


DEVELOPING CFD APPLICATIONS IN A WORLD FILLED WITH GPUS
WHAT YOU NEED TO KNOW
MATT BETTENCOURT, DEVTECH



HISTORICAL PERSPECTIVE
WHY YOU SHOULD CARE ABOUT GPUS



A BRIEF HISTORY OF SUPERCOMPUTING
Three main generations of supercomputing

YOUR GRANDPARENTS YOUR PARENTS

YOUR GENERATION
By Morn - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=32719361
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A TREND THROUGH HISTORY
Roofline model as a way to understand performance

▪ In the origins of computing memory access was free, all the cost was in FLOPS

▪ Today, FLOPS are (mostly) free once you have the data on the CPU/GPU

▪ Roofline models are hardware specific plots of potential and achieved performance

▪ Peak performance is plotted against “arithmetic intensity”

▪ Arithmetic intensity is the number of floating point operations per byte loaded

▪ 𝑦 = 𝑦 + 10 ∗ 𝑥 + 𝑥 ∗ 𝑥 + 0.5 ∗ 𝑥 ∗ 𝑥 ∗ 𝑥 has two loads of 8 bytes and 8 operations, intensity of 0.5

▪ This would have a peak 400 GFLOP in the graph below

▪ In the olden days, an arithmetic intensity of 1, or 
less, would give you peak performance

▪ On an A100, you need 10-50 for peak 
performance

▪ How does one increase arithmetic intensity?

▪ This is a function of the algorithm

▪ Matrix-Matrix-Multiply (theoretical)

▪ Operations are 2N3 memory accesses are 16N2 

▪ Intensity as high as 1/8th the matrix dimension

▪ Low order finite difference have compute 
intensities around 0.1 to 1.0

▪ High order methods improve on this greatly

▪ Algorithms will have to change to be efficient on 
modern hardware
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WHAT HAS HISTORY TAUGHT US

▪ Radical shifts in hardware will occur in your professional lifetime

▪ I’ve developed software for all three generations listed here

▪ Complexity will increase

▪ Every new generation will have to deal with the challenges of the previous generation

▪ Tools, languages and libraries will help hide the complexity

▪ What we learn today will guide the way we solve things tomorrow

▪ As computers get faster, the speed of light doesn’t change

▪ Memory speed and latency become more and more important

▪ Hardware folks will try to hide this latency by more cache and other tricks

▪ One will have to reuse the data once it has been brought to the computing engine

▪ Algorithms will have to adjust to make the most from the new hardware

▪ The “fastest” algorithm isn’t always the fastest



BUT WHAT IS A GPU



SO, WHAT MAKES A GPU DIFFERENT?

GPUs are about concurrency

Many independent tasks operating at the same time

Many – 10s of thousands



INTEGRATION OF GPUS INTO SYSTEMS

SUMMIT COMPUTE NODE

2 Power9 IBM CPUs

6 NVIDIA V100

NVLINK Interconnect

• Systems have CPUs
• 10% of the FLOPS

• Large system memory

• GPUs – 90% of the FLOPS
• Small(er) memory – 80G

• Low(er) bandwidth to system 
memory – 900GB/s

• Each thread is slower than CPU



A LOOK INSIDE THE GPU
This is similar to what is in Leonardo

▪ What is inside of a GPU?

▪ Clock – 1410 MHz

▪ Processors

▪ 108 SM – Streaming Multiprocessors

▪ Basic unit of computing inside of a GPU

▪ 32 FP64 computational threads

▪ Can perform 32 FMA/cycle

▪ Memory, different types of memory 

▪ HBW memory (16-80G), L2 Cache 40MB, L1/shared 164K/SM, Texture 

▪ Each thread can request 1 double per clock cycle

▪ Schedulers – the unsung hero

FLOPS = 108 SMs*32 Threads*1.41GHz*2 = 9.7TFLOP

Mem = 108 SMs*32 Threads*1.41GHz *8B = 78TB/s

OK, that’s what it can request, but

1.6TB/s is what it can deliver 

GPUs - 5x FLOPS and 10x memory bandwidth CPUs 



GPUS, WHAT ARE THEY GOOD FOR?



WITH GPUS, WHY DO WE HAVE CPUS

With the performance of GPUs, why do we still have CPUs?

GPUs have a much slower clock speed than CPUs

Streaming Multiprocessor (SM) are well, streaming

Designed for SIMT

GPUs are most efficient at a particular type of work



13

TAKE THIS CAT IMAGE

Let’s improve this image
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1. Overlay with a grid

FIRST WE BREAK IT UP ACROSS BLOCKS AND SEND TO SM
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1. Overlay with a grid

2. Operate on blocks within the grid

Blocks execute independently

GPU is oversubscribed with blocks

EVERY PART OF THE IMAGE GETS A BUNCH OF THREADS
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1. Overlay with a grid

3. Many threads work 
together in each block 
for local data sharing

2. Operate on blocks within the grid

Blocks execute independently

GPU is oversubscribed with blocks

EACH THREAD MODIFIES ITS PORTION



THAT DATA IS WRITTEN BACK TO MEMORY

Now your cat image is a dog

or

Your CFD variables are updated



NOW THAT YOU CARE ABOUT GPUS
HOW TO USE THEM



YOU HAVE OPTIONS WHEN PROGRAMMING FOR A GPU

▪When GPUs first came out you had Cuda and everything was manual

▪Today – you still have Cuda and you can still do everything yourself

▪However, today you have lots of options

1. You can use language standard features

2. You can use directive based languages

3. You can use frameworks that abstract the hardware away

4. You can use libraries

5. You can write native Cuda

▪Starting with a new code versus an existing code can really affect what path you take



GPU PROGRAMMING MODELS
A brief history

CUDA  1.0

PGI 12.6

PGI 2009

1.0 Specification

2007 2013 2016 2019 2022 Future2010

CUDA C/C++

CUDA Fortran

OpenACC

OpenMP

StdPar

NVIDIA Software Specifications

NVHPC 20.11

4.0 Specification (offload)

NVHPC 20.11

Fortran 2008 Specification C++17 Specification



NVIDIA Compiler and Language Support

std::transform(par, x, x+n, y, y,
[=](float x, float y){ return y + a*x; 

}
);

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

import legate.numpy as np
…
def saxpy(a, x, y):

y[:] += a*x

__global__ 

void saxpy(int n, float a, 

float *x, float *y) { 

int i = blockIdx.x*blockDim.x + 

threadIdx.x; 

if (i < n) y[i] += a*x[i]; 

} 

int main(void) { 

...

cudaMemcpy(d_x, x, ...);

cudaMemcpy(d_y, y, ...);

saxpy<<<(N+255)/256,256>>>(...); 

cudaMemcpy(y, d_y, ...);

Platform SpecializationAccelerated Standard Languages

Acceleration Libraries

Core Math Communication Data Analytics AI

#pragma acc data copy(x,y) {
...
#pragma acc parallel loop
for (i=0; i<n; i++) {

y[i] += a * x[i];
}
...
}

#pragma omp target data map(x,y) {
...
#pragma omp target teams loop
for (i=0; i<n; i++) {

y[i] += a * x[i];
}
...
}

Incremental Portable Optimization

Quantum

https://developer.nvidia.com/nvidia-hpc-sdk-downloads

https://developer.nvidia.com/nvidia-hpc-sdk-downloads


WHAT IS THE GPU GEARBOX?

The GPU gearbox is a mental model for thinking about 
programming models, to deliver the best performance at 
different levels of developer effort and specialization.

Think about torque, not speed…

First Gear

ISO standard parallelism: Easiest to adopt.  Maximum portability.  
Good performance in a subset of use cases.

Second Gear

Performance libraries: Peak performance for supported features, 
which include a wide range of common patterns in linear 
algebra, machine learning and data analysis.

Third Gear

Directives and Pragmas: Easy to adopt.  Good portability.  Great 
performance in many use cases.

Fourth Gear

CUDA languages: Exposes full hardware capability and enables 
maximum performance.  Supported on all NVIDIA GPUs.

https://commons.wikimedia.org/wiki/File:Ferrari_F355_Spider_-_Flickr_-_The_Car_Spy_(16).jpg

https://commons.wikimedia.org/wiki/File:Ferrari_F355_Spider_-_Flickr_-_The_Car_Spy_(16).jpg
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AND THEN THERE ARE FRAMEWORKS

▪ Frameworks try to abstract the hardware from the application code

▪ Kokkos is one such abstraction

▪ Frameworks can be difficult to retrofit into your application. 

▪ Does the framework manage the data for you?

▪ Does the framework manage MPI for you, ghost exchanges?

▪ Does the framework manage the discretization for you?

▪ Frameworks can disappear, it could have been a PhD project

▪ Frameworks can make your life much easier

▪ But it can be hard to work outside what they intended you to do

▪ Frameworks can hide complexity

▪ But can also inhibit performance

▪ Frameworks can let you code to any backend 

▪ Develop with CPU threads

▪ Deploy on GPUs

▪ By this definition, the C++ stdpar is a framework
Kokkos::View<double*> x(“x”,n), y(“y”,n);
Kokkos::parallel_for(n,KOKKOS_LAMBDA(int i)

{ y(i) += a*x(i); }
);



SHIFTING THROUGH THE GEARS
Experiments with linear algebra primitives

MATRIX MULTIPLICATION
Optimize everything…

MATRIX TRANSPOSE
Memory bandwidth, shared memory, and coalescing

VECTOR ADDITION
Memory bandwidth

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/ https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/https://developer.nvidia.com/blog/even-easier-introduction-cuda/

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/


Vector Addition: Z = a * X + Y

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

OpenACC C (loop)

OpenMP C

CUBLAS C++

CUDA C++

OpenACC C++ (loop)

OpenMP C++

C++ StdPar

CUDA Fortran

OpenACC Fortran (kernels)

OpenACC Fortran (loop)

OpenMP Fortran

Fortran StdPar

CuPy

CUDA Python

% of CUDA C++



Matrix Transpose: B = B + A^T

40% 50% 60% 70% 80% 90% 100%

OpenACC C (kernels)

OpenACC C (loop)

OpenMP C

CUBLAS C++

CUDA C++

OpenACC C++ (loop)

OpenMP C++

C++ StdPar

CUDA Fortran

Fortran StdPar (intrinsic)

OpenACC Fortran (kernels)

OpenACC Fortran (loop)

OpenMP Fortran

Fortran StdPar (loops)

CuPy

CUDA Python

% of CUBLAS (DGEAM)



Matrix Multiplication: C = C + A * B

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OpenACC C (kernels)

OpenACC C (loop)

OpenMP C

CUBLAS C++

CUTENSOR C++

OpenACC C++ (loop)

OpenMP C++

C++ StdPar

Fortran StdPar (intrinsic)

OpenACC Fortran (kernels)

OpenACC Fortran (loop)

OpenMP Fortran

Fortran StdPar (loops)

CuPy

% of CUBLAS (DGEMM)

P1673R3



WHAT PARADIGM SHOULD YOU USE

Well, it depends

For a lot of applications standard languages work very well

Specific kernels require special attention 

Libraries - Matrix math, FFTs, tensor contractions and others

Using a mixture of different paradigms can give you the best of all worlds



NOW THAT YOU KNOW WAYS TO USE GPUS
WHAT ARE THE KEYS TO USING THEM 



IT’S ALL ABOUT THE MEMORY
FLOPS are free

Simple definitions

FLOPS – Floating Point Operations Per Second

Memory Latency – Time between memory request and arrival

Memory Bandwidth – How much memory comes per second

Shared Memory – Local fast shared memory to a SM

Compute Intensity – FLOPS/BYTE



THE NVIDIA AMPERE GPU ARCHITECTURE
These are the resources that are available

SMs 108

Total threads 221,184

Peak FP32 TFLOP/s 19.5

Peak FP64 TFLOP/s (non-tensor) 9.7

Peak FP64 TFLOP/s (tensor) 19.5

Tensor Core Precision
FP64, TF32, BF16, 

FP16, I8, I4, B1

Shared Memory per SM 160 kB

L2 Cache Size 40960 kB

Memory Bandwidth 1555 GB/sec

GPU Boost Clock 1410 MHz

NVLink Interconnect 600 GB/sec

ARITHMETIC INTENSITY=9.7/1.555=6.25
Well, we want doubles, 8x!! 

We need to use every load 50x



36

NVIDIA A100 Intel Xeon 8280 AMD Rome 7742

Peak FP64 GigaFLOPs 9700 2190 2300

Memory B/W (GB/sec) 1555 131 204

Compute Intensity 50 134 90

HBM HBM HBM

GPU CPU

DRAM

NOT JUST A GPU ISSUE



THERE IS STILL A LOT OF MEMORY BANDWIDTH

Depending on how you access memory 
will greatly affect bandwidth!

Why?

Your milage will very

111 GB/sec

1418 GB/sec

HBM page size = 1kB

Burst size = 64 Bytes

724 GB/sec



Read address: 001100010010011110100001101101110011

Activate row and pull data into sense amplifiers

This destroys data in the row as capacitors drain
1



Read address: 001100010010011110100001101101110011

Activate row and pull data into sense amplifiers

This destroys data in the row as capacitors drain
1

Read from page held in amplifiers at column index

This does not destroy data in the amplifiers
2



Read address: 001100010010011110100001101101110100

Activate row and pull data into sense amplifiers

This destroys data in the row as capacitors drain
1

Read from page held in amplifiers at column index

This does not destroy data in the amplifiers
2

May make repeated reads from the same page

at different column indexes
3



Read address: 001100010010011110100001101101110100

Activate row and pull data into sense amplifiers

This destroys data in the row as capacitors drain
1

Read from page held in amplifiers at column index

This does not destroy data in the amplifiers
2

May make repeated reads from the same page

“Burst” reads load multiple columns at a time
3



Read address: 001100010010011101100001101101110011

Activate row and pull data into sense amplifiers

This destroys data in the row as capacitors drain
1

Read from page held in amplifiers at column index

This does not destroy data in the amplifiers
2

May make repeated reads from the same page

“Burst” reads load multiple columns at a time
3

Before a new page is fetched, old row must be

written back because data was destroyed
4



SO WHAT DOES THIS ALL MEAN?

▪ We’d expect a significant performance difference
for coalesced vs. scattered reads

▪ On A100, memory bandwidth for widely-spaced reads is

= 8% of peak bandwidth
111

1418

That’s 1/13th of

peak bandwidth!

111 GB/sec

1418 GB/sec

HBM page size = 1kB

Burst size = 64 Bytes

724 GB/sec

ARITHMETIC INTENSITY=9.7/0.111=88
We need to use every load 700x



DATA ACCESS PATTERNS REALLY MATTER

Row-major array layout

13x slower than 

column access

Row read latency

TRAS = TRP + TRDC + CL

for(x=0; x<N; x++) {

for(y=0; y<M; y++) {

load(array[y][x]);

}

}

Column-major array traversal

for(y=0; y<M; y++) {

for(x=0; x<N; x++) {

load(array[y][x]);

}

}

Row-major array traversal

Column read latency CL



SO WHAT WENT WRONG?
Matrix Multiplication: C = C + A * B

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OpenACC C (kernels)

OpenACC C (loop)

OpenMP C

CUBLAS C++

CUTENSOR C++

OpenACC C++ (loop)

OpenMP C++

C++ StdPar

Fortran StdPar (intrinsic)

OpenACC Fortran (kernels)

OpenACC Fortran (loop)

OpenMP Fortran

Fortran StdPar (loops)

CuPy

% of CUBLAS (DGEMM)

P1673R3



IT IS ABOUT MEMORY ACCESS

▪ The simple FORTRAN stdpar code is listed 

▪ The B matrix has good memory access

▪ The A matrix has strided access

▪ What the cuBLAS library does for a matrix multiply

▪ Divides up the A and B matrix into blocks

▪ Loads these blocks into shared memory

▪ Load from shared memory into registers

▪ Perform unrolled math using registers

▪ Store results

▪ Loads are all handled asynchronously 

▪ Modern versions use tensor cores for the math 

! Fortran standard parallelism

! Loop version

do concurrent (j=1:order, i=1:order) local(T)

T = C(i,j)

do concurrent (p=1:order) ! Implicit reduction

T = T + A(i,p) * B(p,j)

enddo

C(i,j) = T

enddo



WHAT DO WE KNOW SO FAR

GPU Programming is easy, just…

Load as little data as possible 

Access the data so it is adjacent for optimal bandwidth

Reuse the data a lot of times

i.e., Perform dense matrix-matrix multiplies

But my program isn’t a matrix-matrix multiply

My mesh is unstructured or my data access is random



MEMORY LATENCY

Latency – Time between your first request and the data arrives

Bandwidth – How much data you get in a given time once the transfer starts

Low Latency (left)

Or

High bandwidth (right)

GPUs have very high bandwidth compared to CPUs ( 1.6GB/s vs 0.2 GB/s )

But also have higher latency than CPUs ( 400ns vs 100ns )



WORKING WITH HIGH LATENCY
Over-Subscription and Concurrency 

▪ Remember that scheduler I mentioned???  It schedules work on an SM

▪ Fits as many blocks as it can based on resources.  If it schedules 2048 threads occupancy is at 100%

▪ If a chunk of threads (warp) gets stalled while waiting for memory, another gets swapped in who is ready

▪ What can you do?

▪ Schedule multiple types of work

▪ Fetch data and FLOPS

▪ Reduce resources

▪ Registers and shared memory

▪ It is always a good idea to 

▪ Have multiple blocks on an SM

▪ Ideally a mix of work

▪ Use your shared memory wisely

A100 SM Resources

2048 Max threads per SM

32 Max blocks per SM

65,536 Total registers per SM

160 kB Total shared memory in SM

32 Threads per warp

4 Concurrent warps active

64 FP32 cores per SM

32 FP64 cores per SM

192 kB Max L1 cache size

90 GB/sec Load bandwidth per SM

1410 MHz GPU Boost Clock



SUMMARY



IN SUMMARY

▪ Computing has changed a lot in the last 50 years, and it will continue to change

▪ As computing has evolved, complexity has grown, and the tools have evolved to make this tractable

▪ GPUs are here with us, they are not going anywhere

▪ Programming GPUs (and CPUs really) one needs to focus on the memory access and use patterns

▪ Think about memory access patterns when you design your algorithm

▪ When choosing a programming model, one needs to balance flexibility with performance 

▪ Use libraries when possible, the designers of these libraries focus on the details I’d rather ignore

▪ Profile your code often throughout the development process, optimize accordingly





Introduction to the CINECA 
Marconi100 HPC system

TREX Hackathon III 

March 06-08 2023

Diego Molinari

d.molinari@cineca.it

SuperComputing Applications and Innovations (SCAI) – High Performance Computing Dept

mailto:d.molinari@cineca.it


WELCOME TO CINECA



M100 Infrastructure: how to access

Access by public keys (with the 
ssh keys generated on a local and 
secure environment, and protected 
via passphrase) is strongly 
recommended

$ ssh -X username@login.m100.cineca.it
*******************************************************************************
**
* Welcome to MARCONI100 Cluster /
*

IBM Power AC922 (Whiterspoon) -

Red Hat Enterprise Linux Server release 8.1 (Ootpa)

*
*
*
*
etc. etc.

●

●

●

Short system description 

“In evidence” messages

“Important messages” (changes of policies, maintenances, etc.)

IMPORTANT

Should the Hackathon activities (i.e., 
compilation) affect the M100 login 
nodes – it may happen – we will 
devote a login node to participants.
Stay tuned!

mailto:username@login.m100.cineca.it


M100 Infrastructure: how to access

$ ssh -X username@login.m100.cineca.it
*******************************************************************************

You will receive personal username and password to connect to M100 for the Hackathon event: 

Username: a08traXX

Password: sent by email
Account: tra23_hackath (needed to submit jobs to the queueing system: SLURM)

We also set up a set of reserved nodes for you. They are available using the following reservation: 

Reservation: s_tra_hackath (valid from 2023-03-06 at 9:00 up to 2023-03-08 at 18:00)

There are 10 nodes in the reservation. If you realize you need more let us know.

At the first login, please change the password (you should be forced by the system to do that).
Password Policy

The new password has to be 10 characters long and contains at least 1 capital letter, 1 number, and 1 special 
character (!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~)

mailto:username@login.m100.cineca.it


Marconi100: the Power AC922 model

•

•

AC922 “Whiterspoon”

32 PFlops peak (9th on Top500 June 
2020)

Nodes: 980 compute + 4 login nodes + 2 
(for containers et alI), 32 TFlops each

Processors: 2x16 cores IBM 8335-GTG 
2.6 (3.1) GHz

Accelerators: 4xNVIDIA V100 GPUs, 
Nvlink 2.0, 16GB

RAM: 256 GB/node 

Local disk: 1.6TB NVMe

Internal Network: Mellanox Infiniband 
EDR DragonFly+

Disk Space: 8PB storage

•

•

•

•

•

•

•



M100 Module Software Environment

The base profile is the default:
●

●

automatically loaded after login
contains basic modules for the programming activities

Available  
software

modules

profiles

categories

compilers 

libraries 

tools 

applications

… … .

The available software is offered in a module environment

The modules are collected in different profiles and organized in 
functional categories

Profile types:

Programming (base, advanced): compilation, debugging, 
profiling, libraries
Domain (chem-phys, lifesc, … ) : production activities

●

●

programming  

domain



M100 Module Software Env: base

$ module av

------------------------- /cineca/prod/opt/modulefiles/profiles --------------------------
profile/candidate profile/deeplrn profile/lifescprofile/advanced profile/base profile/chem-phys profile/bioinf profile/archive

……..

--------------------- /cineca/prod/opt/modulefiles/base/environment----------------------
autoload

---------------------- /cineca/prod/opt/modulefiles/base/libraries -----------------------
zlib/1.2.11--gnu--8.4.0blas/3.8.0--gnu--8.4.0

elsi/2.5.0--gnu--8.4.0
szip/2.1.1--gnu--8.4.0 
essl/6.2.1--binary

boost/1.76.0—spectrum_mpi--10.4.0--binary
……… . .

---------------------- /cineca/prod/opt/modulefiles/base/compilers -----------------------
cuda/11.3 gnu/8.4.0 hpc-sdk/2022--binary python/3.7.7 python/3.8.2 spectrum_mpi/10.4.0--binary xl/16.1.1--binary

------------------------ /cineca/prod/opt/modulefiles/base/tools-------------------------
anaconda/2020.11 cmake/3.20.0 singularity/3.9.7 spack/0.14.2-prod



M100 Module Software Env: domains

“Domain” profiles:

------------------------------------------------------------ /cineca/prod/opt/modulefiles/profiles ------------------------------------------------------------
profile/advanced profile/archive profile/base profile/candidate profile/chem-phys profile/deeplrn profile/bioinf profile/lifesc

To access a “domain” application, e.g. in the chemical physics scientific domain, you need to 
load the profile/chem-phys first:

$module loadprofile/chem-phys

The domain profiles are all “additive”: you can load them together, adding them to the base profile

The profile 
chem-phys is 
added to the 
base profile



M100 Module Software Env:
autoload, modmap

Needing, e.g., lammps?

$module loadprofile/chem-phys
$module loadautoload lammps/22dec2022
$module list
Currently LoadedModulefiles:

10) lammps/22dec20221) profile/base 4) spectrum_mpi/10.4.0--binary
2) profile/chem-phys 5) gnu/8.4.0
3) autoload 6) blas/3.8.0--gnu--8.4.0

7) cuda/11.0
8) lapack/3.9.0--gnu--8.4.0
9) fftw/3.3.8—spectrum_mpi—10.4.0

The autoload 
module takes 
care to load
all the lammps 
dependencies

$modmap -mlammps  
Profile: advanced  
Profile: archive

Profile: base  
Profile: chem-phys

lammps 
22dec2022

Profile: deeplrn  
Profile: lifesc

A better, easier way to know 
if an application is available 
on M100?

The modmap command!

modmap detects all the available 

profiles, categories, and modules
=> “map” of the available modules

modmap -h # command help



M100 Module Software Env:
spack

$module loadspack/0.14.2-prod

● setup-env.shfile is sourced,$SPACK_ROOTis initialized to /cineca/prod/opt/tools/spack/<vers>/none, 
spackcommand is added to your PATH,andsomenice commandline integration tools too.

● A folder is created into yourdefault $WORKspace($USER/spack-<vers>)with the subfolderscreated 
andusedby spack during thephaseof apackage installation:

■

■

■

sources cache: $WORK/$USER/spack-<vers>/cache

softwareinstallation root: $WORK/$USER/spack-<vers>/install 
module files location: $WORK/$USER/spack-<vers>/modulefiles

● Youcandefine different pathsfor cache, installation andmodulesdirectories (please refer to the 
spackguide to find out howto customize thesepaths)

● Somesoftwares installed with spackare already availableas modulesor asspack packages:

or$module loadspack/0.14.2-prod
$moduleav
$moduleav <module_name>

$module loadspack/0.14.2-prod
$spack find
$spack find<package_name>

Can’t you find the 
software you need? 

Use the “spack” 
environment



M100 Programming Environment
Available compilers in BASE profile:

IBM XL C/C++ and Fortran 16.1.1
8.4.0/10.3.0gnu 

hpc-sdk  
cuda

2020/2021/2022
11.0 → 11.3

●

●

●

●

●

●

Available MPI environment in BASE profile:

IBM Spectrum MPI 10.4.0

Based on Open MPI version 4.0.5, full MPI 3.2 standard 

FCA (hcoll) support (Mellanox Fabric Collective 

Accelerator on InfiniBand interconnect)

Relies on hwloc to navigate the server hardware topology 

GPU support

NVIDIA GPUDirect RDMA

CUDA-aware MPI

Use mpirun (not srun, work in progress) to execute 

your MPI program

By default, GPUDirect support is disabled. 

Run the “mpirun -gpu” command to enable it.

Use the --report-bindings option for an abbreviated image of 
the server’s hardware and the binding of processes

hwloc provides details about NUMA 
memory nodes, sockets, shared caches, 
cores and SMT, etc.

In addition:
- a gnu compiled Open MPI 4.0.3 and 4.1.2
installations are available in profile/advanced
- more recent compilers

(i.e. cuda/11.6 or hpc-sdk/2023 version 23.1) 
are available in profile/candidate



M100 data areas

● $HOME

Login and Compute nodes

(personal, under back-up, shared GSS over IB)

●

●

$CINECA_SCRATCH (personal, no back-up, periodic cleaning for files older than 40 days, shared GSS)

$WORK: common project area (/m100_work/tra23_hackath), 1 TB of quote, no back-up, available in the 
validity period of project + 6 months, shared GSS.
Useful to share data among Project members (it is accessible by ALL Teams).

● /scratch_local (1TB NVMe), local to nodes, not writable on compute nodes

●

Compute nodes

SLURM job TMPDIR: /scratch_local/slurm_job.<jobid> (1TB NVMe for the scratch_local), local to 
nodes, created by slurmd prolog at the start of the job and removed at the end of the job



M100 Environment
A RESERVATION ON 10 NODES on the partition m100_sys_test

IS DEFINED from March, 6th up to March,, 8th

s_tra_hackath

In principle 1 node per participant: PLEASE LET US KNOW IF YOUR ACTIVITY WOULD BENEFIT OF 
MORE THAN ONE NODE. We can increase the number of nodes in the reservation if needed.

THE RESERVATION IS AVAILABLE TO HACKATHON’S TRAINING USERNAMES

FORGOT IT? Write to us!

#defines the partition

#needed to access the m100_sys_testpartition 
#toaccess the reservednodes

#!/bin/bash
...

#SBATCH-pm100_sys_test  
#SBATCH-qqos_test
#SBATCH--reservation=s_tra_hackath
...

You can in principle use 
the production partition 
(m100_usr_prod), but you 
may end to wait because 
of a long queue.



M100 Production Environment

M100 is a general purpose 
system used by hundreds 
of users.

Compute nodes

●

●

Production jobs must be submitted to 
M100 queueing system: batch jobs

SLURM scheduler and resource  
manager

● Node sharing (but the allocated
resources – cores, gpus, memory –
are assigned in an exclusive way)

Login nodes

A responsible use of the login nodes is crucial to ensuure the effective 
use of the infrastructure and the access to the computing resources.

● Protect your credentials and access from “safe” posts; opt for ssh 
keys with passphrase

● Interactive runs on login nodes are strongly discouraged and should 
be limited to short test runs
●

●

Per user limits on cpu-time (10 minutes) and memory (1 GB) 
Avoid running large parallel applications on the front-ends.

● The variable TMPDIR is defined for all users to /scratch_local 
You can re-define it to $CINECA_SCRATCH or other areas.
PLEASE DO NOT SET it to /tmp → critical!



M100 Production Environment
SLURM specs and Accounting

The accounting considers:

●

●

●

The requested number of physical cpus 
The requested number of GPUs
The amount of memory

And calculates the number of equivalent 
cores taking the maximum among

●

●

●

N physical cpus 
N GPUs * 8
Memory / Memory-per-core

Each node “exposes itself” as having

● 128 (virtual) cpus [32 physical cores with 4 Hts each]

● 4 GPUs

● 246000 MB of memory

It is possible to ask up to
● 128 ntasks-per-node (1 cpus-per-task)

1 ntask-per-node (128 cpus-per-task)
Or any combination of ntasks-per-node * cpus-per-task ≤ 128

●

●

BUT

SLURM has been configured so to assign a physical core with its 4 Hts

Asking for –ntasks-per-node=1 and –cpus-pet-task=1 corresponds to ask for --cpus-per-task=4



In case you need to “interact” with your running job (tuning of input parameters, debugging, etc.) 
And it needs more than 10 minutes, or many processes (not suitable on the login nodes)

“Interactive” SLURM batch job NONMPIprograms (single process or multi-threaded 
programs usingoneor moreGPUs)

$srun<options>--pty /bin/bash

Thesessionstarts onthecomputenode(look at theprompt!)

● Ask for the needed resources (cores, 
gpus, memory, time) with srun or 
salloc
The job is queued and scheduled as
any other job, but, when executed, 
the standard input, output and error 
streams are connected to the reminal 
session from which srun or salloc 
were launched

●

● You can then run your application 
from the terminal

MPIprogramsusingoneor moreGPUs

$salloc <options>

Anewsession is startedon the loginnode
Remember to exit the session whenyouhavefinished.

M100 Production Environment
Interactive batch jobs



In case you need to compile the code on a compute node

“Interactive” SLURM batch job

● Ask for the minimal resources 
needed for the compilation with 
salloc
When the job starts you can ssh to

the compute node SLURM has 
granted you
You can then compile your code 
Remember that you have set a
walltime for the job

●

●

●

[...@login02] $salloc -N1-n1 -t 02:00:00 -Atra23_hackath

-p m100_sys_test -q qos_test --reservation=s_tra_hackath s
salloc: job 6802903queuedandwaiting for resources

salloc: job6802903has beenallocatedresources  salloc: Granted joballocation680

[...@login02] $sshr206n11
[...@r206n11] $nvcc … ..

Whenyouhave finished remember to exit twice to stopthe running job

[...@r206n11] $exit  
[...@login02] $exit
salloc: Relinquishing joballocation6802903  
salloc: Joballocation 6802903hasbeenrevoked.
[...@login02] $

M100 Production Environment
Interactive batch jobs for compilation



As usual on HPC 
systems, the large 
production runs are 
executed in batch 
mode.
The user writes a list of 
the needed #SBATCH
directives (resources, 
walltime, mail, jobname,
etc. etc.) followed by the 
needed loading of
modules, setting of 
variables, and launch of
the executable.

#!/bin/bash 
#SBATCH--nodes=1 #Number of nodes
#SBATCH--ntasks-per-node=4 #Number of MPI ranks per node
#SBATCH--ntasks-per-socket=2 #Numberof MPIranks per socket

#number of HWthreads per task

#Numberof requested gpusper node, canvary between1and4 
#Memory per node
#Walltime, format: HH:MM:SS(max 24hours)

#SBATCH--cpus-per-task=32 
#SBATCH--gres=gpu:4  
#SBATCH--mem=230000MB  
#SBATCH--time00:30:00

#SBATCH-Atra23_hackath  
#SBATCH-pm100_sys_test
#SBATCH-qqos_test
#SBATCH--reservation=s_tra_hackath

module loadprofile/chem-phys  
Module loadautoloadyambo/4.5

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

mpirun –map-by socket:PE=8 –rank-by core -np ${SLURM_NTASK}yambo-F yambo.in -J yambo.out

M100 Production Environment
Non interactive batch jobs



M100 Production Environment
Profiling your code with Nvidia Nsight system

In the previous edition, the usage of the Nvidia profiler caused several compute node crashes due to the 
usage of the /tmp area of the node by the profiler itself.
In order to avoid such a problem, we suggest to modify the sbatch script as in the following example.

#!/bin/bash 
#SBATCHdirectives  
#SBATCH--exclusive #to avoid superposition of profiling jobs on the samenode

module loadhpc-sdk  
module load… ...

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

rm-rf /tmp/nvidia

ln -s $TMPDIR /tmp/nvidia
mpirun ..... nsys profile ....
rm-rf /tmp/nvidia

In the worst case the node 
does not crash when filling the
/tmp area, but the job simply 
stop producing output, but still
running with a consequence 
lost of time and cpu-hours.

We kindly ask to follow these 
suggestions

IMPORTANT:
on M100 Nvidia Nsight system GUI is not supported.
Please run the profiler via command line, then you can download the .qdrep result on your local PC for visualization



M100 HELP!

● We will be around for any kind of support needed!

● Ask superc@cineca.it (during and after hackathon. PLEASE: 
mention TREX Hackathon 2023 in the subject)

● Online guide:
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A+MARCONI100+Us 
erGuide

ENJOY TREX Hackathon III @ CINECA
from CINECA User Support Team!

mailto:superc@cineca.it
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A%2BMARCONI100%2BUserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A%2BMARCONI100%2BUserGuide
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3 WAYS TO ACCELERATE 
APPLICATIONS

Applications

Libraries

Easy to use

Most Performance

Programming 

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

OpenACC
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OPENACC DIRECTIVES

a directive-based parallel programming model designed for 

usability, performance and portability  

PLATFORMS SUPPORTEDAPPLICATIONS

NVIDIA GPU
X86 CPU

POWER CPU
Sunway

ARM CPU
AMD GPU

FPGA

COMMUNITY

250+
3 out of Top 5

~3000
Slack Members



OpenACC Directives

Manage

Data

Movement

Initiate

Parallel

Execution

Optimize

Loop

Mappings

#pragma acc data copyin(a,b) copyout(c)
{

...
#pragma acc parallel 
{
#pragma acc loop gang vector

for (i = 0; i < n; ++i) {
c[i] = a[i] + b[i];
...

}
}
...

}

• CPU, GPU, Manycore

• Performance portable

• Interoperable

• Single source

• Incremental
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Single SourceIncremental

OPENACC

▪ Maintain existing 
sequential code

▪ Add annotations to 
expose parallelism

▪ After verifying 
correctness, annotate 
more of the code

▪ Rebuild the same code 
on multiple 
architectures

▪ Compiler determines 
how to parallelize for 
the desired machine

▪ Sequential code is 
maintained

Low Learning Curve

▪ OpenACC is meant to 
be easy to use, and 
easy to learn

▪ Programmer remains 
in familiar C, C++, or 
Fortran

▪ No reason to learn 
low-level details of the 
hardware.
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Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES

Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools 
https://www.openacc.org/tools

FREE 

Compilers

NVIDIA 

HPC 

SDK

https://www.openacc.org/community

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.openacc.org/community#slack
https://www.openacc.org/community


APPLY TO GPU HACKATHONS 

▪ Over 20 events globally.

▪ 4 full days over 2 weeks. 

▪ Online or in-person.

▪ 2 mentors per team. Up to 10 teams.

▪ Free to participate.

▪ GPU resource is provided.

Accelerate your code on GPUs with mentors by your side 

www.gpuhackathons.org/events

http://www.gpuhackathons.org/events
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OPENACC SYNTAX

▪ A pragma in C/C++ gives instructions to the compiler on how to compile the code. 
Compilers that do not understand a particular pragma can freely ignore it.

▪ A directive in Fortran is a specially formatted comment that likewise instructions the 
compiler in it compilation of the code and can be freely ignored.

▪ “acc” informs the compiler that what will come is an OpenACC directive

▪ Directives are commands in OpenACC for altering our code.

▪ Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code

C/C++

#pragma acc directive clauses
<code>

Fortran

!$acc directive clauses
<code>
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EXAMPLE CODE
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LAPLACE HEAT TRANSFER

Introduction to lab code - visual Very 
Hot

Room 
Temp

We will observe a simple simulation 
of heat distributing across a metal 

plate.

We will apply a consistent heat to 
the top of the plate.

Then, we will simulate the heat 
distributing across the plate.
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EXAMPLE: JACOBI ITERATION

▪

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)
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JACOBI ITERATION: C CODE

91

while ( err > tol && iter < iter_max ) {

err=0.0;

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Iterate until converged

Iterate across matrix 

elements

Calculate new value from 

neighbors

Compute max error for 

convergence

Swap input/output arrays
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PROFILE-DRIVEN DEVELOPMENT
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OPENACC DEVELOPMENT CYCLE

▪ Analyze your code to determine 
most likely places needing 
parallelization or optimization.

▪ Parallelize your code by starting 
with the most time consuming parts 
and check for correctness.

▪ Optimize your code to improve 
observed speed-up from 
parallelization.

Analyze

ParallelizeOptimize

Analyze
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OPENACC PARALLEL LOOP DIRECTIVE
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OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

▪ Use a parallel directive to mark a region of 
code where you want parallel execution to 
occur

▪ This parallel region is marked by curly braces in 
C/C++ or a start and end directive in Fortran

▪ The loop directive is used to instruct the 
compiler to parallelize the iterations of the next 
loop to run across the parallel gangs

C/C++

#pragma acc parallel
{
#pragma acc loop
for(int i = 0; j < N; i++)

a[i] = 0;
}

Fortran

!$acc parallel
!$acc loop
do i = 1, N

a(i) = 0
end do

!$acc end parallel
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PARALLELIZE WITH OPENACC PARALLEL LOOP

102

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Parallelize first loop nest, 

max reduction required.

Parallelize second loop.

We didn’t detail how to 
parallelize the loops, just which

loops to parallelize.
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BUILD AND RUN THE CODE
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OPENACC DATA MANAGEMENT
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CPU AND GPU MEMORIES
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CPU + GPU

Physical Diagram

▪ CPU memory is larger, GPU memory has 
more bandwidth

▪ CPU and GPU memory are usually separate, 
connected by an I/O bus (traditionally PCI-e)

▪ Any data transferred between the CPU and 
GPU will be handled by the I/O Bus

▪ The I/O Bus is relatively slow compared to 
memory bandwidth

▪ The GPU cannot perform computation until the 
data is within its memory

High 

Capacity 

Memory

Shared Cache

High Bandwidth 

Memory

Shared Cache

$ $ $ $ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $

IO Bus

GPUCPU
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CUDA UNIFIED MEMORY
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Simplified Developer Effort

Without Managed Memory With Managed Memory

Managed MemorySystem 
Memory

GPU Memory

Commonly referred to as 

“managed memory.”
CUDA UNIFIED MEMORY

CPU and GPU memories are 
combined into a single, shared pool
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CUDA MANAGED MEMORY

▪ Handling explicit data transfers between the host and device (CPU and GPU) can be 
difficult

▪ The NVIDIA HPC compiler can utilize CUDA Managed Memory to defer data 
management

▪ This allows the developer to concentrate on parallelism and think about data 
movement as an optimization

Usefulness

$ nvc –fast –acc –ta=tesla:managed –Minfo=accel main.c

$ nvfortran –fast –acc –ta=tesla:managed –Minfo=accel main.f90
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MANAGED MEMORY

▪ The programmer will almost always be able to 
get better performance by manually handling 
data transfers

▪ Memory allocation/deallocation takes longer 
with managed memory

▪ Cannot transfer data asynchronously

▪ Currently only available on NVIDIA GPUs with 
NVIDIA HPC SDK.

Limitations

With Managed Memory

Managed Memory
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DATA SHAPING
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DATA CLAUSES

copy( list ) Allocates memory on GPU and copies data from host to GPU when 
entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a 
logical default to input, modify and return the data.

copyin( list ) Allocates memory on GPU and copies data from host to GPU when 
entering region.

Principal use: Think of this like an array that you would use as  just an 
input to a subroutine.

copyout( list ) Allocates memory on GPU and copies data to the host when exiting 
region.

Principal use: A result that isn’t overwriting the input data structure.

create( list ) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.
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ARRAY SHAPING

▪ Sometimes the compiler needs help understanding the shape of an array

▪ The first number is the start index of the array

▪ In C/C++, the second number is how much data is to be transferred

▪ In Fortran, the second number is the ending index

copy(array(starting_index:ending_index))

copy(array[starting_index:length]) C/C++

Fortran
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OPTIMIZED DATA MOVEMENT

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Data clauses 

provide necessary 

“shape” to the 

arrays.
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OPENACC SPEED-UP SLOWDOWN
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RUNTIME BREAKDOWN

Data Copy H2D Data Copy D2H CalcNext Swap

Nearly all of our 

time is spent 

moving data to/from 

the GPU
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OPTIMIZED DATA MOVEMENT

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Currently we’re 

copying to/from the 

GPU for each loop, 

can we reuse it?
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OPTIMIZE DATA MOVEMENT

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)



OPENACC DATA DIRECTIVE

▪ The data directive defines a lifetime 
for data on the device beyond 
individual loops

▪ During the region data is essentially 
“owned by” the accelerator

▪ Data clauses express shape and 
data movement for the region

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel code >

}

!$acc data clauses

< Sequential and/or Parallel code >

!$acc end data
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OPTIMIZED DATA MOVEMENT

#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err) copyin(A[0:n*m]) copy(Anew[0:n*m])

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop copyin(Anew[0:n*m]) copyout(A[0:n*m])

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Copy A to/from the 

accelerator only when 

needed.

Copy initial condition of 

Anew, but not final value 
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REBUILD THE CODE

nvc -fast -ta=tesla -Minfo=accel laplace2d_uvm.c

main:

60, Generating copy(A[:m*n])

Generating copyin(Anew[:m*n])

64, Accelerator kernel generated

Generating Tesla code

64, Generating reduction(max:error)

65, #pragma acc loop gang /* blockIdx.x */

67, #pragma acc loop vector(128) /* threadIdx.x */

67, Loop is parallelizable

75, Accelerator kernel generated

Generating Tesla code

76, #pragma acc loop gang /* blockIdx.x */

78, #pragma acc loop vector(128) /* threadIdx.x */

78, Loop is parallelizable

Now data movement only 

happens at our data 

region.
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WHAT WE’VE LEARNED SO FAR

▪ CUDA Unified (Managed) Memory is a powerful porting tool

▪ GPU programming without managed memory often requires data shaping

▪ Moving data at each loop is often inefficient

▪ The OpenACC Data region can decouple data movement and computation
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DATA SYNCHRONIZATION
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update:  Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data region

Clauses:

self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self(x[0:count])

#pragma acc update device(x[0:count])

!$acc update self(x(1:end_index))

!$acc update device(x(1:end_index))

Fortran

C/C++

OPENACC UPDATE DIRECTIVE

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)



Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES

Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools 
https://www.openacc.org/tools

FREE 

Compilers

NVIDIA 

HPC 

SDK

https://www.openacc.org/community

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.openacc.org/community#slack
https://www.openacc.org/community
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WhatisoneAPI?

Available on
apt yum/dnf zypper Spack

Technical Advisory Boards Implementations

SYCL

oneMKL oneDNN

Intel

NVidia  

Xilinx

AMD  

ARM

Open-source software stack
Built with industry standard components

(CLANG, LLVM, SPIR-V)
Intel LLVM oneAPI Open-Source Projects

An open community
github/oneAPI-TAB

An open specification
Building on other open standards

oneAPI.io (SYCL 2020, OpenMP, BLAS, …)

Intel Products
Intel® oneAPI Toolkitssoftware.intel.com/oneapi Release 2023.1

1
6
0

https://github.com/intel/llvm
https://github.com/oneapi-src/
https://github.com/oneapi-src/oneAPI-tab
https://www.oneapi.io/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.htm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.htm
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OpenMPOffload





OpenMP forAccelerators

●StartingfromOpenMPspecifications4.0,OpenMP introducedthe“target”terminology:theprogrammercan

offloadportionofcode todeviceotherthantheCPU (coprocessors,FPGAs,GPUs…)

●Version 4.5 of OpenMP specifications introduced device memory routines and a couple of constructs in order 

to control device data mapping

●OpenMP 5.0 specifications extended the device memory routines and improved the device support adding 

the declare variant construct

●OpenMP 5.1specifications introduced Fortran interfaces to device memory routines and mainly focused on

OpenMP usability on accelerators.

●OpenMP 5.2 is the last version of the specifications available.



Introduction

subroutine vec_mult(p, v1, v2, n)
double precision, intent(inout) :: p(:)

double precision, intent(in) :: v1(:), v2(:)
integer, intent(in) :: n
integer :: i

parallel do simd map(to: v1(1:n), v2(1:n)) map(from: p(1:n))!$omp target teams distribute 
do i=1, n

p(i) = v1(i) * v2(i) 
enddo

endsubroutine

Identifies the portion of the  
program that should be run in  
parallel on the device

Distributes iterations to the  
threads and each thread use  
SIMD parallelism

Controls data transfer
between host and device



Executionmodel

• OpenMP heterogeneous execution model is host-centric

• The host thread that encounters a target region does not execute the target  
region; by defaults itwaits for the execution of the target region

• A new initial thread is generated on the device

• The target teams construct starts a league of teams executing in parallel 
the subsequent code

• When the parallel construct is encountered by a league, each initial

thread becomes the master of a new team of threads

• Each team is a contention group, so are restricted in how they can 
synchronize with each other



HeterogeneousMemoryModel

• OpenMP supports heterogeneous architectures by mapping variables 
from the host to a device

• The accelerator(s) has a device data environment that contains the set of 
the variables currently accessible by threads running on that device

• Anoriginalvariableinhost thread’sdataenvironmentismappedtoa 
correspondingvariableintheaccelerator’sdataenvironment



DeviceExecutionControl–TARGET TEAMS Construct
target teams is a combined construct: it specifies that the subsequent code block should run in
parallel

!$omp target teams[clause[[,]clause]…] 
structured block

!$omp end target teams

• This construct starts a league of initial threads  
where each thread is its own team,and in its own  
contention group. Each initial thread executes the 
teams region in parallel

• Threads in different contention group cannot  
synchronize with each other

• This construct creates a single team of threads,
where each thread in the team executes the
parallel region

• Threads can synchronize with each other

target teams

#pragma omp target teams[clause[[,]clause]…] 
structured block

parallel



DeviceExecutionControl–TARGET TEAMS Construct

!$omp target teams[clause[[,]clause]…]
!$omp parallel

structured block
!$omp end parallel
!$omp end target teams

#pragma  
#pragma

omp target teams[clause[[,]clause]…] 
omp parallel
structured block

• When a parallel construct is encountered by a league, each thread in the league becomes the master
of a new team of threads

• Each team of threads concurrently executes the parallel region



LoopRelatedDirectives:DISTRIBUTE

!$omp distribute[clause[[,]clause]…] 
do loops

!$omp end distribute #pragma omp distribute[clause[[,]clause]…] 
do loops

• Distribute construct has the potential for better performance because of the restrictions on where it can 
be used and what other OpenMP constructs can appear inside the distribute region

• The do/for construct are more versatile but not perform as well

!$omp target teams num_teams(4)

!$omp distribute 

do j=1, n, n/2

!$omp parallel do 

do i=j, j+n/2

y(i) = x(i)

enddo

!$omp end parallel do

Enddo

!$omp end distribute

Creates a league of 4 teams

Distributes the loop  
iterations across the master  
threads of each team

Activates the threads in the
teams and distributes the loop
iterations to the threads



LoopRelatedDirectives:LOOP

do loops
!$omp end loop

#pragma omp loop[clause[[,]clause]…] 
do loops

• Loop construct is a worksharing construct if its binding region is the innermost enclosing parallel region
• The directive asserts that the iterations of the associated loops may execute in any order, including 

concurrently. Each logical iteration is executed once per instance of the loop region that is encountered 
by exactly one thread that is a member of the binding thread set.

!$omp target teams num_teams(4)

!$omp loop collapse(2) 

do j=1, n

x(i) 

parallel do

y(i) =

!$omp end 

enddo

!$omp end distribute

Creates a league of 4 teams

Distributes the loop  
iterations across the master  
threads of each team

Activates the threads in the
teams and distributes the loop
iterations to the threads

loop specifies that the logical iterations of the associated loops may execute concurrently

!$omp loop[clause[[,]clause]…]



ringCombineandCompositeAcceleratedWorksha  
Constructs

The combined constructs has the same execution behavior of separate constructs, but in some instances, 
depending on the compiler, the combined constructs may achieve better performance than individual 
constructs and in such way is possible to distribute loop iterations across multiple levels of parallelism 
without needing multiple loop nests

!$omp

!$omp

target teams distribute parallel do [clause[[,] clause]…]
do-loops
end target teams distribute parallel do

!$omp

!$omp

target teams distribute simd [clause[[,] clause]…]
do-loops
end target teams distribute simd

!$omp target teams distribute parallel do simd [clause[[,] clause]…]
do-loops

!$omp end target teams distribute parallel do simd

!$omp target teams loop [clause[[,] clause]…]
do-loops

!$omp end target teams loop



DataMapping

• The accelerator has its own data environment which contains all set of all variables that are available to 
the threads executing on that accelerator

• When a host variable is mapped to an accelerator, a corresponding variable is allocated in the
accelerator’sdevicedataenvironment

• Host and device variables may share the same storage location → synchronization and memory 
consistency are required to avoid data races

• Host and device may not share the same storage location → copy operations are required in order to 
make original and corresponding variable consistent



mapClause
map([[map-type-modifier[,] [map-type-modifier[,] ...]] map-type: ] locator-list)

Map type:
• to
• from
• tofrom
• alloc
• release
• delete

Map type modifiers:
• always
• close
• mapper
present•

• iterator

Map clause on a target constructs:
• target

data
enter data

• target
• target
• target exit data

• Defaults:
• Arrays are tofrom
• Scalars are firstprivate
• Be careful about pointers: their

memory address may not exist
on the device!

BE AWARE OF FORTRAN DERIVED TYPES / C STRUCTS!!!



always map modifier

This modifier forces OpenMP runtime to map data even if such data is already
present in the device memory space:
• OpenMP runtime performs presence check and if data is present, mapping clause 

is most likely translated in a target update

!$omp target teams
distribute parallel do
map(always,to:a)

to(a)!$omp target update
!$omp target teams
distribute parallel do

!$omp target data
map(always,from:a)
...
!$omp end target data

m(a
)

...
!$omp target update fro



Mappingintarget construct

• map clause on a target construct:

A. map variables for a single target region

B. enclosed region executes on device and maps data



subroutine foo(x) 
implicit none

integer, intent(inout) :: x(:) 
integer :: n, i

!$omp target teams distribute parallel do map(tofrom:x) 
do i=1, n

x(i) = x(i) + i
enddo

endsubroutine foo

subroutine foo(x) 
implicit none

integer, intent(inout) :: x(:)
integer :: n, i

do i=1, n
x(i) = x(i) + i 

enddo
...

endsubroutine foo

Incremental porting and data mapping

Original subroutine, no offload

Modified subroutine with  
OpenMP offload



subroutine foo_caller(x,a)
implicit none

integer, intent(inout) :: x(:), a(:)
integer :: n, i

do i=1, n
a(i) = x(i) + a(i)

enddo
call foo_second(x) !CPU routine that

!MODIFIES x ONLY on the
!CPU!!!

call foo(x)
...

endsubroutine foo_caller

Incremental porting and data mapping (continued)
Original subroutine, no offload: main program
works also when subroutine foo is offloaded

Modified subroutine with
OpenMP offload: your program
will give wrong results (or will
crash)

subroutine foo_caller(x,a) 
implicit none

integer, intent(inout) :: x(:), a(:)
integer :: n, i

!$omp target data map(to:x) map(tofrom:a)

!$omp target teams distribute parallel do 
do i=1, n

a(i) = x(i) + a(i)
enddo

call foo_second(x) !CPU routine that MODIFIES x
!ONLY on the CPU!!!

call foo(x)

!$omp end target data
...

endsubroutine foo_caller



defaultmap clause

• explicitly determines the data-mapping attributes of variables referenced in the region



Implicit vs Explicit Mapping



Mapping intarget data construct

target data:
- map variables across multiple target regions in a structured block
- enclosed region does not execute on the device, only maps data from host to

device



declare target construct

declare target:
- allowsglobalvariablestobemappedonanaccelerator’sdevicedata

environment for the whole execution of the program
- - if a function is called from a target region, then the name of the function must 

appear in a declare target directive

BE AWARE OF FORTRAN ALLOCATABLES / C POINTERS!!!



declare target construct (II)



target enter / target exit data constructs

- map variables in stand alone clauses, not associated with a statement 
or a structured block



Avoid Unnecessary Data Transfers

• Don’t rely on implicit mapping! Use map 
clause to specify when a variable needs to  
be copied to or from the device.

• Use target data regions around structured  
blocks to avoid mapping variables  
unnecessarily

• Use target enter/exit data and target  
declare data to manage data transfer more  
explicitly



Data-Sharing Attribute Clauses

• These clauses allow the user to control data-sharing 
attributes of variables referenced in a construct.

• Concerning offload, four clauses are available:

is_device_ptr 

use_device_ptr 

has_device_addr  

use_device_addr



is_device_ptr clause

• Can be used intargetor dispatchdirectives

• It indicates that the list items are device pointers: so each list item is privatized
inside the construct and the new list item is initialized to the device address to
which the original list item refers.

• In Fortran, each list item should be of type C_PTR



use_device_ptr clause

• Can be use intarget data directive

• Itindicates that each list item is a pointer to an object that has corresponding 
storage on the device or is accessible on the device.

• In Fortran, each list item should be of type C_PTR



has_device_addr clause

• Can be use intargetdirective

• It indicates that the list items already have valid device addresses, and 
therefore may be directly accessed from the device



use_device_addr clause

• Can be use intarget data directive

• It indicates that the list items already have valid device addresses, and 
therefore may be directly accessed from the device



declare variant directive

• Declare base function / routines to have the specified function variant

• The context selector in the match clause is associated with the variant

! In oneMKL OpenMP offload interface (file mkl_blas_omp_offload_lp64.f90)
module subroutine mkl_blas_dgemm_omp_offload_ilp64 ( transa, transb, m, n, k, alpha, & 

&a, lda, b, ldb, beta, c, ldc ) BIND(C)

character*1,intent(in) :: transa, transb 
integer,intent(in) :: m, n, k, lda, ldb, ldc 
double precision,intent(in) :: alpha, beta
double precision,intent(in) :: a( lda, * ), b( ldb, * ) 
double precision,intent(inout) :: c( ldc, * )

end subroutine mkl_blas_dgemm_omp_offload_ilp64

subroutine dgemm ( transa, transb, m, n, k, alpha, a, lda, & 
&b, ldb, beta, c, ldc ) BIND(C)

character*1,intent(in) :: transa, transb 
integer,intent(in) :: m, n, k, lda, ldb, ldc 
double precision,intent(in) :: alpha, beta
double precision,intent(in) :: a( lda, * ), b( ldb, * ) 
double precision,intent(inout) :: c( ldc, * )

!$omp declare variant( dgemm:mkl_blas_dgemm_omp_offload_ilp64 ) match( construct={dispatch}, device={arch(gen)} ) &
!$omp& append_args(interop(targetsync)) adjust_args(need_device_ptr:a,b,c)

end subroutine dgemm



dispatch construct

• Controls whether variant substitution occurs for target call in the associated 
function dispatch structured block

include ‘mkl_omp_offload.f90'
SUBROUTINE laxlib_cdiaghg_gpu( n, m, h, s, ldh, e, v, me_bgrp, root_bgrp, 
intra_bgrp_comm )
! !
USE laxlib_parallel_include
#if defined(MKL_ILP64)

USE onemkl_lapack_omp_offload_ilp64 
#else

USE onemkl_lapack_omp_offload_lp64 
#endif
IMPLICIT NONE
...

!$omp target data map(to:h, s) map(from:m, e, v, lwork, rwork, ifail, info)
!$omp dispatch is_device_ptr(h, s, m, e, v, lwork, rwork, ifail, info)
CALL ZHEGVX( 1, 'V', 'I', 'U', n, h, ldh, s, ldh, &

0.D0, 0.D0, 1, m, abstol, mm, e, v, ldh, & 
work, lwork, rwork, iwork, ifail, info )

!$omp end target data
...
END SUBROUTINE laxlib_cdiaghg_gpu



Device Memory Routines
OpenMP 4.5 introduced device memory routines for C/C++,to support pointers allocation/deallocation and 
management in the data environment of target devices:

void* omp_target_alloc(size_t size, int device_num); 

void omp_target_free(void *device_ptr, int device_num); 

int omp_target_is_present(void *ptr, int device_num);

int omp_target_memcpy(void *dst, void *src, size_t length, size_t dst_offset, size_t src_offset, int 
dst_device_num, int src_device_num);

int omp_target_memcpy_rect( void *dst, void *src, size_t element_size, int num_dims, const size_t* 
volume, const size_t* dst_offsets, const size_t* src_offsets, const size_t* dst_dimensions, const 
size_t* src_dimensions, int dst_device_num, int src_device_num);

int omp_target_associate_ptr(void *host_ptr, void *device_ptr, size_t size, size_t device_offset, 
int device_num);

int omp_target_disassociate_ptr(void *ptr, int device_num);



Device Memory Routines (II)

OpenMP 5.1added:

int omp_target_is_accessible( const void *ptr, size_t size, int 
device_num);

int omp_target_memcpy_async( void *dst, const void *src, size_t length, 
size_t dst_offset, size_t src_offset, int dst_device_num, int 
src_device_num, int depobj_count, omp_depend_t *depobj_list );

int omp_target_memcpy_rect_async( void *dst, const void *src, size_t
element_size, int num_dims, const size_t *volume, const size_t
*dst_offsets, const size_t *src_offsets, const size_t *dst_dimensions, 
const size_t *src_dimensions, int dst_device_num, int src_device_num, int 
depobj_count, omp_depend_t *depobj_list );

OpenMP 5.1added also Fortran interfaces to all device memory routines



Runtime Routines and Environment Variables



II)Runtime Routines and Environment Variables (



IntelOffload Runtime Environment Variables

• LIBOMPTARGET_PLUGIN=<Name>: Designates offload plugin name to use. Offload 
runtime does not try to load other RTLs if this option is used.
<Name> := LEVEL0 | OPENCL | CUDA | X86_64 | NIOS2 |

level0 | opencl | cuda | x86_64 | nios2

• LIBOMPTARGET_DEBUG: Control whether or not debugging information will be displayed 
1 → basic information (device detection, kernel compilation, memory copy

operations, kernel invocations, and other plugin-dependent actions)
2 → additionally displays which GPU runtime API functions are invoked with

which arguments/parameters
• LIBOMPTARGET_INFO: Allows the user to request different types of runtime information 

from libomptarget
• LIBOMPTARGET_PLUGIN_PROFILE=<Enable>[,<Unit>]: Enables basic plugin

profiling and displays the result when program finishes. Microsecond is the default unit if
``<Unit>`` is not specified.

• LIBOMPTARGET_DEVICETYPE=<Type>: Decides which device type is used. Only 
OpenCL plugin supports "CPU" device type.
<Type> := GPU | gpu | CPU | cpu



LIBOMPTARGET_PLUGIN_PROFILE
====================================================================================================================== 
LIBOMPTARGET_PLUGIN_PROFILE(LEVEL0) for OMP DEVICE(0) Intel(R) Data Center GPU Max 1550, Thread 0

Kernel 0 : omp_offloading_802_202e1e_fft_helper_subroutines_mp_fftx_c2psi_gamma_omp l457
Kernel 1 : omp_offloading_802_202e1e_fft_helper_subroutines_mp_fftx_c2psi_gamma_omp l463
Kernel 2 : omp_offloading_802_202e1e_fft_helper_subroutines_mp_fftx_c2psi_gamma_omp l469
Kernel 3 : omp_offloading_802_202e1e_fft_helper_subroutines_mp_fftx_psi2c_gamma_omp l948
Kernel 4 : omp_offloading_802_202e1e_fft_helper_subroutines_mp_fftx_psi2c_gamma_omp l956
Kernel 5 : omp_offloading_802_262342_qe_drivers_lda_lsda_mp_xc_lda l95
Kernel 6 : omp_offloading_802_822655_v_xc l474
Kernel 7 : omp_offloading_802_822655_v_xc l488
Kernel 8 : omp_offloading_802_885338_vloc_psi_gamma l120
Kernel 9 : omp_offloading_802_885338_vloc_psi_gamma l134

: Host Time (msec) Device Time (msec)
Name : Total Average Min Max Total Average Min Max Count

Compiling : 193.28 193.28 193.28 193.28 0.00 0.00 0.00 0.00 1.00
DataAlloc : 7.12 0.00 0.00 2.16 0.00 0.00 0.00 0.00 3453.00
DataRead (Device to Host) : 42.46 0.02 0.01 0.30 3.03 0.00 0.00 0.03 2772.00
DataWrite (Host to Device): 75.48 0.02 0.01 0.52 8.62 0.00 0.00 0.05 4164.00
Kernel 0 : 2.50 0.04 0.02 0.21 0.71 0.01 0.01 0.08 56.00
Kernel 1 : 1.20 0.03 0.03 0.07 0.40 0.01 0.01 0.01 40.00
Kernel 2 : 0.54 0.03 0.03 0.09 0.18 0.01 0.01 0.01 16.00
Kernel 3 : 1.26 0.03 0.03 0.08 0.44 0.01 0.01 0.03 40.00
Kernel 4 : 0.51 0.03 0.02 0.08 0.15 0.01 0.01 0.03 16.00
Kernel 5 : 2.09 0.42 0.05 1.86 0.12 0.02 0.02 0.02 5.00
Kernel 6 : 4.00 0.80 0.11 3.55 0.21 0.04 0.03 0.06 5.00
Kernel 7 : 1.01 0.20 0.16 0.36 0.65 0.13 0.13 0.13 5.00
Kernel 8 : 1.77 0.03 0.02 0.10 0.50 0.01 0.01 0.01 56.00
Kernel 9 : 1.49 0.03 0.02 0.06 0.44 0.01 0.01 0.01 56.00
Linking : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
OffloadEntriesInit : 8.96 8.96 8.96 8.96 0.00 0.00 0.00 0.00 1.00
======================================================================================================================



LIBOMPTARGET_DEBUG
Libomptarget --> Launching target execution omp_offloading_802_262342_qe_drivers_lda_lsda_mp_xc_lda l95 with pointer 0x000000000bf358a0 (index=38). 
Target LEVEL0 RTL --> Executing a kernel 0x000000000bf358a0...
Target LEVEL0 RTL --> Assumed kernel SIMD width is 32 
Target LEVEL0 RTL --> Preferred team size is multiple of 64
Target LEVEL0 RTL --> Loop 0: lower bound = 0, upper bound = 91124, Stride = 1 
Target LEVEL0 RTL --> Team sizes = {64, 1, 1}
Target LEVEL0 RTL --> Number of teams = {1424, 1, 1}
Target LEVEL0 RTL --> Kernel Pointer argument 0 (value: 0xff00ffffff400000) was set successfully for device 0. 
Target LEVEL0 RTL --> Kernel Scalar argument 7 (value: 0x00000000000163f5) was set successfully for device 0.
...
Target LEVEL0 RTL --> Kernel Scalar argument 9 (value: 0x00000000000163f5) was set successfully for device 0. 
Target LEVEL0 RTL --> Kernel Scalar argument 26 (value: 0x00000000000163f5) was set successfully for device 0. 
Target LEVEL0 RTL --> Kernel Scalar argument 27 (value: 0x00000000000163f5) was set successfully for device 0. 
Target LEVEL0 RTL --> Submitted kernel 0x000000000c4fc420 to device 0
Target LEVEL0 RTL --> Executed kernel entry 0x000000000bf358a0 on device 0
...
Libomptarget --> Looking up mapping(HstPtrBegin=0x0000153919c6e900, Size=729000)...
Libomptarget --> Mapping exists with HstPtrBegin=0x0000153919c6e900, TgtPtrBegin=0xff00ffffff400000, Size=729000, DynRefCount=1 (decremented), HoldRefCount=0 
Libomptarget --> There are 729000 bytes allocated at target address 0xff00ffffff400000 - is not last
Libomptarget --> Entering target region with entry point 0x0000000000ef14bc and device Id 0
Libomptarget --> Call to omp_get_num_devices returning 1 
Libomptarget --> Call to omp_get_num_devices returning 1 
Libomptarget --> Call to omp_get_initial_device returning 1 
Libomptarget --> Checking whether device 0 is ready.
Libomptarget --> Is the device 0 (local ID 0) initialized? 1 
Libomptarget --> Device 0 is ready to use.
Libomptarget --> Entry 0: Base=0x0000000007f790b0, Begin=0x0000000007f790b0, Size=8, Type=0x223, Name=v_xc_$ETXC
...
Libomptarget --> Entry 6: Base=0x00007ffdbac90900, Begin=0x00007ffdbac90908, Size=88, Type=0x5000000000001, Name=v_xc_$VX_dv_len
...
Libomptarget --> Entry 54: Base=0x0000000000000000, Begin=0x0000000000000000, Size=0, Type=0x120, Name=unknown 
Libomptarget --> Looking up mapping(HstPtrBegin=0x0000000007f790b0, Size=8)...
Target LEVEL0 RTL --> Ptr 0x0000000007f790b0 requires mapping
Libomptarget --> Creating new map entry with HstPtrBegin=0x0000000007f790b0, TgtPtrBegin=0xff00fffffffa0800, Size=8, DynRefCount=1, HoldRefCount=0, Name=v_xc_$ETXC
Libomptarget --> Moving 8 bytes (hst:0x0000000007f790b0) -> (tgt:0xff00fffffffa0800) 
Target LEVEL0 RTL --> Copied 8 bytes (hst:0x0000000007f790b0) -> (tgt:0xff00fffffffa0800) 
Libomptarget --> There are 8 bytes allocated at target address 0xff00fffffffa0800 - is new 
Libomptarget --> Looking up mapping(HstPtrBegin=0x0000000007f7aed0, Size=8)...
Libomptarget --> Moving 8 bytes (hst:0x0000000007f7aed0) -> (tgt:0xff00fffffffa02c0) 
Target LEVEL0 RTL --> Copied 8 bytes (hst:0x0000000007f7aed0) -> (tgt:0xff00fffffffa02c0)
Libomptarget --> Mapping exists (implicit) with HstPtrBegin=0x0000153919d22980, TgtPtrBegin=0xff00ffffff700000, Size=729000, DynRefCount=2 (incremented), HoldRefCount=0, Name=v_xc_$V 
Libomptarget --> There are 729000 bytes allocated at target address 0xff00ffffff700000 - is not new
Libomptarget --> Looking up mapping(HstPtrBegin=0x00007ffdbac90900, Size=96)...
Libomptarget --> Mapping exists with HstPtrBegin=0x00007ffdbac90900, TgtPtrBegin=0xff00fffffff80500, Size=96, DynRefCount=2 (incremented), HoldRefCount=0, Name=v_xc_$VX 
Libomptarget --> There are 96 bytes allocated at target address 0xff00fffffff80500 - is not new



OpenMP5.x:standardreadytocompetewithOpenACC

Hierarchical parallelism Unified Shared Memory

#pragma omp target teams distributefor (...) {#pragma omp parallel for for ( ...) {for (...) {#pragma omp simd for (...) {for (...) {

#pragma omp requires unified_addressA = omp_target_alloc_shared(...);

Or explicit control of data movement

}}}}} int *arr_host = malloc(...);
int *arr_device = omp_target_alloc_device(...); 
#pragma omp target is_device_ptr(arr_device) 
#pragma omp target map(tofrom: arr_host[0:N])



OneMKL



oneMKLdefinescommoninterfacetomultipletargets

// C := alpha*(AxB)+ beta*C

gemm(q,
transA, transB,
m, n, k, alpha,
A, ldA, B, ldB,
beta, C, ldC);

GEMM is called from the host

Call is routed to appropriate library by 
the queue

Dispatch can be dynamic or
determined statically



ThankYou
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