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1 Abstract /publishable summary

The models used in weather and climate simulation are large, complex and long-lived. It is then very difficult

to adapt them to run well on supercomputers which are quickly evolving and tend to have a lifespan of only

five years or so. Domain-Specific Languages (DSLs) are one solution to this problem: they enable the model

developers to focus on the scientific challenges while the underlying tool chain takes responsibility for achieving

good performance on a given supercomputer. This report describes the computational performance obtained

through the application of the PSyclone and dusk/dawn DSL toolchains to full atmosphere and ocean models

as used for weather and climate studies at various centres. These are: the UK Met Office’s LFRic atmosphere

model, the NEMO ocean model, the IFS-FVM atmosphere model and the ICON atmosphere model.

2 Conclusion & Results

The main outcomes of this work are:

• LFRic performance improvements demonstrated using new optimisations implemented in PSyclone.

• PSyclone used to add OpenMP parallelism to NEMO. Performance of this hybrid mode demonstrated

on a production configuration on 1024 CPU cores.

• PSyclone used to add OpenACC parallelism to NEMO. Performance demonstrated on up to 192 GPUs.

• PSyclone used to add OpenMP offload parallelism to NEMO and demonstrated for the ORCA1 domain

on a single GPU.

• dusk/dawn used to accelerate the ICON dycore and shown to match or outperform OpenACC perfor-

mance for all dycore stencils

• Advanced optimisation techniques like fusion of and inlining of computations are introduced to the

dusk/dawn tool-chain and their performance impact is discussed for a synthetic benchmarking suite.

3 Project objectives

This deliverable contributes directly and indirectly to the achievement of all the macro-objectives and specific

goals indicated in section 1.1 of the Description of the Action:

Macro-objectives Contribution of

this deliverable

(1) Enable leading European weather and climate models to leverage the available

performance of pre-exascale systems with regard to both compute and data capacity

in 2021.

X

(2) Prepare the weather and climate community to be able to make use of exascale

systems when they become available.

X
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Specific goals in the workplan Contribution of

this deliverable

Boost European climate and weather models to operate in world-leading quality on

existing supercomputing and future pre-exascale platforms

X

Establish new technologies for weather and climate modelling X

Enhance HPC capacity of the weather and climate community X

Improve the toolchain to manage data from climate and weather simulations at scale

Strengthen the interaction with the European HPC ecosystem X

Foster co-design between model developers, HPC manufacturers and HPC centres X

4 Detailed report on the deliverable

This section discusses the computational performance results obtained through the use of the DSLs in the four

models addressed in this report: LFRic, NEMO, IFS-FVM and ICON. (These results were obtained following

work on adapting the DSLs to the various models, as described in Deliverable D2.1 (Ford et al., 2022). The

reader is therefore referred to D2.1 for more details of the functional changes.) LFRic is an example of a

new model that has been developed with a DSL (PSyclone) from the outset. As a result, the main focus

in this case has been the scientific development of the model and the development of PSyclone to support

the necessary functionality. Work to date has therefore focused on performance on the existing, CPU-based

machines used by the UK Met Office. NEMO is an example of an existing model where the developers are

reticent to change their code unless it is to add new science functionality. As a result there are no directives

in the code and it is currently only possible to run it on CPU-based machines. In this case the PSyclone DSL

is used to add in directives and restructure the code where necessary, to allow NEMO to run on GPUs with

no change to the original code. Since GPUs from different vendors require different programming models

(e.g. NVIDIA hardware can be used from Fortran via either OpenACC or OpenMP directives while AMD

hardware only supports OpenMP directives), PSyclone has been extended so as to support both OpenACC

and OpenMP. Performance results are shown for both approaches. ICON and FVM (from the IFS suite) are

examples of models where some of the existing code is re-written in a Domain-Specific Language. This then

allows those sections of the model to be run on either GPU or CPU. The computational performance obtained

for these four models are discussed in turn in the rest of this section.

4.1 PSyclone and LFRic

In this section we present how the developments to PSyclone (described in D2.1) have fed through to deliver

performance improvements in the LFRic model. (Note that the associated LFRic infrastructure development

work has been done by the Met Office with the support of the UK ExCALIBUR programme.)

4.1.1 Halo-exchange Reduction

PSyclone is responsible for adding appropriate distributed memory calls to LFRic code to ensure the code

runs correctly in parallel. Given the structure and implementation of the LFRic code only two types of call

are required 1) halo exchanges and 2) global sums. Halo exchange calls and global sum calls are added

based on kernel implementations as described by kernel metadata and the order in which kernels are called as

specified by ’invoke’ calls in the algorithm layer. It is relatively simple to place global sums, however it is more

difficult to place halo exchanges and run-time flags are used to indicate whether fields have dirty or clean

halos in order to work out whether a halo exchange should be called or not in cases where this cannot be

determined. It can be shown that, given a set of rules for the correct placement of halo exchanges PSyclone
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will ensure that the minimum number of halo exchanges will be called. However, the rules themselves can be

too restrictive. This section presents the results of extending kernel metadata in order to more precisely define

the type of computation being applied in a kernel and as a result, reducing the number of halo exchanges that

PSyclone needs to add to the code. The two changes are 1) adding a new function-space access type called

ANY DISCONTINUOUS SPACE and 2) allowing certain kernels which modify fields on a continuous function

space to be specified as GH WRITE. For details on what these two changes mean please see Deliverable D2.1.

This section simply provides the results of applying these two changes.

ANY DISCONTINUOUS SPACE

As mentioned in Deliverable D2.1, ANY DISCONTINUOUS SPACE metadata in LFRic kernels mark fields that

are discontinuous without having to specify the particular type of field. These metadata are particularly useful

in kernels that interface the existing Physics parameterisation schemes developed for the Unified Model (UM)

that are implemented as single-column models.

ANY DISCONTINUOUS SPACE metadata were implemented in several tickets and commits to the LFRic

trunk1 from January to May 2020, leading to significant reduction of the number of halo exchanges in

the LFRic Atmosphere (lfric atm) model configuration. The additional improvement was implemented at

the end of May 2022 by configuring PSyclone release 1.9.0 for LFRic to enable redundant computation to

shared “dofs” for PSyclone built-ins (so called “annexed dofs”), arithmetic operations on whole fields directly

implemented in the generated PSy-layer. Table 1 below presents the cumulative results of these changes in

LFRic for the LFRic Atmosphere application from May 2020.

Application AS ADS ADS + Annxd

lfric atm 354,851 312,403 (88.03%) 164,024 (46.22%)

slow physics 5,997 576 (9.6%) 0 (0%)

fast physics 16,009 14,094 (88.03%) 10,454 (65.3%)

Table 1: Number of halo exchanges for the LFRic atmosphere application, Slow Physics and Fast Physics

components for an Aquaplanet run at C96 cubed-sphere grid resolution (≈100 km horizontal) with 38 vertical

levels and timestep dt = 300 s. Here “AS” and “ADS” denote kernel source code utilising ANY SPACEmetadata

and ANY DISCONTINUOUS SPACE metadata, respectively (second and third column). “ADS + Annxd“ in

the fourth column denotes the implementation of both ANY DISCONTINUOUS SPACE metadata and redundant

computation to shared (“annexed”) dofs for built-ins. Figures in parentheses give the number of halo exchanges

as a percentage of the corresponding figure before the introduction of the ANY DISCONTINUOUS SPACE and

annexed-dofs functionality.

As can be seen from Table 2, implementation of ANY DISCONTINUOUS SPACE metadata and redundant

computation resulted in significant runtime improvements in the Slow Physics component of the Aquaplanet

configuration run and moderate runtime improvements of both Fast Physics components and the overall

model runtime.

GH WRITE with continuous function spaces

The potential of reduction of the number of halo exchanges in LFRic by using GH WRITE access for fields

on continuous function spaces was demonstrated prior to implementing PSyclone support. Table 3 shows

runtime improvements for the manual adjustments to PSy-layer and LFRic kernels interfacing the UM explicit

and implicit boundary layer (BL) schemes. These changes were fully implemented in LFRic after adopting

PSyclone release 2.3.1 in June 2022.

1LFRic use the term “trunk” for the main branch as they use SVN for their version control.
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MPI tasks (nodes) Colums per task Tot: ADS + Annxd SP: ADS + Annxd FP: ADS + Annxd

216 (6) 256 5.41% 16.81% 4.94%

144 (4) 384 4.70% 18.44% 3.73%

108 (3) 512 4.53% 18.59% 4.40%

72 (2) 768 3.40% 13.80% 4.06%

Table 2: Speed-up (%) compared to runtimes of ANY SPACE Physics kernel metadata runs for the LFRic

atmosphere application, Slow Physics (SP) and Fast Physics (SP). The Met Office Cray XC40/XCS architec-

ture used for tests consists of Intel Xeon dual socket 18-core Broadwell nodes (i.e. 36 CPU cores per node)

with Aries interconnect. The Intel 17.0.0.098 compiler was used to compile and run the test cases. The rest

as in Table 1.

Scheme

Number of halo

exchanges per timestep
C48 mean time C192 mean time

Before After Before After Before After

bl exp alg 74 7 55.08s 34.85s 14.76s 11.26s

bl imp alg 13 0 24.41s 23.62s 7.57s 7.44s

Table 3: The comparison of number of halo exchanges per timestep and mean runtimes for calls to the

UM explicit and implicit boundary layer (BL) schemes before and after implementing GH WRITE metadata in

the relevant LFRic kernels. C48 and C192 configurations have ≈200 km and ≈50 km horizontal resolutions,

respectively. The Cray XC40/XCS architecture used for the tests is outlined in caption of Table 2.

Using GH WRITE metadata for continuous function spaces in LFRic where appropriate is also illustrated by

≈40% performance improvement of FFSL transport scheme illustrated in Table 4 below.

Component Runtime at trunk

revision [37670]

Runtime at trunk

revision [37680]

gungho transport control 652.68s 388.90s

Table 4: Comparison between runtimes for a C192 (≈50 km horizontal resolution) “GAL9” configuration

in the LFRic Atmosphere performance suite before and after implementing GH WRITE metadata in relevant

kernels in August 2022. All variables are transported using the Flux-Form Semi-Lagrangian (FFSL) advection

scheme. The Cray XC40/XCS architecture used for the tests is outlined in caption of Table 2.

4.1.2 Mixed-precision Support

PSyclone support for mixed precision in LFRic, outlined in Deliverable 2.1, was the major highlight of PSyclone

release 2.3.1 currently used in LFRic. The aim was to improve the computational performance of the model

through the targeted use of lower-precision floating point numbers, primarily in the semi-implicit (SI) solver

and transport schemes.

It is important to note here that the main goal of this work was to gain as much of performance im-

provement as possible whilst retaining scientific validity. The results presented here are for parts of the LFRic

model where preliminary experiments indicated it would be possible to achieve this goal, and future work will

explore whether reduced precision is feasible for other high-cost schemes.

In theory, the expected speed-up from going from 64-bit to 32-bit could be up to 50%. In practice,

however, it is reasonable to expect less since some areas are not memory-bound and the global sums are still

computed in double (64-bit) precision. This conclusion was supported by the Dynamics-only tests (Gungho

performance suite) carried out in February and March 2022. The preliminary mixed-precision support for these
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tests was accessed from then PSyclone master branch, which illustrates the continuous development feedback

from LFRic to PSyclone and vice-versa. The results in Table 5 show the net speed-up on 64-bit and 32-bit

LFRic branches for the Dynamics-only Held-Suarez test case. The solver speed-up on the 64-bit branch was

mostly due to algorithmic optimisations applied to the Schur preconditioner, whereas the speed-up for the

32-bit branch also shows the impact of reduced precision.

Cray XC40 configuration 64-bit branch 32-bit branch

6omp 6nodes 1.06x 1.79x

6omp 12nodes 1.10x 1.55x

6omp 24nodes 1.09x 1.53x

Table 5: The net speed-up of the semi-implicit (SI) solver code compared to LFRic trunk for the Gungho

(dynamical core) application that uses a C192 (≈50 km horizontal resolution) Held-Suarez test. The Cray

XC40/XCS architecture used for the tests is outlined in caption of Table 2.

Following the adoption of PSyclone release 2.3.1 in LFRic in June 2022, the support for mixed precision

has been implemented in LFRic in several parts of the model. Table 6 shows the cost of computing the

semi-implicit (SI) operator and the overall SI solver for one member of the GC5-LFRic assessment suite before

and after the introduction of 32-bit capability. The reduction in time for the SI operators is ≈55% (≈2.2x

speed-up) and for the solver is ≈26% (≈1.35x speed-up), with the total model time reduced by ≈8%.

LFRic trunk revision

number

SI operator

computation cost

Semi-implicit solver

cost

Total model cost

37279 (Jul 2022) 272.16s 188.72s 3377.71s

37648 (Aug 2022) 122.32s 139.62s 3098.62s

Table 6: Costs of the semi-implicit operators, solver and total model for a 6-day Gungho NWP configuration

(one member of the GC5-LFRic assessment suite) before (revision [37279]) and after introducing 32-bit

capability (revision [37648]). The cubed-sphere resolution is C192 (≈50 km horizontal resolution), and the

configuration is run on 24 nodes of the Cray XC40/XCS architecture outlined in caption of Table 2.

Table 7 shows the speed-up associated with the implementation of mixed precision aimed at transport

schemes in the LFRic Atmosphere performance suite for a C192 Aquaplanet run, also measured at the prelim-

inary testing phase in February/March 2022. The overall transport speed-up (gungho transport control)

is ≈30% when running on 6 nodes and ≈20% when running on 24 nodes for the lower 32-bit precision. The

complete implementation of the mixed-precision support for transport schemes was committed to the LFRic

trunk in January 2023.

6 nodes 24 nodes

Routine ratio 32-bit/64-bit difference (s) ratio 32-bit/64-bit difference (s)

gungho total 0.97 -41.42 0.98 -7.74

gungho transport control 0.70 -38.82 0.81 -5.67

mol conservative alg 0.63 -14.44 0.67 -2.83

wind transport 0.66 -7.91 0.72 -1.43

moist mixing ratio transport 0.70 -9.83 0.73 -1.93

tracer collection transport 0.64 -14.06 0.70 -2.81

Table 7: Comparison between runtimes for a C192 (≈50 km horizontal resolution) LFRic Atmosphere

Aquaplanet configuration with transport routines implemented in 32-bit and 64-bit precisions. The Cray

XC40/XCS architecture used for the tests is outlined in caption of Table 2.
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Note, work on PSyclone mixed-precision support was partially funded by the ExCALIBUR (Exascale

Computing: ALgorithms and Infrastructures Benefiting UK Research) Programme. LFRic implementation of

the mixed-precision support, as well as the results presented above, were fully funded by the ExCALIBUR

Programme.

4.1.3 I-first Kernels

As mentioned in Deliverable D2.1, another PSyclone contribution to better utilisation of the UM Physics

parameterisation schemes in LFRic was support for i-first kernels. As shown in Figure 1, the implementation

of i-first kernels enables calling UM schemes on whole domain.

Also, as in the case of implementation of mixed-precision support, implementation of i-first support in

LFRic was partially funded by the ExCALIBUR Programme, with the results shown in this section produced

by one of the Met Office-led work packages.

Figure 1: Original k-first and new i-first code structure of PSy and Kernel layers in LFRic for Physics kernels.

Courtesy of Ben Shipway, Met Office.

Table 8 shows the cost of more expensive Physics schemes for a “basic-gal” LFRic Atmosphere configu-

ration prior to implementation of i-first kernels in LFRic.

Table 9 compares runtimes of the Microphysics kernel re-written to call the UM Microphysics scheme

with i-first looping and its original k-first implementation. The i-first data ordering significantly improved

performance of the Microphysics scheme, with a speed up by a factor of 3.5 - 4 times (results from the

i-first version of the code bit compared with the k-first version). Since December 2021 when this change was

implemented for the Microphysics scheme, other Physics interface kernels were investigated and refactored as

well.

4.1.4 LFRic Performance-Improvement Timeline

The previous subsections illustrate the difficulty with drawing a clear line between performance improvements

gained by what is considered traditional optimisations and by the PSyclone DSL support. This is due to

PSyclone being a core functionality in LFRic, where the generated PSy-layer not only applies optimisations

but also employs the LFRic model infrastructure to extract and pass the correct information from the high-

level field objects in the algorithm layer to the low-level kernels that implement mathematics on raw data.
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Scheme Time Percentage of

total runtime

Notes

whole model 2185.2s 100% (of this ≈20.8% is Slow Physics and ≈4.5% is Fast

Physics)

microphysics 247.4s 11.3%

boundary layer 81.7s 3.7% (≈69% UM explicit BL scheme, ≈% UM implicit BL

scheme)

radaer 80.6s 3.7%

radiation 67.1s 3.1% (≈61% Long-Wave radiation scheme and ≈39%

Short-Wave radiation scheme)

convection 18.0s 0.8%

pc2 17.9s 0.8% (split over various pc2 routines)

glomap aerosol 9.8s 0.4%

cld 3.0s 0.1%

jules 1.7s < 0.1%

Table 8: Cost of more expensive Physics schemes in “basic-gal” LFRic Atmosphere configuration with C48

cubed-sphere grid resolution (≈200 km horizontal), running on 216 PEs for 720 timesteps.

Microphysics runtimes k-first (original) i-first

C48, 216 PEs, 720 timesteps 247.4s 63.9s

C192, 864 PEs, 60 timesteps 33.5s 9.6s

Table 9: k-first and i-first runtimes of the LFRic Microphysics kernel that interfaces the respective UM

Physics scheme produced using the C48 (≈200 km horizontal) and C192 (≈50 km horizontal) configuration

resolutions in the “basic-gal-demo” suite.

Hence, algorithmic optimisations in LFRic, such as more efficient transport schemes and multigrid solver,

often depend on PSyclone support.

Figure 2 illustrates the predictions for performance improvements gained by this integrated approach. It

was created in May 2022 by the Met Office’s Dynamics Research team who are responsible for the algorithmic

development of the LFRic model. The figure presents the predicted performance improvements of as the new

scheduled algorithmic improvements are added. The scheduled algorithmic improvements since May 2022 to

the time of this report have already been implemented.

Model Set-Up and Machine Configuration

The LFRic model is run at resolution C192 (≈50 km horizontal) on a cubed sphere, running with GA9 Physics

with a 6-day NWP forecast taken from the GMED case study suite. The IO is representative of assessment

runs rather than operation runs.

The test suite is run on the Met Office Cray XC40/XCS architecture which consists of Intel Xeon dual

socket 18-core Broadwell nodes (i.e. 36 CPU cores per node) with Aries interconnect. The Intel 17.0.0.098

compiler is used to compile and run the model.

The same resources are used for running the Met Office’s current model (the Unified Model (UM)) N320

or 48km configuration used for comparison. The UM N320 configuration uses the same GA9 Physics.

Discussion

The predictions are shown as light green, then yellow and finally salmon coloured bars. The heights of the bars

indicates the time spent running the model so it can be seen that there is a gradual predicted performance

improvement as new algorithmic improvements are added over time, with the actual algorithmic improvements
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Figure 2: The predicted and actual performance improvements for LFRic as new algorithmic developments

are added to the model.

being described underneath each of the bars. The different colours are meant to indicate confidence in the

prediction, with green being the most confident, yellow the next and salmon the least. As one might expect,

as the predictions go further into the future, the confidence in them drops accordingly. The grey horizontal bar

is the time taken to run the same problem with the same effective resolution using the UM N320 configuration

(48km). Whilst the two models have the same effective resolution it is a slightly unfair comparison as the

UM actually contains around 40% more grid points than LFRic at the specified resolution due to its increased

number of grid points towards to the poles. As a result, the orange line presents a scaled performance line

that gives a fairer performance comparison. The Met Office are aiming to meet this lower performance target

for the LFRic model, although it is not a hard constraint. However, as can be seen, this performance target is

not predicted to be achieved through algorithmic improvements alone by May 2023. Whilst this is the case,

there are also expected to be performance benefits through computational improvements which will hopefully

enable LFRic to achieve parity at this resolution. It should also be noted that this example is at a relatively

low resolution and that LFRic is designed to scale to higher resolutions where the UM will become limited by

its regular grid. Therefore LFRic is expected to perform better than the UM at higher resolutions.

The actual performance improvements due the algorithmic improvements are shown by the blue bars with

the speech bubbles specifying which particular version of LFRic trunk they were added. As can be seen, the

actual and predicted performance improvements, as well as their cumulative benefit, are quite closely aligned,

which gives confidence in the future predictions.

The two halo-exchange reduction optimisations that have been added to PSyclone (as reported in Deliv-

erable D2.1 and discussed earlier) are not shown as part of the algorithmic improvements in Figure 2. One

reason for this is that the first of these (adding support for ANY DISCONTINUOUS SPACE) was done before May

2022 and the second (adding support for GH WRITE when modifying particular continuous function spaces)

was devised and developed after May 2022. However, even if the latter were added to the figure it would not

be expected to make that big a difference at the test resolution, as it is more about improving the scalability

of the code. It can be seen that the multi-precision support that has been added to PSyclone (as reported in

Deliverable D2.1 and discussed earlier in this section) is being used in two places by the Met Office. First, the

“SP Solver” improvement (denoted as SI solver in the mixed-precision subsection earlier) was added to trunk

in August 2022 giving the expected performance improvement, and second, the “SP transport” improvement

was added in early January 2023. Further, it can also be seen that the i-first kernel support added to PSy-

clone (again as reported in Deliverable D2.1 and discussed earlier in this section) will be used in the “BL+Rad

i-first” improvement for the boundary-layer and radiation Physics parametrisations which are scheduled to be
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added to trunk in May 2023.

4.2 PSyclone and NEMO

In this section we present the details of the performance results obtained by STFC when using PSyclone

to transform the NEMO ocean model for running in either hybrid mode (MPI+OpenMP) on CPU or for

offloading to GPU. For the former, results are given for a 1
4 degree global configuration while for the latter,

results are given for two different global configurations of the model - a low-resolution (one degree) test case

running on a single GPU, and a high-resolution ( 1
12 degree) test case that requires multiple GPUs running in

parallel with MPI.

4.2.1 Machine Configuration

For the low-resolution test case on GPU, a workstation equipped with a 32GB NVIDIA Volta 100 GPU was

used, hosted by an Intel Xeon W-2133 CPU. The scaling performance of NEMO across multiple GPUs in

the high resolution test case was investigated using the JUWELS Booster supercomputer, equipped with 936

GPU nodes each comprising of two AMD EPYC 7402 CPUs (24 cores per socket) and four, 40GB NVIDIA

Ampere 100 GPUs. The GPUs on JUWELS Booster are connected to each other via NVLink3, and the CPUs,

GPUs, and network adapter are connected via two PCIe Gen 4 switches with 16 PCIe lanes going to each

device. Both the GPU workstation and JUWELS Booster have the memory page size set to 4KB.

For benchmarking purposes, the standard compute nodes of the Hartree Centre’s Scafell Pike supercom-

puter were used in the low resolution test case, comprising two Intel Skylake CPUs (Xeon Gold E5-6142 v5,

16 cores each at 2.6GHz) and 192 GB RAM per node. These tests used version 2018.0.128 of the Intel

compiler. The MPI simulations on JUWELS Booster were benchmarked against the high memory nodes of

the JUWELS Cluster supercomputer, each consisting of two Intel Xeon Platinum 8168 CPUs (24 cores each),

and 192GB memory per node. These tests used version 2021.4.0 of the Intel compiler.

The OpenACC results presented here use version 22.7 of the NVIDIA HPC SDK and we set the environment

variable NV ACC POOL THRESHOLD to 75 in order to increase the size of the memory pool available to managed

memory (the default is 50(%)).

Comparing performance between CPU and GPU architectures can be done in various ways (socket to

socket or node to node) and including factors such as time to solution, hardware cost, and energy to solution.

In the context of large models with flat performance profiles, effective use of a GPU requires that the “whole”

model be run on it, avoiding the CPU (and associated data transfers) as much as possible. For simplicity

therefore, we choose to compare the time to solution on a socket-to-socket basis.

4.2.2 NEMO-OCE on GPU

The ORCA1 global configuration of NEMO-OCE was chosen as the basis of the low resolution test case,

since the horizontal resolution of 1 degree ensures that the model domain is small enough (362 × 332 grid

points in the horizontal, with 75 vertical levels) to run comfortably on a single GPU without exceeding the

available device memory. The CPU baseline for the ORCA1 configuration was achieved by running the model

with MPI enabled on a fully populated 16-core Intel Skylake socket on Scafell Pike. For the high resolution

test case, the ORCA12 configuration was used to provide a robust test of the scaling of NEMO-OCE across

multiple GPUs with MPI. ORCA12 has a horizontal resolution of 1
12 th of a degree, with a global domain size

of 4322 × 3606 grid points and 75 vertical levels. In both cases, simulations run for 100 timesteps unless

stated otherwise, and the performance is quantified in terms of average time per timestep, taking care to

exclude the time spent in the initialisation routines.

The output of diagnostics in NEMO-OCE is handled via XIOS, a library for managing I/O within climate

codes. However, XIOS (and therefore diagnostic I/O) was switched off in our simulations to allow us to

focus on the pure computational performance of the model. Acceleration of XIOS routines will be considered
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separately as part of future work. It should be noted that a scheme for the treatment of icebergs, ICB, is also

available within NEMO-OCE, but in its current form the ICB code is fundamentally serial in nature due to

the data structures it uses. This proved to be a major barrier to obtaining acceptable GPU performance and

thus for benchmarking purposes, we chose to disable the iceberg scheme for the present study. Similarly, the

code section dia hsb, which calculates diagnostics relating to conservation of ocean heat, salt and volume,

was also turned off in both the GPU and CPU-only simulations. This is because such diagnostics involve

reproducible global sum calculations which also proved difficult to offload efficiently to GPU.

4.2.3 Single GPU Performance (OpenACC and OpenMP)

We begin by considering the GPU performance of NEMO-OCE v4.0.2 in the absence of any MPI parallelism,

where the code is processed with PSyclone and OpenACC transformations are applied. Figure 3 shows the

evolution in the performance of the OpenACC version of NEMO ORCA1 running on a single NVIDIA V100

GPU. It reveals that performance has steadily improved over time in line with PSyclone development. Such

developments include support for Fortran derived types, the ability to replace implicit loops with explicit loops,

and the ability to hoist automatic arrays from the subroutine level to module level. When the timings are

normalised with respect to the CPU-only baseline, the current OpenACC-accelerated version of NEMO-OCE

is found to be 3.3× faster. (Note that this figure is for a version that has some additional, manual changes

to the source generated by PSyclone. See below for a discussion of these.)

Figure 3: Evolution of NEMO-OCE GPU performance (ORCA1 configuration) during PSyclone development,

shown in blue. Performance is shown in terms of average time per model timestep. For reference, the CPU

baseline result is shown in red.

At the beginning of this project, PSyclone (with the NEMO API) was only capable of targeting a GPU via

OpenACC and compiler support for OpenMP offload was itself not mature. PSyclone’s existing support for

OpenMP parallelisation on CPU has been extended to support the new directives offered by OpenMP 4.5 and

5.0. This has been combined with additional transformations that enable Fortran code that uses array syntax

to be converted into explicit loops. As a result, PSyclone is now also capable of processing NEMO code

so as to generate a version that targets GPUs via OpenMP offload instead of OpenACC. Figure 4 compares

the current performance obtained when using either OpenACC or OpenMP to offload to a V100 GPU. We

attribute the better performance of the OpenMP offload version to the fact that the NEMO source has to

be transformed into a simpler form in order to permit the addition of the OpenMP directives. We have not
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(yet) tried applying these additional transformations when adding OpenACC. In addition, there is still work to

do to bridge the gap between the performance obtained purely using PSyclone and that obtained when some

manual modifications are made to the code. The remaining manual modifications required for NEMO-OCE

are listed below:

• Hoisting of automatic arrays at the subroutine level to module scope. This is necessary to prevent

GPU page faulting associated with the creation/destruction of work arrays upon each entry/exit from a

subroutine. Since Figure 4 was produced, this capability has now been incorporated into the PSyclone

master branch, although a further, manual modification is necessary to allow PSyclone to deal with

arithmetic expressions in the declaration of array dimensions. Our tests reveal that such expressions

arise in the NEMO v4.2 source code due to the introduction of tiling in the lat-lon dimensions. See

PSyclone issue #1969;

• Inlining of array-valued functions for OpenACC performance. See PSyclone issue #924;

• Add support for intrinsic functions MAXVAL and MINVAL, which accept optional mask and dim arguments.

See PSyclone issue #840;

• Allow GPU compilation of scalar-valued functions when used inside an OpenACC KERNELS region.

This situation was identified during the recent testing of NEMO v4.2 source code with PSyclone. See

PSyclone issue #1985.

A further modification is required for NEMO+SI3, to introduce private/firstprivate clauses on the Ope-

nACC Loop directive (see PSyclone issue #423). To achieve acceptable multi-GPU performance with MPI,

some manual intervention is also necessary involving the use of GPUDirect; this is described in detail in

Section 4.2.4.

Figure 4: NEMO GPU performance (wall-clock time per simulation time step) with OpenACC and OpenMP.

Note that the CPU used for comparison here is not an HPC-class chip and thus is shown for illustrative

purposes only.

Figure 5 shows the breakdown of time spent in each code section for the ORCA1 configuration of NEMO-

OCE running for 50 timesteps on a single NVIDIA V100 GPU, compared to an equivalent simulation running

on a fully populated Skylake CPU socket of Scafell Pike. The figure shows that all but one of the code sections

is accelerated in the GPU version, the exception being the dynamics surface pressure gradient code section

dyn spg, whose GPU performance is on a par with that of the CPU-only version. In the ORCA configurations,

the surface pressure gradient term is solved using a time-splitting approach (ln dynspg ts=.true. in
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Figure 5: Plot showing the breakdown of time spent in each code section of NEMO-OCE for equivalent

ORCA1 simulations running on a single NVIDIA Volta100 GPU (blue), and a Skylake 16-core CPU socket

(orange).

namelist cfg), whereby the pressure gradient term is computed using an iterative sub-stepping loop to

ensure numerical stability. For ORCA1, there are 55 sub-steps in dyn spg per model timestep, with 4 calls to

the lateral boundary condition routines lbc lnk per sub-step. Our investigations suggest that the relatively

poor GPU performance of dyn spg compared to the CPU version is a consequence of the high OpenACC

kernel launch overhead arising from many small kernel launches within the sub-stepping loop.

In addition to the physical ocean model, PSyclone has also been used to process NEMO-OCE v4.0.2 with

the interactive sea-ice module SI3 enabled (henceforth referred to as NEMO+SI3) and the OpenACC GPU

performance has been analysed. Some sections of the SI3 code make use of a data packing approach, whereby

gridpoints containing sea-ice are identified and their values stored contiguously in 1-D work arrays. Compute is

then carried out on the work arrays before the results are unpacked, such that the sea-ice points in the original

2-D latitude-longitude arrays are updated with the new values. This method is used in the sea-ice ridging

routines (icedyn rdgrft), the thermodynamics routines (icethd) and icecor, which performs corrections

on sea-ice variables at the end of each time step. Our investigations revealed a sequential dependency in

the packing and unpacking routines which makes them inefficient on the GPU. Thus, prior to processing the

SI3 code with PSyclone, the relevant parts of the SI3 code were first refactored such that the compute is

instead performed on the original, multi-dimensional sea-ice arrays, with care being taken to mask out any

points that do not contain sea-ice to avoid floating point exceptions. This approach removes the need for the

costly packing/unpacking steps on the GPU, whilst also allowing PSyclone to exploit the inherent parallelism

in the loops over latitude and longitude. The results are shown in Figure 6. Taken in isolation from the

ocean component, the GPU performance of the refactored SI3 code on an NVIDIA V100 GPU is currently

1.57× faster than the original SI3 code running on CPU-only. This translates to a factor of 2.6 speed-up

for NEMO+SI3 overall compared to a fully-populated Skylake socket. Figure 6 also suggests that further

potential remains to improve the GPU performance of the SI3 code. For instance, some implicit data transfers
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remain within DO WHILE loops that occur within icethd and icedyn rdgrft which, when eliminated, will

help to improve the performance of these routines.

Figure 6: Plot showing the breakdown of time spent in each SI3 code section for equivalent ORCA1 simulations

running on a single NVIDIA V100 GPU (blue), and a Skylake 16-core CPU socket (orange).

4.2.4 Multi-GPU Performance with MPI

To investigate the scaling performance of NEMO-OCE across multiple GPUs, ORCA12 simulations were

carried out on the JUWELS Booster system using 4 MPI tasks per node, with each MPI task binding to a

unique NVIDIA A100 device to ensure all the GPU resources per node were fully utilised. A major consideration

for effective multi-GPU performance is the method by which the halo buffers resident in device memory are

handled during MPI exchanges. The default CUDA-aware MPI approach is to stage device-resident halo buffers

via the CPU. This is particularly important for node architectures such as those used on JUWELS Booster,

where data transfers between device and host would use the slower PCI-e bus, making MPI communications

costly. To prevent this, NVIDIA’s GPUDirect RDMA technology (Remote Direct Memory Access) provides

direct device-to-device communication via NVlink for inter-node GPU communications, and is available via

the CUDA ToolKit. This eliminates the system CPUs and the required buffer copies of data via the system

memory. However, a caveat to this is that GPUDirect is not yet compatible with managed memory. The

current version of PSyclone relies on NVIDIA’s managed memory technology to handle data transfers, and

since the halo buffers are stored as allocatable arrays in NEMO, the device-resident halo buffers would still

get staged via the CPU. This results in the system memory signalling a page fault, and without further

intervention the multi-GPU performance of NEMO is compromised by the slow data transfer associated with

each MPI communication. To work around this problem, our solution is to switch from using allocatable

arrays to static arrays for the halo buffers in NEMO-OCE. In doing so, the halo buffers are no longer handled

by managed memory, and GPUDirect can be used for direct device-to-device MPI communications. Although

this refactoring is not yet handled by PSyclone, it is intended that this capability will be included as part of

a future release.

Figure 7 shows results of the ORCA12 GPU+MPI performance for NEMO v4.0.2, showing the benefits of

GPUDirect when switching to static arrays for the halo buffers. Our investigations reveal that one further code

16



ESiWACE2 Deliverable D2.4

change is also required to prevent page faulting within the north-fold boundary condition routines lbc nfd.

Such page faults occur as a result of work arrays being allocated at the subroutine level, which are then

implicitly destroyed upon exit from the subroutine, meaning the arrays do not persist in device memory for

the lifetime of the simulation. This would typically be addressed using PSyclone by applying a transformation

to hoist the arrays in question so they have module scope; however this particular situation is complicated by

the fact that the allocation of the work arrays depends on scalar variables which do not exist at the module

level. Instead, our approach is to manually hoist the work arrays to the module level whilst also declaring

them as static arrays, whose size is specified explicitly at compile time. Using this method, we are able to

achieve performance of around 2.2 simulated years per day on 100 A100 GPUs of JUWELS Booster (blue line

in Figure 7). This is approximately 2.2× faster than the CPU-only version running on 100 Skylake sockets

of JUWELS Cluster. At higher GPU counts the results plateau, suggesting that the GPUs start to run out of

work and MPI communications dominate.

Figure 7: Scaling plot showing the multi-GPU OpenACC performance of NEMO v4.0.2 (ORCA12 configura-

tion) on the JUWELS Booster machine, expressed in terms of Simulated Years Per Day. The CPU baseline

result is generated using the CPU nodes of JUWELS Cluster.

To provide additional insight into the GPU+MPI performance, it is informative to consider the breakdown

of wallclock time as a function of individual NEMO code sections. Figure 8 shows the time spent in each code

section for the ORCA12 configuration of NEMO-OCE running for 100 timesteps on 80 GPUs of JUWELS

Booster, compared to an equivalent simulation running on 80 fully populated Skylake CPU sockets of JUWELS

Cluster. The results are qualitatively similar to the single GPU version, in that the vast majority of the code

sections are accelerated except for dyn spg. However with MPI enabled, the GPU performance of the dyn spg

code section is relatively worse, around three times slower than the CPU baseline. This can be attributed to

the fact that within the sub-stepping loop of dyn spg, the fragmentation of OpenACC KERNELS regions is

even greater in the GPU+MPI version to allow for calls to the MPI routines. This results in a further increase

in the kernel launch overhead.

The same issue also affects the GPU+MPI performance of the icedyn rhg and icedyn adv code sections

in NEMO+SI3 (see Figure 9). Like dyn spg, these routines also make use of iterative loops resulting in many

calls to the lbc lnk routines (485 calls per timestep from icedyn rhg and 87 calls per timestep from

icedyn adv for ORCA12). We suggest that one way to improve the GPU performance of such code sections
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is to replace calls to the north-fold boundary condition routines lbc nfd and lbc nfd nogather with directly

embedded code, so that as much code as possible can be included within a single OpenACC KERNELS block.

Scheduling kernels to launch asynchronously, through use of the async clause with the KERNELS construct,

can also help to hide the cost of the launch overhead within iterative loops and minimise the time when the

GPU is idle. Third, making use of the new support in NEMO for halo depths greater than one would also

improve performance by reducing the number of required calls to the lbc lnk routines.

Figure 8: Plot showing the breakdown of time spent in each code section of NEMO-OCE for equivalent

ORCA12 simulations running for 100 timesteps on 80 GPUs of JUWELS Booster, and 80 CPU sockets of

JUWELS Cluster.

4.2.5 OpenMP-CPU Performance

In addition to adding OpenMP-offload directives so as to target GPU, PSyclone can also be used to add

OpenMP directives to parallelise loops on CPU. As described in the previous section, this has required further

development of PSyclone within this project because of the need to transform NEMO’s extensive use of

Fortran array notation into explicit loops.

For this work we have used an ORCA025 ( 14 degree) global configuration of NEMO incorporating both

Ocean and Sea Ice components, supplied by ECMWF. This configuration has a global domain size of 1442×
1207 grid points and 75 vertical levels. Since ECMWF have an operational requirement to be able to run

NEMO in mixed (OpenMP+MPI) mode, they currently have a manually-implemented version which they

maintain themselves. We are therefore able to compare the performance of the PSyclone-generated code with

this version. For this comparison we run NEMO on 32 nodes of Scafell Pike with four MPI processes per node

and eight OpenMP threads per process. (This was chosen as being representative of ECMWF’s operational

setup.) The results are shown in Figure 10.

The turquoise bars show the performance obtained with a version of the transformation script that simply

attempts to parallelise the outermost loop of any loop nest it encounters. (If this loop proves not to be
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Figure 9: Plot showing the breakdown of time spent in each SI3 code section of NEMO+SI3 for equivalent

ORCA12 simulations running for 100 timesteps on 80 GPUs of JUWELS Booster, and 80 CPU sockets of

JUWELS Cluster.

parallelisable, then the next, inner loop is considered and so on.) This shows that about two thirds of the

subroutines run at the same speed or faster (negative time difference) in the PSyclone-processed version, as

compared to the ECMWF version. However, we can see that certain routines, particularly those dealing with

the sea ice, are taking a lot longer in the PSyclone version.

An initial investigation of this issue has revealed that many of the ice routines contain nested loops where

the outer loop is over ice categories (or similar) and has a very low trip count (∼ 5). Since the transformation

was parallelising this outermost loop, the resulting code was very inefficient. We have refined the optimisation

script so that it now refuses to parallelise loops over ice categories or ice/snow layers which then automatically

results in the inner loop over ice points being parallelised instead. The performance obtained with this approach

is shown by the blue-grey bars in Figure 10. Although the ice routines are still slightly slower in the PSyclone

version, this simple change to the transformation script has made a massive improvement. The wall-clock

time for a complete model time-step now stands at 0.46s in the PSyclone version which is very close to the

0.41s obtained with the original ECMWF version.

We are therefore at the point where PSyclone has removed the need for ECMWF to maintain a separate,

manual port of the NEMO source code containing the OpenMP directives. It is also likely that the PSyclone

optimisation script can be further tuned to obtain “better” performance than the original ECMWF version in

the near future.

4.3 dusk/dawn and ICON

The complete dry dycore, i.e. the model dynamics except for the tracer advection, of the ICON model

was ported to dusk. This section reports on the performance of this ported dycore. For all benchmarks,

an experiment of moderate resolution of roughly 40’000 columns at 65 vertical levels was used. Since the

dusk/dawn tool-chain does not support MPI communications, no high resolution experiments that do not fit
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Figure 10: Plot comparing the performance of the ECMWF-manual and PSyclone-generated MPI+OpenMP

versions of NEMO running on 32 nodes of Scafell Pike.

on a single GPU were run.

4.3.1 Machine Configuration

All tests were performed on the tsa super computer of MeteoSwiss, which features 18 GPU compute nodes

equipped with 8 NVIDIA V100 GPUs each. However, as mentioned before, dusk/dawn does not support MPI
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Figure 11: Performance of dawn vs OpenACC for the diffusion submodule.

Figure 12: Performance of dawn vs OpenACC for the velocity advection submodule.

exchanges, hence every run was performed on a single node using a single GPU only. The parts of the ICON

model which were not ported to dusk/dawn and remained in Fortran/OpenACC (e.g. Physics) as well as the

OpenACC reference were compiled using the NVIDIA compiler version 21.2 and the CUDA code emitted by

the dusk/dawn toolchain was compiled using CUDA 11.2.

4.3.2 Stencil by Stencil

From a computational perspective, the dycore of icon can be seen as collection of loop nests, iterating over

the complete, or parts of, the computational domain. Such a loop nest is called a stencil in this text. We

refrained from associating descrptive names with these loop nests, and simply numbered them consecutively

for each module. Figures 11 to 14 show the performance of each dusk/dawn stencil side by side to its

OpenACC reference. As can be seen, dawn outperforms the OpenACC references almost consistently. In fact,

the average speedup over all stencils is roughly 13.5%.

21



ESiWACE2 Deliverable D2.4

Figure 13: Performance of dawn vs OpenACC for the stencils being called in the solve nonhydro submodule.
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4.3.3 Fusing

Translating the dycore stencil by stencil is very convenient for fine grained verification (see also Deliverable

D2.2). However, this mode of operation does not yield the optimal performance. Stencils become quite small

this way, and GPUs may not be properly saturated. Also, the compiler tool-chain has less code to reason

about at any time, and optimisations may be missed by feeding it small isolated stencils. Thus, in a second

step, the stencils were merged as much as possible, only breaking out back to the Fortran driver any time

there is a halo exchange. In this configuration, the modules are translated into quite few stencil calls:

num sten module name

5 diffusion

3 velocity advection

5 solve nonhydro

In this mode of operation, the velocity advection module is completely replaced by DSL function calls (in

other words, the Fortran velocity advection module wouldn’t even need to be compiled for correct operation).

Thus, the timing of the velocity module is not indicated separately in the following table, but is part of the

solve nonhydro module (typically taking about 7% of the total solve nonhydro runtime).

module name OpenACC DSL speed-up

solve nonhydro 0.00724s 0.00488s 1.48x

diffusion 0.00148s 0.00100s 1.48x

This shows that the dusk/dawn DSL translation shows significant speedups over a very wide array of

stencils, exhibiting a wide array of computational patterns (see also Deliverables D2.1, D2.2).

4.3.4 Performance of dusk/dawn compared to GT4Py

In Deliverables D2.1 and D2.2 it was explained that dusk and dawn is going to be replaced by a new tool chain

called GT4Py. A natural question to ask is if the performance of dusk/dawn is matched by this new GT4Py

tool chain. This can be answered in the affirmative. Comprehensive performance comparisons have been

done on a stencil by stencil basis, showing that the dusk/dawn performance is closely matched by GT4Py.

The timings of all 100 stencils will not be reproduced here, however, consider Figure 15 for a comparative

timing of the diffusion submodule. The diffusion submodule was chosen because it exhibits almost any pattern

present in the complete dycore, and hence represents a representative sample of stencils.

It is important to note that this does not indicate that the performance will also be equivalent for the fused

situation. At the time of writing, the fusing of complete modules has not been performed. The GT4Py tool

chain follows a functional programming model, potentially enabling different/more aggressive optimisations

given larger stencils to process.

4.3.5 Inlining

This excursion shall serve to give the reader an understanding of what an optimisation pass in the DSL

tool-chain might look like, and how it differs from optimisations conventional host compilers may perform. In

conventional compilers “inlining” refers to the process of incorporating the function body of small functions

into the call site. This has the benefit of foregoing the effort to set up a stack frame at the cost of (potentially)

consuming more live registers. Modern compilers feature involved heuristics to decide which functions to inline.

Some programming languages also allow the programmer to advise the compiler to inline a function using the

inline keyword.

Exploiting domain knowledge, a DSL tool-chain for Finite Volume Computations on a triangular mesh,

be it dusk/dawn or GT4Py, can perform another form of inlining than just discussed; stencil inlining. Since
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Figure 15: Performance of dawn vs. GT4Py for the diffusion submodule. As can be seen, the performance is

very closely matched by the two tool-chains. The diffusion submodule was chosen because it featueres a very

wide array of different computational patterns (close to every computational aspect of the complete dycore

is reflected in diffusion).

the location (Cell, Edge, Vertex) where a computation is performed is a first class member of the DSLs type

system, subsequent reductions can be combined into one nested reduction. See listing in Figure 16.

@stencil

def seq(f_e: Field[Edge],

f_c: Field[Cell]):

tmp_v: Field[Edge]

with domain.upward:

tmp_v = sum_over(Vertex>Edge, f_e)

f_c = sum_over(Cell>Vertex, tmp_v)

@stencil

def inl(f_e: Field[Edge],

f_c: Field[Cell]):

with domain.upward:

f_c = sum_over(Cell>Vertex,

sum_over(Vertex>Edge, f_e))

Figure 16: The stencil inlining pass demonstrated using dusk notation. The compiler tool-chain understands

that the first reduction is onto the edges, and the second reduction reduces from edges onto cells. It can thus

decide to inline the first reduction into the second.

Using the understanding about location types, the DSL tool-chain can turn two subsequent loops into

a single, nested loop. This has two advantages: The memory to hold the intermediary result form the first

reduction can be eliminated, and a “trip” to global memory (i.e. to store the intermediary result in said

memory location, then read from it again in the second reduction) can be saved. This is an attractive

optimisation on GPUs because of their steep memory hierarchy. Reading and storing values in global memory

can be very expensive.

Unfortunately, this stencil inlining optimisation is not without its problems. Consider the listing in Figure 16

again. Count the number of times the body of the sum_over expressions has to be executed in both situations.

In the sequential case that is #vertex*|Vertex>Edge| + #cells*|Cell>Vertex| = #vertex*6 + #cells*3

and in the inlined case #cells*|Cell > Vertex > Edge| = #cells*18. Now, in a hexagonal triangle

mesh (or nearly hexagonal triangle meshes like icosahedral triangle meshes), the ratio between vertices, cells

and edges is 1 : 2 : 3. Hence, the number of iterations for the situation in our example is 24 : 36 = 2 : 3.

This means that the speedup of the inlining optimisation needs be at least 1.33x to “pay off”. Figure 17

illustrates this for all chains of length two and a test mesh of roughly 20’000 columns. Figure 18 shows the

actual run times for this mesh for inlined and sequential reductions.
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Figure 17: Number of iterations taken in the sum_over expression(s) for all chains of length 3, for either two

reductions in succession (seq) or the equivalent nested (inl) version. See also listing in Figure 16.

Figure 18: Runtime for reductions over all chains of length 3, for either two reductions in succession (seq)

or the equivalent nested (inl) version. See also listing in Figure 16. As can be seen the transformation to a

nested reduciton is only beneficial in some cases. In other cases, the performance is even defective after the

transformation (e.g. V>C>E).

As can be seen from Figure 18 the impact of the inlining transformation is not always enough to compensate

for the penalty of additional iterations. Potentially, Figure 17 could be used to inform the compiler when

to execute the transformation. However, whether or not the transformation is beneficial is also affected by

other factors, like caching behavior or the arithmetic intensity of the expression contained in the body of the

sum_over concept. Hence, an optimisation that is strictly beneficial, or at least devoid from any performance

defects, would be strongly preferable. In the following, two such strategies to improve upon the “simple”

stencil inlining are presented.

Compressed Inlining

To understand how the simple inlining in previous elaborations can be improved further, the first thing to

observe is that some locations in a chain may be visited more than once. This is illustrated for the familiar

example Cell > Vertex > Edge in Figure 19. Now, if the outer reduction is a linear function of the inner

reduction, we can just multiply its contribution by the number of times it is visited, instead of visiting more

than once. To realise this multiplication, dusk offers the weights concept. This is illustrated in listing of

Figure 20. The results for the same test mesh as used previously are reported in Figure 21.
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Figure 19: Multiplicity in the Cell > Vertex > Edge neighbor chain illustrated: the edges closest to the

origin cell (origin indicated by red dot, edges closest to origin indicated by blue dots with red boundary) are

visited twice.

@stencil

def seq(f_e: Field[Edge],

f_c: Field[Cell]):

tmp_v: Field[Edge]

with domain.upward:

tmp_v = sum_over(Vertex>Edge, f_e)

f_c = sum_over(Cell>Vertex, tmp_v)

@stencil

def inl(f_e: Field[Edge],

f_c: Field[Cell]):

with domain.upward:

f_c = sum_over(Cell>Vertex>Edge, f_e,

weights=[2,2,2,1,1,1,1,1,1,1,1,1,1,1,1])

Figure 20: The compressed stencil inlining pass demonstrated using dusk notation. This time around, in-

stead of nesting two reductions only one reduction is performed, using the concatenated neighbor chain

Cell > Vertex > Edge. A purpose built weights vector accounts for the multiplicity not present in the

concatenated chain.

Figure 21: Runtime for reductions over all chains of length 3, for either two reductions in succession (seq)

or the equivalent nested (inl) version, however, this time around the nested reduction uses the compressed

version of the inlining optimisation as described in the paragraph “Compressed Inlining”. As can be seen the

optimisation is now almost strictly beneficial, with no defective cases.

While the results in Figure 21 are promising, the requirement with regards to linearity makes the optimi-

sation not applicable in general. This would entail that either the user indicates whether linearity is given to

the compiler, for example by a keyword, or the compiler performs an analysis pass the decide whether linearity
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is given. The first option makes for poor user experience, and the other option introduces complexity into the

compiler. Furthermore, linearity is not a natural requirement in this situation, making this pass potentially

only available to a small subset of reductions in a given code base. In the next section yet another version of

inlining is presented that again compresses the neighbor table but this time works in general.

Compressed and Unrolled Inlining

The basic idea of this optimisation of the simple inlining pass is, for a given nested reduction A > B > C,
where A,B, C ∈ {Edge,Cell,Vertex}: unroll the reduction completely, leave the neighbor list representing

A > B but take compress A > B > C to a “direct” neighbor list A > C containing unique elements only.

This avoids issuing multiple loads to read the same address as well as the pointer (index) chasing by indexing

from the “outer” neighbor list into the “inner” one. It is hoped that this will become clearer using a worked

example.

We will use a more involved stencil than previously, to highlight that this optimisation works for general

stencils. In the listing below, the nesting of two subsequent reductions has already been performed. As

described, in the following we will keep the Cell > Edge list, but we will compress Cell > Edge > Cell into

a special purpose Cell > Cell list tailor made for this nested reduction.

@stencil

def cec_inl(kh_smag_e: Field[Edge, K], e_hat: Field[Edge],

theta_v: Field[Cell, K], z_temp: Field[Cell, K]):

with domain.upward.across[nudging:halo]:

z_temp = sum_over(Cell > Edge, kh_smag_e*e_hat*sum_over(Edge>Cell, theta_v))

Compiling the above, the body of the CUDA kernel emitted could look like

for(int nbhIter0 = 0; nbhIter0 < C_E_SIZE; nbhIter0++) {

int nbhIdx0 = ceTable[pidx * C_E_SIZE + nbhIter0];

::dawn::float_type lhs_7 = (::dawn::float_type)0;

for(int nbhIter1 = 0; nbhIter1 < E_C_SIZE; nbhIter1++) {

int nbhIdx1 = ecTable[nbhIdx0 * E_C_SIZE + nbhIter1];

lhs_7 += theta_v[(kIter+0) * CellStride + nbhIdx1];

}

lhs_23 += ((kh_smag_e[(kIter+0) * EdgeStride + nbhIdx0] * e_hat[nbhIdx0]) * lhs_7);

}

z_temp[(kIter+0) * CellStride + pidx] = lhs_23;

Note the nested for loop structure reflecting the nested sum_over expressions from the dusk listing. Now,

in a first step, the inner loop is unrolled.

for(int nbhIter0 = 0; nbhIter0 < C_E_SIZE; nbhIter0++) {

int nbhIdx0 = ceTable[pidx * C_E_SIZE + nbhIter0];

double inner = theta_v[(kIter+0) * CellStride + ecTable[nbhIdx0*E_C_SIZE+0]]

+ theta_v[(kIter+0) * CellStride + ecTable[nbhIdx0*E_C_SIZE+1]];

lhs_23 += ((kh_smag_e[(kIter+0) * EdgeStride + nbhIdx0] * e_hat[nbhIdx0]) * inner);

}

z_temp[(kIter+0) * CellStride + pidx] = lhs_23;

Note the index/pointer chasing here. nbhIdx0 is loaded from ceTable and consumed to look up an index

from ecTable. The caching behavior of such an operation is generally bad. We now go one step further and

also unroll the outer reduction
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int nbhIdx0 = ceTable[pidx * C_E_SIZE + 0];

double inner0 = theta_v[(kIter+0) * CellStride + ecTable[nbhIdx0*E_C_SIZE+0]]

+ theta_v[(kIter+0) * CellStride + ecTable[nbhIdx0*E_C_SIZE+1]];

lhs_23 += ((kh_smag_e[(kIter+0) * EdgeStride + nbhIdx0] * ehat[nbhIdx0]) * inner0);

int nbhIdx1 = ceTable[pidx * C_E_SIZE + 1];

double inner1 = theta_v[(kIter+0) * CellStride + ecTable[nbhIdx1*E_C_SIZE+0]]

+ theta_v[(kIter+0) * CellStride + ecTable[nbhIdx1*E_C_SIZE+1]];

lhs_23 += ((kh_smag_e[(kIter+0) * EdgeStride + nbhIdx1] * ehat[nbhIdx1]) * inner1);

int nbhIdx2 = ceTable[pidx * C_E_SIZE + 2];

double inner2 = theta_v[(kIter+0) * CellStride + ecTable[nbhIdx2*E_C_SIZE+0]]

+ theta_v[(kIter+0) * CellStride + ecTable[nbhIdx2*E_C_SIZE+1]];

lhs_23 += ((kh_smag_e[(kIter+0) * EdgeStride + nbhIdx0] * ehat[nbhIdx0]) * inner2);

z_temp[(kIter+0) * CellStride + pidx] = lhs_23;

So far, no optimisation was performed. The nested loop structure was just unrolled completely. Since

the loop bounds are known at compile time, the CUDA host compiler would do this transformation when

translating to GPU assembly instructions (SASS) either way. The first part of the actual optimisation is now

to purpose build a special neighbor table ccTable.

int nbhIdx0 = ceTable[pidx * C_E_SIZE + 0];

double inner0 = theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+0]]

+ theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+1]];

lhs_23 += ((kh_smag_e[(kIter+0) * EdgeStride + nbhIdx0] * ehat[nbhIdx0]) * inner0);

int nbhIdx1 = ceTable[pidx * C_E_SIZE + 1];

double inner1 = theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+2]]

+ theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+3]];

lhs_23 += ((kh_smag_e[(kIter+0) * EdgeStride + nbhIdx1] * ehat[nbhIdx1]) * inner1);

int nbhIdx2 = ceTable[pidx * C_E_SIZE + 2];

double inner2 = theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+4]]

+ theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+5]];

lhs_23 += ((kh_smag_e[(kIter+0) * EdgeStride + nbhIdx0] * ehat[nbhIdx0]) * inner2);

z_temp[(kIter+0) * CellStride + pidx] = lhs_23;

Note that the index/pointer chasing is now gone, the ccTable can be addressed directly using only the thread

index pidx. Note also that the table reflect the first part of the chain (C⌉↕↕ > E⌈}⌉) is still present because
it is required to address the field located on edges. Now, the final part of the optimisation at hand is to

exploit that ccTable only contains 4 different values. This is the compression step indicated in the title of

this subsection.

int nbhIdx0 = ceTable[pidx * C_E_SIZE + 0];

double inner0 = theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+0]]

+ theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+1]];

lhs_23 += ((kh_smag_e[(kIter+0) * EdgeStride + nbhIdx0] * ehat[nbhIdx0]) * inner0);

int nbhIdx1 = ceTable[pidx * C_E_SIZE + 1];
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double inner1 = theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+0]]

+ theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+2]];

lhs_23 += ((kh_smag_e[(kIter+0) * EdgeStride + nbhIdx1] * ehat[nbhIdx1]) * inner1);

int nbhIdx2 = ceTable[pidx * C_E_SIZE + 2];

double inner2 = theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+0]]

+ theta_v[(kIter+0) * CellStride + ccTable[pidx*C_C_SIZE+3]];

lhs_23 += ((kh_smag_e[(kIter+0) * EdgeStride + nbhIdx0] * ehat[nbhIdx0]) * inner2);

z_temp[(kIter + 0) * CellStride + pidx] = lhs_23;

Figure 22 shows the runtimes of a select number of reductions of length three, i.e. reductions of the form

A > B > A (starting location equals end location). Again, the optimisation is always strictly beneficial, with

no defective cases. Compared to the optimisation in the paragraph “Compressed Inlining” however, this time

around the optimisation is applicable in general.

Figure 22: Runtime for reductions over all chains of length 3 where the starting location is equal to the end

location, for either two reductions in succession (seq) or the equivalent nested (inl) version, however, this time

around the nested reduction uses the compressed and unrolled version of the inlining optimisation as described

in the paragraph “Compressed and Unrolled Inlining”. As can be seen the optimisation is now almost strictly

beneficial, with no defective cases.

Summary

Reduction inlining presents a challenging situation where avoiding memory traffic can be traded for additional

hot loop iterations, where the size of the trade off is dependent on the specific sequence of reductions being

merged. Three optimisations with regards to the inlining of reductions were presented. A simple version that

can be readily implemented into any DSL tool chain, and two more involved versions. The compressed version

is not applicable in general, and hence not recommended to be implemented as a pass in a DSL compiler.

The compressed and unrolled version is, however setting up tailor made neighbor lists on a per stencil basis is

extremely challenging. It is still the most promising candidate of the inlining optimisations presented, though.
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4.4 IFS-FVM with GT4Py

Due to effort constraints there was little time to do any performance and/or performance portability analysis

of the newly created GT4Py version of the dynamical core of FVM. However, once ported to GT4Py the

DSL does support a number of user-selectable backends for CPU and GPU hardware (which is one of the big

advantages of such a system).

Figure 23 presents first results using these different backends. The performance results are each for a

single node and are snapshots of the current state of development of the DSL and dynamical core with further

optimisation pending. Results are shown for two CPU backends and three different GPU backends (please

see the figure caption for details). All runs were performed on Piz Daint which contains Intel Xeon E5-2690

v3 CPUs running at 2.60GHz with 12 cores and 64GB of RAM and NVIDIA Tesla P100 GPUs with 16GB of

memory. All backends validate for the baroclinic wave instability simulation shown in Fig. 24 (for convenience

of the reader this figure has been duplicated here from D2.2). Distributed multi-node execution is already

possible and can be used to achieve high resolution with the model but was not investigated here.

It can be seen that at this stage of development the CPU backends give similar performance even with

quite a dramatic change in data layout, with k-first slightly winning over i-first. The GPU backends all perform

nearly identically and the GPU performance significantly outperform the CPU performance - presumably due

to their greater memory bandwidth.

Figure 23: Single-node performance measures for the FVM dynamical core using various backends of GT4Py.

Here, the model was run for the baroclinic wave instability test on the hybrid partition of the Piz Daint

supercomputer at CSCS. Tested backends are from GridTools (Afanasyev et al., 2021) and DaCe (Ben-Nun

et al., 2022).
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Figure 24: Pressure on lowest level (hPa) at day 10 of the baroclinic wave instability test. Shown are solutions

for the FVM Fortran code (top panel), the spectral-transform IFS (middle panel) and the FVM GT4Py code

(bottom panel). Note that a slightly different color scheme and labelling is used in the bottom panel, but the

actual contour level values are identical in all three panels.
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7 How this deliverable contributes to the European strategies for

HPC

Domain-specific languages (DSLs) are a promising approach for the development of maintainable performance-

portable codes for exascale machines. Demonstrating the ability of DSLs to be used in the key European codes

targeted in this deliverable - LFRic, NEMO, ICON and IFS - presents an opportunity to the code developers

to adopt the DSL approach in order to be able to run their models efficiently on exascale machines. For

example, NEMO is not currently able to run on GPUs, however, GPUs make up the majority of the compute

performance in most existing pre-exascale machines and planned exascale machines.

8 Sustainability

This deliverable is primarily concerned with the computational performance obtained by using the PSyclone

and dawn DSLs2 in the key European Weather and Climate models: NEMO, LFRic, ICON and IFS. Related

deliverables discuss the extension of the DSLs to support these models (D2.1) and the practical issues around

use of the DSLs in production models (D2.2).

The developments in this deliverable have benefited from close links with the now-completed ESCAPE-2

project, where dawn and GridTools were developed with IFS and ICON in mind. Further work on GT4Py

continues in the EXCLAIM project which is strongly influenced by the dusk and dawn developments in

ESiWACE2, as mentioned in Deliverable D2.1.

There are also strong links to the Met Office Next Generation Modelling Systems (NGMS) programme

which is supporting PSyclone as both part of the developing LFRic atmosphere model and for application to a

number of marine-systems models including NEMO, NEMOVAR, MEDUSA and Wavewatch III. PSyclone will

also be evaluated for use in the Met Office’s NAME dispersion model, which is used operationally for events

such as nuclear accidents and volcanic eruptions as well as forecasts of air quality. Work will also continue in

the recently funded ESiWACE3 project where CMCC and BSC will evaluate PSyclone for use in their NEMO

configurations and ECMWF will continue to develop IFS-FVM in GT4Py, running on Exascale resources.

GPU support for NEMO is also maturing and it is hoped that this will become the accepted - and

supported - way to run NEMO on GPUs. To help with wider adoption, progress is regularly communicated

to the NEMO HPC and Systems teams. Colleagues at the UK National Oceanography Centre (NOC) -

who are members of the NEMO Systems team - have demonstrated a simple way to integrate PSyclone

into the current NEMO build system. Putting this integration onto NEMO trunk is now in progress (

see https://forge.nemo-ocean.eu/nemo/nemo/-/issues/140). Work in this area is set to continue in

ESiWACE3 with both CMCC and BSC committing to evaluate the PSyclone-processed NEMO code on GPU.

9 Dissemination, Engagement and Uptake of Results

9.1 Target audience

As indicated in the Description of the Action, the audience for this deliverable is:

In order to ensure the uptake of the deliverable by the targeted audience, the document will be distributed to

all members of the consortium and Commission services.

9.2 Record of dissemination/engagement activities linked to this deliverable

Please see Table 10 and Table 11.

2As well as the GT4Py DSL that is closely related to dawn.
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X The general public (PU)

The project partners, including the Commission services (PP)

A group specified by the consortium, including the Commission services (RE)

This reports is confidential, only for members of the consortium, including the Commission services

(CO)

9.3 Publications in preparation OR submitted

Please see Table 12.

9.4 Intellectual property rights resulting from this deliverable

dusk/dawn, PSyclone and fparser2 are open-source projects hosted on github with a BSD 3-clause license.

The models evaluated in this project each have their own licences, which can be obtained from the model

owners.
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