
Provenance-enhanced Root Cause Analysis for
Jupyter Notebooks

Ruyue Xin1a, Simon Stallinga1a, Hongyun Liu1, Peng Chen2b, Zhiming Zhao1b
1Multiscale Networked Systems (MNS), University of Amsterdam, Amsterdam, Netherlands

2School of Computer and Software Engineering, Xihua University, Chengdu, China
aThese authors contributed to the work equally and should be regarded as co-first authors

bCorresponding author. Email: chenpeng@mail.xhu.edu.cn, z.zhao@uva.nl

Abstract—With Jupyter notebooks becoming more commonly
used within scientific research, more Jupyter notebook-based
use cases have evolved to be distributed. This trend makes it
more challenging to analyze anomalies and debug notebooks.
Provenance data is an ideal option that can create more context
around anomalies and make it easier to find the root cause of
the anomaly. However, provenance rarely gets investigated in
the context of distributed Jupyter notebooks. In this paper, we
propose a framework that integrates two data types, provenance
and detected performance anomalies based on performance data.
We use the combined information to visually show the end-
user the provenance at the time of the anomaly and the root
cause of the anomaly. We build and evaluate the framework
with a notebook extended with anomaly-generating functions.
The generated anomalies were automatically detected, and the
combined information of provenance and anomaly creates a
valuable subset of the provenance data around the time an
anomaly occurred. Our experiments create a clear and confined
context for the anomaly and enable the framework to find the
root cause of performance anomalies in Jupyter notebooks.

Index Terms—Jupyter notebooks, provenance data, root cause
analysis, anomaly detection

I. INTRODUCTION

Jupyter notebooks have become more commonly used
within scientific research, especially in data science [1]. Their
friendly interface and ease of interaction are gaining more
daily popularity. Scientific users tend to perform data analysis
in a distributed manner because of the increase in the size of
datasets [2]. However, Jupyter notebooks do not offer a built-
in debugger themselves [3], which makes it harder to detect
the anomalies and debug accordingly. In addition, cells in a
Jupyter notebook are usually executed in non-chronological
order, which makes it difficult to follow the execution flow [4].
Distributed systems allow for a speedup in processing those
amounts of data in Jupyter notebooks. While a good way of
identifying the root cause of problems within these systems is
missing. Therefore, it is essential to have a method that can
automatically identify the root cause and give context.

For debugging programming files, different strategies have
been provided. One of the first actions taken in debugging is
to read the cell with abnormal behavior and understand what
it is doing. Strategies to check the output of the cell have
been developed [5]. These Strategies come down to a good
understanding of the workflow of the cell by the programmer.
For larger executions, workflow management systems such

as Taverna exist. Taverna stores the execution information
data in a provenance format, such as PROV, that can be
queried by the end-user [6]. Numerous other frameworks
can be used for performance metrics like CPU usage or
memory occupancy [7]. The combination of the provenance
data and the performance metrics gives a complete picture
of the workflow execution context. But, there does not exist
a method that uses this complete picture to localize the root
causes of anomalies in the execution.

Thus the research question of this paper is formulated
as: how can the combined information of provenance
with performance data aid in finding the root cause of
performance anomalies in Jupyter notebook executions?
This paper presents a framework that can automatically detect
anomalies in performance data and combine the detected
anomalies with provenance data to create a clearer insight into
the possible root causes of the execution. Our contributions are
as follows:

• We propose a framework to localize the root causes
of detected anomalies in Jupyter notebooks based on
provenance data.

• We compare different anomaly detection models and
discuss their results for collected performance data.

• We visualize the provenance data and create a clear
picture of the communication between functions at the
time of the anomaly.

The rest of the paper is organized as follows. In section II,
we review existing research about anomaly detection, prove-
nance, and root cause analysis. In section III, a provenance-
based root cause analysis framework and its components are
introduced in detail. In section IV, we conduct experiments to
evaluate the performance of the framework, including anomaly
detection and root cause analysis results. Finally, we provide
discussion and conclusion in section V and section VI.

II. RELATED WORK

Since workflows in Jupyter notebooks have become more
complex and grown in size, lots of research is related to
this topic to detect and trace abnormal behavior that occurs
in the workflows, e.g., CPU or I/O anomalies [8] [9]. From
the existing work, three main research topics can be distilled:
anomaly detection, provenance, and root cause analysis.



A. Anomaly detection

Performance anomalies can be detected with a wide range
of well-researched methods [10]–[12]. With the vast amounts
of monitoring data, machine learning-based techniques are
increasingly used for anomaly detection. Because rare labels
exist in monitoring data, unsupervised learning methods are
mostly used [13]. We can classify them into the nearest
neighbor and cluster-based methods.

Nearest neighbor-based techniques are commonly used
method for detecting anomalies [14]–[16]. Nearest neighbors
do not require labels for the data. These methods do not
need a training phase; only distances between data points
are calculated. However, this makes the testing phase of the
models computationally more expensive than other techniques.
These techniques also tend to suffer in high-dimensional data,
and if distance computation between points is hard [17].
Finally, these models do not perform well if anomalies occur
in the data often.

Like the nearest neighbor, cluster-based techniques [18]–
[21] also lack performance in high-dimensional data and if
the distance computation is hard. Also, cluster methods detect
anomalies as a byproduct of clustering; they are not optimized
for anomaly detection. However, this model needs to be trained
on the data. This training phase is computationally expensive.
However, this results in a computationally cheap test phase.
Like the nearest neighbor, cluster-based techniques also do not
need labels to function for anomaly detection.

B. Provenance

Provenance can be used in scientific computing to track the
evolution of different research assets, e.g., metadata, systems,
workflow, or data [22]. Provenance metadata describes an
arbitrary process modeled by an arbitrary model with metadata
[23]. This meta-provenance is used to automatically detect
repairs in software-defined networks [24]. In addition, Gehani
et al. [25] created an architecture that records provenance
metadata for scientific reproducibility purposes.

In Jupyter notebooks, workflow provenance can be col-
lected. A workflow can be seen as a directed graph where
each node is a function or module with input, output, and
parameters, and each of the edges is a transfer of information
[26] [27]. Elias et al. [28] created a framework, cross-context
workflow execution analyzer (CWEA), to connect provenance
data with system logs and visualize the combination to aid
scientists in detecting anomalies. Souza et al. [29] used
workflow provenance data to build a holistic view of the
life cycle of scientific machine learning models. Costa et al.
[30] proposed architecture for managing workflow provenance
data in distributed environments. They offer to use inter-
related provenance database servers, forming an integrated
environment for managing distributed provenance.

C. Root cause analysis

Root cause analysis is used in many areas to trace a certain
outcome to its origin, such as medical [31] [32]. In computer
science, it is used to detect the root cause of bugs or errors

in workflows [33]. Soldani et al. [34] distilled two main ways
for root cause analysis: log-based and distributed tracing.

Logs are often presented in workflows and give contextual
information. Zawawy et al. [35] used this method to filter logs
according to input from the user. Then this framework used
annotated goal trees to model constraints and conditions. Lu
et al. [36] extracted a structure and features from the raw log
files first. They then detect anomalies and identify the root
cause with a General Regression Neural Network (GRNN).
For distributed tracing, one of the most basic forms is to create
a methodology to compare the traces visually [34]. Gelle et al.
[37] included kernel level events in the high-level logs to the
tracing to improve the detection of anomalies and relate them
to their root cause. Bento et al. [38] went from visualizing
tracing data for human inspection to automating the analysis
of tracing data.

In conclusion, different methods have been researched and
compared for anomaly detection. Various forms of data give
different best performers for anomaly detection methods [7].
Therefore, we consider to evaluate detection results with
different anomaly detection methods based on performance
data collected from Jupyter notebooks. Many structures are
extracted from logs or other formats, but the ready provenance
is rarely mentioned as a source. Therefore, a root cause
analysis method for Jupyter notebook based on provenance
data can be explored more.

III. PERFORMANCE DIAGNOSIS FRAMEWORK

In this section, we present a provenance-based root cause
analysis framework, which can be seen in Figure 1. The
framework starts with collecting provenance and performance
data from a running Jupyter notebook. Then performance
data is used to detect anomalies, and detected anomalies are
harmonized and combined with the provenance data. Finally,
the combined information gives more context to increase the
chance of finding the root cause of the anomalies.

Fig. 1. The design of the provenance-based root cause analysis framework.
The red arrows are files imported from others, the orange arrows are the parts
we developed, and the green arrows represent the novel part of the framework
as a contribution.



A. Data generation and collection

For a running Jupyter notebook, we collect provenance
and performance data as shown in Figure 1. We start with a
notebook with different anomalies generated. Then, we mainly
collect provenance data and computer performance data for
subsequent analysis.

1) Collecting provenance: for a Jupyter notebook with
anomalies, we collect provenance data via a wrapper function
that wraps around every function in the Jupyter notebook. The
wrapper logs provenance data is in a W3C PROV format.
The functions write the informing information to a log file.
The provenance data has the following structure. When a
communication took place, we can represent it as function
a is informed by function b at time t.

2) Collecting performance data: The open-source moni-
toring and alerting toolkit Prometheus1 is used for collecting
computer performance data. Performance data includes system
resource data, like CPU usage, memory/SWAP occupation, I/O
transfer. This data is extracted from Prometheus as multivariate
time-series data. At the start of the execution of the notebook,
a function registers the start time. At the end of the notebook,
a function is added that registers the completion time of
the notebook and makes a request to Prometheus for all the
collected monitoring data between the start and finish time.

B. Anomaly detection

With collected performance data, we apply four classic
anomaly detection models because they usually focus on
different features in data and have different performance [7].
The four anomaly detection models are: k-nearest neighbor
(KNN), local outlier factor (LOF), support vector machines
(SVM), and isolation forest (IForest).

KNN is an unsupervised anomaly detection algorithm [39].
It works by looking around a data point with a certain radius,
counting all the neighbors within the radius, and assigning the
data point to the cluster with the most neighbors within the
radius. To use this technique for anomaly detection, a data
point that is not within reach of a minimum number of other
data points is labeled as an anomaly.

LOF is an algorithm that detects local anomalies [40]. A
data point is considered a local anomaly based on the local
neighborhood. LOF uses two functions to determine the local
anomaly. It uses KNN to determine the K-distance, or the
distance from a point to its kth nearest neighbor to define the
neighborhood. LOF also uses the reachability density (RD),
which takes the distance to the edge of the neighborhood if
the point is within the neighborhood and the distance to the
point outside the neighborhood.

SVM is a supervised machine learning algorithm that is
frequently used in classification problems [41]. SVM finds
hyperplanes in a space that separates one class from the rest.
A hyperplane is expressed as seen in the equation.

IForest. [42] created an anomaly detection method they
called Isolation Forest (IForest). This method only needs a tiny

1https://prometheus.io/

proportion of data to create an effective model. Resulting in
linear time complexity and low memory requirements. Under
the hood, IForest is similar to random forest methods since
it relies on assembling binary tree structures for the dataset.
IForest is different from the random forest because anomalies
are nodes in the tree with a short average path length.

With anomaly detection methods, we can determine when
anomalies happen, which is anomaly periods. Based on
anomaly periods, we can combine provenance data, check
function relations, and localize root causes.

C. Combining provenance graph with anomaly detection

This component starts with extracted anomaly periods from
the anomaly detection data. After that, the transformation of
the provenance data is explained. Finally, it is explained how
the previous two steps allow for the creation of provenance
subsets that correlate to the period of the anomalies.

1) Different data types: Anomaly detection data is a binary
classification over time; it is in the form of: at time t no
anomaly but at t + 1 there is an anomaly. Provenance data,
however, is in the form of agent a and is informed by agent b
at time t. Here an agent is a monitored function in a Jupyter
notebook. The only way to correlate the two data types is
based on time. However, the provenance data is very accurate,
at millisecond precision, whereas the anomaly detection data
is sparser, with a ∆t of 3 seconds.

2) Detecting the time of the anomaly: To combine anomaly
detection with the provenance data, the first step is to find the
time when the anomaly occurred. This is done by searching the
location of the first item of several identifications of anomalies
in the binary anomaly detection array. This location is then
used to find the time at which the anomaly occurred in the
performance data that is gathered from Prometheus. Now the
start time and finish time of the detected anomaly are known.
With the time known, we need to figure out what function
communication occurred around this time.

3) Transformation of provenance data: To make it easier to
query the provenance data, we then transform the provenance
into a format indexed with time. Since anomaly detection is
not that accurate over time, the provenance data doesn’t need
the accuracy that is present in the data. A data frame is created
with all unique communications between the functions in the
notebook for the provenance data. So if function a talks to
function b and function b talks to function c than there is a
column with a → b and a column b → c. Since function a
doesn’t communicate with function c directly, the link is not
present in the columns. This prohibits the average amount of
memory needed for the column space to always be in Θ(n2)
and be more in line with Θ(n log n). During every second,
all the function calls are counted, and the count is added to
the column with the right communication. This gives a row as
seen in table I.

Now, it is easy to find the provenance in a given period. To
search even quicker, missing seconds, which can be caused by
a function that took a while to execute, are filled in with all
0 values. This results in every row describing the situation in



Time a → b b → c
1655387530 100 100
1655387531 1 0

TABLE I
EXAMPLE OF HOW THE PROVENANCE DATA FRAME LOOKS LIKE AFTER

THE TRANSFORMATION

the second after the previous row. This means that the location
of a row with a certain time can be calculated by subtracting
the first time from the desired time, which will be helpful for
root cause analysis.

4) Creation of subsets of the provenance data: The final
part of the combination process is to use the periods extracted
from the anomaly detection to select a subset of the prove-
nance data. The time is used to figure out the index. This
is possible because of the transformation of the provenance
data. The known indexes result in fast access to the row in
the provenance data frame where the start and finish of the
anomaly have been detected. The rows in between these times
are extracted from the provenance data frame.

D. Root cause analysis

This component consists of three parts as shown in figure
1. It starts with the creation of a provenance graph from the
subset. After the graph is constructed, the execution flow is
checked to discover the last function call. The final part is the
root cause analysis.

The root cause analysis starts with creating the graph from
the subset of the provenance data. An example of this subset
graph is shown in Figure 2. The node in red is the most likely
root cause, which is figured out by checking the sequence
of the last execution call in the provenance data before the
transformation. The final step is to label the informed node as
red as the most likely root cause and the informant node as
orange to enhance the insight into the last function calls.

Fig. 2. The flow graph of the function communication when an anomaly has
been detected. The node in red is the most likely root cause.

IV. EXPERIMENTS AND RESULTS

We provide experiments to evaluate the root cause analysis
framework. First, we will introduce data generation. Then, we
will provide anomaly detection results for performance data.
Finally, we show the root cause analysis results.

A. Data generation

1) Running Jupyter notebook: We chose a notebook that
used Monte-Carlo simulations to simulate self-avoiding ran-
dom walks2. The Markov chains are computationally heavy
if they are long enough. The heavy computation makes the
notebook run long enough for accurate performance data. We
generate two different anomalies: CPU anomaly and memory
anomaly.

CPU anomaly generating function. One of the methods to
generate anomalies is to overload the CPU. When a function
in a Jupyter notebook executes, the CPU will allocate the
execution to one core by default unless it is specified to
use more cores. Since the random walk notebook does not
use multiprocessing, the anomaly would be if suddenly the
CPU would activate multiple cores. If a notebook would use
multiprocessing that the opposite would be true. A function is
created to generate this type of anomaly that would activate
multiple cores for a specified time. This causes a spike in
CPU usage and would be seen as an anomaly. The function
was built to last 30 to 60 seconds to ensure that the spike was
present in Prometheus since the data was only collected at an
interval of 3 seconds, and it took some time for Prometheus
to detect the increase in CPU load.

Memory anomaly generating function. Another method
of generating an anomaly is to create a memory overflow.
While executing a Jupyter notebook, the notebook stores all
variables and intermediate answers in memory. In distributed
computing, the container often gets a constrained amount of
memory allocated. When the notebook exceeds this amount,
the Jupyter notebook kernel crashes. For example, this over-
flow of memory can be caused by a too large dataset loaded
into memory or arrays that get too big. For simulating the
overflow of memory, a function is created that allocates a part
of memory for an array and steadily increases the size of the
array, thus increasing the memory needed to store the array
until the kernel crashes.

The CPU data was collected in a 6-hour session, and the
memory data in a session of five hours. This resulted in 7586
performance data points for CPU and 5958 for memory. For
the provenance data, we collect 74618134 CPU provenance
data points and 58468995 memory provenance data points.
After data collection, we input these data into our framework,
and perform anomaly detection and root cause analysis.

B. Anomaly detection

1) CPU anomaly detection: We perform CPU anomaly
detection experiments first. This test was conducted by loading
the performance data as received from Prometheus. We remove
the columns with a standard deviation of 0 and run the four
anomaly detection methods. This gave the results as seen in
Table II. The models do perform worse based on accuracy
alone. However, all the models detect anomalies with the
updated data. Only Isolation forest has decreased in overall

2https://github.com/gabsens/SelfAvoidingWalk



performance. SVM, with columns with a standard deviation
of 0 removed, is the best performer in detecting anomalies.

Accuracy F1 Precision Recall
KNN 0.81677 0.13570 0.12306 0.12907
LOF 0.84129 0.25823 0.23417 0.24561
SVM 0.86699 0.37048 0.29391 0.32778

IForest 0.83272 0.21504 0.19474 0.20439
TABLE II

THE ACCURACY, PRECISION, RECALL AND F1 SCORE FOR THE DIFFERENT
APPROACHES ON THE CPU DATASET WITH THE COLUMN WITH STD OF 0

REMOVED

2) Memory anomaly detection: The second experiment
we conducted was the detection of memory anomalies. For
this test, memory anomalies were generated, as discussed in
section IV-A. We started with feeding the models the whole
dataset as it was retrieved from Prometheus. In Table III, the
performance of the anomaly detection models is presented
after the columns with a standard deviation of 0 were removed.
Notice that Isolation Forest, in contrary to the results in Table
II, performs better with the 0 standard deviation columns
removed. As with the CPU anomaly dataset, the models
detect anomalies in this case, except for SVM, which still
has a precision, recall, and f1 score of 0. With the memory
anomalies, Isolation Forest is the best performer for detecting
the anomalies.

Accuracy F1 Precision Recall
KNN 0.91323 0.43025 0.58986 0.49757
LOF 0.86606 0.19463 0.26728 0.22524
SVM 0.92716 0.00000 0.00000 0.00000

IForest 0.92833 0.50588 0.69355 0.58503
TABLE III

THE ACCURACY, PRECISION, RECALL AND F1 SCORE FOR THE DIFFERENT
APPROACHES ON THE MEMORY DATASET WITH THE COLUMN WITH STD OF

0 REMOVED

In conclusion, anomaly detection results show that Isola-
tion forest is the best performer in detecting memory-related
anomalies, and SVM is the best method for CPU-related
anomalies. However, anomaly detection is not performing as
well as it should. It is striking to see that the performance
of anomaly detection differs a lot between CPU-related and
memory-related anomalies. This is likely to the data that
Prometheus gives back. For memory, Prometheus records the
amount of reserved memory a lot better than the load of
the CPU. This gives the anomaly detection model a better
representation of the spikes in memory than in CPU usage
spikes. Another explanation is that the memory anomalies have
more impact on other metrics, which cause more data change
during the anomaly period. While CPU change will not affect
other metrics more.

C. Root cause analysis

We start with an inquiry about the root cause analysis
performed on the CPU dataset. The results consist of graphs
that indicate the provenance data when an anomaly is detected.
After the inquiry of the memory dataset, the same is done with
the dataset of the memory anomalies.

1) CPU root cause analysis: With CPU anomalies detected
by SVM, the time anomalies occurred, and the provenance
data around the time, the root cause analysis model creates
a provenance graph to aid with the localization of the root
cause of the anomaly. The root cause localization accuracy of
the root cause analysis is at 38%.

From the anomaly detection, the time ranges for the
anomaly are extracted. With the CPU data, this came down
to 414 anomalies. This was way too much, and after inves-
tigating, it turned out that the anomaly time ranges that are
calculated for collecting the provenance data often overlapped
with each other. This means that the anomaly detection al-
gorithm, SVM in this case, skipped some points in between,
and now it seems as if there are two anomalies. To tackle
this, we checked the time ranges for overlap, and if they did,
we merged them. This resulted in a decrease of anomalies to
29, which is more likely. In Figure 3 the resulting root cause
analysis graphs are displayed. As described previously, the red
node is the most likely root cause, and the orange node is the
function that informed the root cause.

(a) (b)

(c)

Fig. 3. Provenance graphs with root cause analysis on CPU anomaly dataset.
(a) the red node is the root cause. (b) function calls that happened around the
anomaly. (c) root causes that are function calls within function calls.

2) RAM root cause analysis: With the detected anomalies
in the memory anomaly data using IForest, the time the anoma-
lies occurred, and the provenance data around that time, the
model creates a provenance graph to aid with the localization
of the root cause of the anomaly. This results in graphs like
in Figure 4. The root cause localization accuracy of the model
on the memory dataset is at 55%. This shows the correct root
cause of the anomaly and the function call relations around it
to aid with further analysis. The red node is the last function
that was executed in the period that was investigated. This is
the most likely point of failure. For further analysis, the orange
marked node is the function that informed the red node. Figure
4(a) shows an execution where the anomaly function is called
directly in a cell, so no other function was involved. Figure



4(b) and 4(c) shows an example where the function call to
the anomaly generating function, was within several functions.
It still correctly labeled the ’stress ram’ function as the root
cause.

(a) (b)

(c)

Fig. 4. Provenance graphs with root cause analysis on memory anomaly
dataset. (a) the red node is the root cause. (b) function calls that happened
around the anomaly. (c) root causes that are function calls within function
calls.

In conclusion, the results show that the graphical represen-
tation is a clear overview of the provenance data at the time of
a detected anomaly. The straightforward method of using the
last function call as the root cause is an excellent baseline. For
the graphs with the anomaly generating function, in almost all
cases, the model selected those functions as the most likely
root cause.

On the contrary, the high rate of false-positive results
is most likely due to the lower performance of anomaly
detection. The lack of precision is reflected later in the model
while combining the data. Furthermore, the false positives in
anomaly detection create graphs with anomalies that are not
there. This has the undesired effect of scientists looking for
flaws in their code that are not there.

V. DISCUSSION

The provenance-based anomaly detection model can auto-
matically detect performance anomalies in the CPU and mem-
ory. With these anomalies, it can find function communication
in the vicinity of the anomaly. This allows the model to build
a provenance graph and select a likely root cause in the graph.
This gives researchers a good starting point for analyzing the
root cause of the occurred anomaly; this means that one of the
design requirements, the automation of the system, has been
passed.

There are still aspects of the model that have not been
explored yet and can potentially improve its performance. One
of these things is the configurations of the anomaly detection
methods. Due to their unsupervised nature, the parameters of
the models are a key factor in the performance of the model
since they determine how the model operates. Unfortunately, it
was impossible to explore the different settings of the models
to improve their performance.

During the creation of the performance anomaly function, it
came forward that the way the logging of the provenance data
prohibited it from monitoring the function that was executed
in parallel during multi-core processing. The explanation is
that multiple cores would simultaneously write to the same
file, creating clashes, so python prevented this from happening
and raised an error. Unfortunately, this meant that the function
doing the calculations to create the CPU overload was not
included in the provenance data. Therefore, gathering prove-
nance data needs to be adapted to monitor the multiprocessing
functions.

Finally, the range of the simulated anomalies is not diverse
enough. Due to time limitations, only a memory overflow or
sudden fill-up and increased CPU load have been simulated.
This leaves room for a lot of other anomalies that can occur.
The models may detect some anomalies, but since they are
unsupervised, they do not need to train for the new kind of
anomalies.

VI. CONCLUSION

To conclude, our framework monitored a notebook to ex-
tract provenance and performance data for memory and CPU
anomalies. We tested several anomaly detection methods on
the performance data and concluded that IForest and SVM
were the best performers for their respective datasets. Then the
detected anomalies and the provenance data were harmonized,
combined, and analyzed to detect the root cause. To show the
results, a new way of visualizing the provenance graphs is
used to improve contextual awareness around the occurrence
of an anomaly.

There are several areas where the model can be improved
or expanded to improve the analysis of the root cause of
performance anomalies that occur in scientific notebooks.
For example, adjusting the parameters of the unsupervised
anomaly detection methods, storing more data, or using other
sources for root cause analysis. Furthermore, we consider
improving the model to perform run-time analysis in the
future.

ACKNOWLEDGMENT

This research is funded by the European Union’s Horizon
2020 research and innovation program under grant agreements
825134 (ARTICONF project), 862409(BlueCloud project) and
824068 (ENVRI-FAIR project). The research is also supported
by EU LifeWatch ERIC.



REFERENCES

[1] Z. Zhao, S. Koulouzis, R. Bianchi, S. Farshidi, Z. Shi, R. Xin, Y. Wang,
N. Li, Y. Shi, J. Timmermans, et al., “Notebook-as-a-vre (naavre): from
private notebooks to a collaborative cloud virtual research environment,”
Softw Pract Exp. spe.3098 https://doi.org/10.1002/spe.3098., 2022.

[2] P. Martin, L. Remy, M. Theodoridou, K. Jeffery, and Z. Zhao, “Mapping
heterogeneous research infrastructure metadata into a unified catalogue
for use in a generic virtual research environment,” Future Generation
Computer Systems, vol. 101, pp. 1–13, 2019.

[3] J. W. Johnson, “Benefits and pitfalls of jupyter notebooks in the class-
room,” in Proceedings of the 21st Annual Conference on Information
Technology Education, pp. 32–37, 2020.

[4] J. Wang, T.-y. Kuo, L. Li, and A. Zeller, “Restoring reproducibility of
jupyter notebooks,” in Proceedings of the ACM/IEEE 42nd international
conference on software engineering: Companion proceedings, pp. 288–
289, 2020.

[5] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging dis-
tributed systems: Challenges and options for validation and debugging,”
Queue, vol. 14, no. 2, pp. 91–110, 2016.

[6] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al.,
“The taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud,” Nucleic acids research,
vol. 41, no. W1, pp. W557–W561, 2013.

[7] R. Xin, H. Liu, P. Chen, P. Grosso, and Z. Zhao, “Fired: a fine-grained
robust performance diagnosis framework for cloud applications,” arXiv
preprint arXiv:2209.01970, 2022.

[8] A. Nouri, P. E. Davis, P. Subedi, and M. Parashar, “Exploring the role of
machine learning in scientific workflows: Opportunities and challenges,”
arXiv preprint arXiv:2110.13999, 2021.

[9] R. Mork, P. Martin, and Z. Zhao, “Contemporary challenges for data-
intensive scientific workflow management systems,” in Proceedings of
the 10th Workshop on Workflows in Support of Large-Scale Science,
pp. 1–11, 2015.

[10] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly
detection techniques,” Journal of Network and Computer Applications,
vol. 60, pp. 19–31, 2016.

[11] X. Xu, H. Liu, and M. Yao, “Recent progress of anomaly detection,”
Complexity, vol. 2019, 2019.

[12] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, “Performance
anomaly detection and bottleneck identification,” ACM Computing Sur-
veys (CSUR), vol. 48, no. 1, pp. 1–35, 2015.

[13] P. Chen, H. Liu, R. Xin, T. Carval, J. Zhao, Y. Xia, and Z. Zhao,
“Effectively detecting operational anomalies in large-scale iot data
infrastructures by using a gan-based predictive model,” The Computer
Journal, 2022.

[14] T. Huang, Y. Zhu, Q. Zhang, Y. Zhu, D. Wang, M. Qiu, and L. Liu,
“An lof-based adaptive anomaly detection scheme for cloud comput-
ing,” in 2013 IEEE 37th Annual Computer Software and Applications
Conference Workshops, pp. 206–211, IEEE, 2013.

[15] T. Pham and S. Lee, “Anomaly detection in the bitcoin system-a network
perspective,” arXiv preprint arXiv:1611.03942, 2016.

[16] M. Ahmed, N. Choudhury, and S. Uddin, “Anomaly detection on big
data in financial markets,” in 2017 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM),
pp. 998–1001, IEEE, 2017.

[17] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[18] A. Marcos Alvarez, M. Yamada, A. Kimura, and T. Iwata, “Clustering-
based anomaly detection in multi-view data,” in Proceedings of the 22nd
ACM international conference on Information & Knowledge Manage-
ment, pp. 1545–1548, 2013.

[19] G. Pu, L. Wang, J. Shen, and F. Dong, “A hybrid unsupervised
clustering-based anomaly detection method,” Tsinghua Science and
Technology, vol. 26, no. 2, pp. 146–153, 2020.

[20] J. Li, H. Izakian, W. Pedrycz, and I. Jamal, “Clustering-based anomaly
detection in multivariate time series data,” Applied Soft Computing,
vol. 100, p. 106919, 2021.

[21] R. C. Ripan, I. H. Sarker, S. M. Hossain, M. Anwar, R. Nowrozy, M. M.
Hoque, M. Furhad, et al., “A data-driven heart disease prediction model
through k-means clustering-based anomaly detection,” SN Computer
Science, vol. 2, no. 2, pp. 1–12, 2021.

[22] B. Magagna, D. Goldfarb, P. Martin, M. Atkinson, S. Koulouzis, and
Z. Zhao, “Data provenance,” in Towards Interoperable Research Infras-
tructures for Environmental and Earth Sciences: A Reference Model
Guided Approach for Common Challenges (Z. Zhao and M. Hellström,
eds.), pp. 208–225, Springer International Publishing.

[23] M. Herschel, R. Diestelkämper, and H. Ben Lahmar, “A survey on
provenance: What for? what form? what from?,” The VLDB Journal,
vol. 26, no. 6, pp. 881–906, 2017.

[24] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated
network repair with meta provenance,” in Proceedings of the 14th ACM
Workshop on Hot Topics in Networks, pp. 1–7, 2015.

[25] A. Gehani, D. Tariq, B. Baig, and T. Malik, “Policy-based integration
of provenance metadata,” in 2011 IEEE International Symposium on
Policies for Distributed Systems and Networks, pp. 149–152, IEEE,
2011.

[26] S. B. Davidson and J. Freire, “Provenance and scientific workflows:
challenges and opportunities,” in Proceedings of the 2008 ACM SIG-
MOD international conference on Management of data, pp. 1345–1350,
2008.

[27] F. Z. Khan, S. Soiland-Reyes, R. O. Sinnott, A. Lonie, C. Goble, and
M. R. Crusoe, “Sharing interoperable workflow provenance: A review of
best practices and their practical application in cwlprov,” GigaScience,
vol. 8, no. 11, p. giz095, 2019.

[28] E. el Khaldi Ahanach, S. Koulouzis, and Z. Zhao, “Contextual linking
between workflow provenance and system performance logs,” in 2019
15th International Conference on eScience (eScience), pp. 634–635,
IEEE, 2019.

[29] R. Souza, L. G. Azevedo, V. Lourenço, E. Soares, R. Thiago,
R. Brandão, D. Civitarese, E. Vital Brazil, M. Moreno, P. Valduriez,
et al., “Workflow provenance in the lifecycle of scientific machine
learning,” Concurrency and Computation: Practice and Experience,
p. e6544, 2021.

[30] F. Costa, D. De Oliveira, and M. Mattoso, “Towards an adaptive and
distributed architecture for managing workflow provenance data,” in
2014 IEEE 10th International Conference on e-Science, vol. 2, pp. 79–
82, IEEE, 2014.

[31] T. C. A. Teixeira and S. H. D. B. Cassiani, “Root cause analysis:
evaluation of medication errors at a university hospital,” Revista da
Escola de Enfermagem da USP, vol. 44, pp. 139–146, 2010.

[32] L. A. Lynn and J. P. Curry, “Patterns of unexpected in-hospital deaths:
a root cause analysis,” Patient safety in surgery, vol. 5, no. 1, pp. 1–25,
2011.

[33] R. Xin, P. Chen, and Z. Zhao, “Causalrca: Causal inference based precise
fine-grained root cause localization for microservice applications,” arXiv
preprint arXiv:2209.02500, 2022.

[34] J. Soldani and A. Brogi, “Anomaly detection and failure root cause
analysis in (micro) service-based cloud applications: A survey,” ACM
Computing Surveys (CSUR), vol. 55, no. 3, pp. 1–39, 2022.

[35] H. Zawawy, K. Kontogiannis, and J. Mylopoulos, “Log filtering and
interpretation for root cause analysis,” in 2010 IEEE International
Conference on Software Maintenance, pp. 1–5, IEEE, 2010.

[36] S. Lu, X. Wei, B. Rao, B. Tak, L. Wang, and L. Wang, “Ladra: Log-based
abnormal task detection and root-cause analysis in big data processing
with spark,” Future Generation Computer Systems, vol. 95, pp. 392–403,
2019.

[37] L. Gelle, N. Ezzati-Jivan, and M. R. Dagenais, “Combining distributed
and kernel tracing for performance analysis of cloud applications,”
Electronics, vol. 10, no. 21, p. 2610, 2021.

[38] A. Bento, J. Correia, R. Filipe, F. Araujo, and J. Cardoso, “Automated
analysis of distributed tracing: Challenges and research directions,”
Journal of Grid Computing, vol. 19, no. 1, pp. 1–15, 2021.

[39] E. Fix and J. L. Hodges, “Discriminatory analysis. nonparametric
discrimination: Consistency properties,” International Statistical Re-
view/Revue Internationale de Statistique, vol. 57, no. 3, pp. 238–247,
1989.

[40] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, pp. 93–104, 2000.

[41] W. S. Noble, “What is a support vector machine?,” Nature biotechnology,
vol. 24, no. 12, pp. 1565–1567, 2006.

[42] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth
ieee international conference on data mining, pp. 413–422, IEEE, 2008.


