the translation is very long
it could exceed the margins of the file in Word (as is the case of example (5a)), and at least for the time
being you need to fix it manually by selecting the translation and reducing the width of its cell.

If you are familiar with these tools and would like to suggests expansions or contribute to the package, go
ahead, I would love to hear from you!

References
Barnier, Julien. 2022. Rmdformats: HTML Output Formats and Templates for ’Rmarkdown’ Documents.

https://CRAN.R-project.org/package=rmdformats.

4

https://ctan.org/pkg/expex?lang=en
https://github.com/bdchauvette/leipzig.js/
https://CRAN.R-project.org/package=rmdformats

Cheng, Joe, Carson Sievert, Barret Schloerke, Winston Chang, Yihui Xie, and Jeff Allen. 2021. Htmltools:
Tools for HTML. https://github.com/rstudio/htmltools.

Gohel, David. 2022. Flextable: Functions for Tabular Reporting. https://CRAN.R-project.org/package=
flextable.

Gohel, David, and Noam Ross. 2022. Officedown: Enhanced r Markdown Format for Word and PowerPoint.
https://CRAN.R-project.org/package=officedown.

Shindo, Mika. 2015. “Subdomains of Temperature Concepts in Japanese.” In The Linguistics of Temperature,
edited by Maria Koptjevskaja-Tamm, 639–65. Typological Studies in Language. Amsterdam: John
Benjamins Publishing Company.

Xie, Yihui. 2022. Bookdown: Authoring Books and Technical Documents with r Markdown. https://CRAN.
R-project.org/package=bookdown.

5

https://github.com/rstudio/htmltools
https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=officedown
https://CRAN.R-project.org/package=bookdown
https://CRAN.R-project.org/package=bookdown

	Introduction
	Basic usage
	PDF-only features
	About the formats
	References

