
Locally generalised multi-agent reinforcement
learning for demand and capacity balancing with
customised neural networks

Yutong CHEN a,b, Minghua HU a, Yan XU b,∗, Lei YANG a

a College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
b School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, MK43 0AL, United Kingdom

KEYWORDS

Demand and capacity
balancing;
Air traffic flow management;
Multi-agent reinforcement
learning;
Deep Q-learning network;
Ground delay program;
Flight delays;
Generalisation

Abstract Reinforcement Learning (RL) techniques are being studied to solve the Demand and Capacity
Balancing (DCB) problems to fully exploit their computational performance. A locally generalised Multi-
Agent Reinforcement Learning (MARL) for real-world DCB problems is proposed. The proposed method
can deploy trained agents directly to unseen scenarios in a specific Air Traffic Flow Management (ATFM)
region to quickly obtain a satisfactory solution. In this method, agents of all flights in a scenario form a multi-
agent decision-making system based on partial observation. The trained agent with the customised neural
network can be deployed directly on the corresponding flight, allowing it to solve the DCB problem jointly.
A cooperation coefficient is introduced in the reward function, which is used to adjust the agent’s cooperation
preference in a multi-agent system, thereby controlling the distribution of flight delay time allocation. A
multi-iteration mechanism is designed for the DCB decision-making framework to deal with problems
arising from non-stationarity in MARL and to ensure that all hotspots are eliminated. Experiments based
on large-scale high-complexity real-world scenarios are conducted to verify the effectiveness and efficiency
of the method. From a statistical point of view, it is proven that the proposed method is generalised within
the scope of the flights and sectors of interest, and its optimisation performance outperforms the standard
computer-assisted slot allocation and state-of-the-art RL-based DCB methods. The sensitivity analysis
preliminarily reveals the effect of the cooperation coefficient on delay time allocation.

1. Introduction

Recently, one of the major concerns in the global development of
civil aviation is the growing imbalance between increasing total
traffic volume and saturated airspace accommodation, also known
as the demand-capacity mismatch. If demand exceeds capacity in a
sector for a certain period, hotspots will arise, resulting in increased
loads on controllers, congestion in airspace, and flight delays1. As
a result, balancing demand and capacity has become a vital issue
for the aviation industry. DCB is one of the seven operational
concepts of Air Traffic Management (ATM)2. According to Single
European Sky ATM Research (SESAR), DCB will play an essential
role in the future air traffic management system as part of network
management and can help to reduce flight delays3,4.

DCB is also known as ATFM or Air Traffic Flow and Capacity

∗Corresponding author
Email addresses: chenyutong@nuaa.edu.cn (Yutong CHEN),

minghuahu@nuaa.edu.cn (Minghua HU), yanxu@cranfield.ac.uk (Yan XU
), laneyoung@nuaa.edu.cn (Lei YANG)

Management (ATFCM)5,6. Depending on the advance time of op-
eration, ATFM is divided into strategic (one year to one week), pre-
tactical (one week to one day), and tactical (day of operation)7. The
main focus of this paper is on ATFM implemented on the Day be-
fore (D-1) or on the Day (D-0) of operation. The typical operational
ways of ATFM contain Ground Delay Program (GDP)8,9, rerout-
ing10,11, separation management12,13 and their combination14,15.

ATFM methods are classified into two types based on their
solution methods: exact solution methods16,17 and approximate
solution methods18,19. In general, the advantage of exact solution
methods is obtaining a globally optimal solution. However, when
the problem is too large, such methods cannot guarantee that the
solution will be completed in a limited time. Besides, the com-
puting time highly depends on cases and can vary considerably for
DCB problems of similar problem scales16,17. As a result, exact
solution methods are hardly ever applied in practice. On the other
hand, Computer-Assisted Slot Allocation (CASA), an approximate
algorithm, is usually used in practice. CASA is commonly used in
Europe, and it is similar to the Ration By Schedule (RBS) approach
as applied in the United States. Approximation solution methods

mailto:chenyutong@nuaa.edu.cn
mailto:minghuahu@nuaa.edu.cn
mailto:yanxu@cranfield.ac.uk
mailto:laneyoung@nuaa.edu.cn

2 Y. Chen et al.

typically employ some heuristic framework or algorithm to find a
locally optimal solution in a reasonable amount of time. The com-
putation time of approximation solution methods is less sensitive to
problem scale than exact solution methods. However, local optimal
solutions are often not readily accepted because there is frequently
a significant gap between the local and the global optimal solu-
tion. Thus, a DCB method capable of obtaining solutions with high
optimisation performance in a short time is highly desired.

In recent years, reinforcement learning techniques have gradu-
ally been tried to solve DCB problems to find a good balance be-
tween computing speed and optimisation performance. RL methods
train agents to obtain strategies through a large number of training
scenarios and then deploy trained agents to an actual scenario prob-
lem to make quick decisions so that the solution can be obtained in
a short time. It is equivalent to transferring a significant amount of
solution time to the training stage, allowing it to respond quickly to
actual scenarios in operation. Hence, RL-based methods have the
advantage of being faster in the calculation compared with exact
solution methods. Moreover, compared with approximation solu-
tion methods, RL-based methods have potential to obtain a better
approximate solution. It is because approximate solution methods
such as CASA are rule-based algorithms designed based on hu-
man experience, which is likely to limit optimality. RL methods
were initially explored in the field of DCB. However, up to our best
knowledge, it is challenging for existing RL-based DCB methods to
solve the DCB problem with large-scale high-complexity real-world
scenarios in a short time by directly deploying trained agents. For
some existing RL-based DCB methods, it is impossible to deploy
trained agents to unseen scenarios because of the model’s scalabil-
ity. For others, it is not trivial to achieve satisfactory solutions in
unseen scenarios because of model design structure (please refer to
Table 1 and corresponding discussions for details). Therefore, these
methods must retrain the agent if they intend to effectively solve the
DCB problem for an unseen scenario. However, training the agent
is time-consuming, which offsets the advantage of RL methods.

Therefore, we propose a locally generalised MARL for real-
world DCB problems to fill the gap. Our method can deploy trained
agents directly to unseen scenarios in a specific ATFM region to
obtain a satisfactory solution quickly (where ‘locally’ corresponds
to ‘a specific ATFM region’). In this method, a distributed decision
system is constructed by deploying a customised neural network on
each flight to handle the specificity of each flight in DCB problems.
The cooperation coefficient is introduced to control the degree of co-
operation between flights. A multi-iteration mechanism is designed
to deal with problems arising from non-stationarity in MARL.

This paper is organised as follows. In the rest of Section 1, we
provide a brief review of related work and introduce features and
contributions of our method. Section 2 introduces notations and for-
mulates the DCB problem. In Section 3, we discuss the construction
of the reinforcement learning environment, the architecture of the
network, the training method of the neural network, and the multi-
iteration mechanism. In Section 4, we show the MARL training
process, the performance test results, and the cooperation coeffi-
cient sensitivity analysis through simulation experiments. Finally,
conclusions and future work are summarised in Section 5.

1.1. Related work
Much research has been done on DCB problems, and some review
articles provide good summaries of the current research progress20–22.
RL methods were explored in various fields of ATM because they
can solve a problem in a short time after completing training, such
as conflict resolution23–25, collision avoidance26–28 and assistant

control tool29–31. Due to the advantage of responding quickly
in real scenarios, RL methods have excellent research value and
potential for application in real-world DCB problems. Several rep-
resentative RL-based DCB methods are summarised in Table 1, and
the relevant explanations for this table are given as follows:

(1) Agent: Artificial intelligence with decision-making ability.
- Number: The number of agents in the system, where S

and M refer to single and multiple, respectively.
- Role: The agent’s role in the DCB problem, where C and

F refer to controllers and flights, respectively.
- Mode: The operating mode of agents, where C and D

refer to centralized and decentralized (distributed), re-
spectively.

(2) RL method: The method used to train the agent’s policy, e.g.,
Q-table, Temporal-Difference (TD) learning, Q-learning, Deep
Q-Learning (DQN), Proximal Policy Optimisation (PPO) and
Asynchronous Advantage Actor-Critic (A3C).

(3) Sharing policy: Whether agents share the neural network pa-
rameters in the multi-agent system.

(4) Generalisation: Whether the method is generalised in a specific
ATFM region. L1 means that the trained agent can be deployed
directly to unseen scenarios (the model is scalable), but there
is no guarantee that a satisfactory solution will be obtained. L2
means that the trained agent can obtain a satisfactory solution
based on L1.

(5) ATFM method: Operational ways of ATFM, where GDP refers
to ground delay program, and MIT refers to Miles-in-trail (a
kind of separation management).

(6) Sector opening scheme: Whether the sector structure changes
over time, as in the real world.

(7) Uncertainty: Whether to consider the uncertainty of demand
and capacity forecasts and the uncertainty of flight.

(8) Elimination: Whether all hotspots can be guaranteed to be
eliminated.

(9) Experimental scenario: The most complex and realistic exper-
imental scenario in the study.

- Real-world: Whether the experiment was based on real-
world data, including flights and sectors.

- Hotspot: The initial number of hotspots.
- Flight scale: The number of flights (round by 100).
- Sector scale: The number of sectors.

(10) Symbol descriptions: checkmark (✓) and circle (◦) respectively
mean that the method has and does not has the corresponding
feature. N/A means that the feature or parameter is not appli-
cable to the method or is not disclosed in the study.

Please note that if there are several extended methods (or variants
of the basic method) introduced in a study, only the one with the
highest comprehensive performance is shown in the table.

Crespo et al.32 trained a single agent through RL to centrally
assign flight delays to several airports (all flights at the same airport
are delayed by the same time). Due to the limitation of the Q table,
this agent can only be deployed for problems with specific sectors
and airports. Agogino and Tumer33 deployed agents on several
route nodes around overloaded sectors, forming a distributed multi-
agent system and employing the Miles-in-trail (MIT) method to
adjust the distance between flights passing through the same node
for ATFM purposes. Kravaris et al.34 proposed a collaborative
RL framework for DCB, which deploys an agent on each flight.

Locally generalised multi-agent reinforcement learning for demand and capacity balancing with customised neural networks 3

Table 1 Features of DCB methods based on RL 32–42

No. Study Agent RL
method

Sharing
policy

General-
isation

ATFM
method

Sector
opening
scheme

Uncer-
tainty

Elimi-
nation

Experimental scenario

Number Role Mode Real
world Hotspot

Flight
scale
(103)

Sector
scale

1 Crespo32 S C C Q-table N/A N/A GDP ◦ ◦ ◦ ✓ N/A N/A 10
2 Agogino33 M C D TD learning ◦ N/A MIT ◦ ◦ ◦ ✓ N/A 1.3 N/A
3 Kravaris34 M F D Q-learning ◦ N/A GDP ◦ ◦ ◦ ◦ N/A 1 16
4 Spatharis35,36 M F D Q-learning ◦ N/A GDP ✓ ◦ ◦ ✓ 53 6 169
5 Duong37 M C D Q-learning ◦ N/A GDP ◦ ◦ ◦ ✓ N/A 0.4 N/A
6 Spatharis38,39 M F D Q-learning ◦ N/A GDP ✓ ◦ ◦ ✓ 53 6 N/A
7 Chen40 M F D DQN ◦ N/A GDP ◦ ◦ ◦ ◦ 54 3 16
8 Tang41 M F D PPO ✓ L1 GDP ◦ ◦ ✓ ✓ 31 8.2 356
9 Huang42 M F D A3C ✓ L1 GDP ◦ ◦ ✓ ✓ 31 8.2 356
10 This paper M F D DQN ◦ L2 GDP ✓ ◦ ✓ ✓ 186 12 396

In Kravaris’ method, each flight makes a decision independently
without communicating with other flights. However, the effective-
ness of this method has only been demonstrated in one tiny toy case.
Spatharis et al.35,36 further enhanced Kravaris’ method and verified
their method’s effectiveness in real-world scenarios with high com-
plexity. Duong et al.37 presented a blockchain-based RL method
for ATFM. Like Crespo’s method, the agent in Duong’s method
plays a controller to assign delays to flights at its responding air-
port, and each agent is responsible for only one airport. Spatharis
et al.38,39 proposed and extended a hierarchical MARL learning
scheme for DCB problems, which constructed two states for agents:
the ground state and abstract state. A common shortcoming of
the six studies mentioned above is that they all employed RL al-
gorithms as a search algorithm; that is, the process of training is
used as the process of solving. Therefore, these methods are not
generalised, and the advantages of reinforcement learning in terms
of rapid response are not available for the above methods. Besides,
because of the non-stationarity in MARL, they cannot guarantee
that the agents will always be able to eliminate all hotspots. Thanks
to the development of deep neural networks in reinforcement learn-
ing applications, the DCB methods with deep neural networks have
been further enhanced. Chen et al.40 validated the effectiveness
of the Deep Q-learning Network (DQN) in the RL-based DCB
method. However, the experiments are not based on real-world sce-
narios, and the generalisation of the method has not been verified.
Tang and Xu41 integrated an action supervisor into a rule-based
time-step DCB method using Proximal Policy Optimisation (PPO).
Tang’s method forces the agent to change its action when it chooses
an action that would cause a hotspot to ensure that hotspots are
eliminated. However, the addition of an action supervisor has led
to a significant increase in delays. Huang and Xu42 presented a
hotspot-based DCB method with Asynchronous Advantage Actor-
Critic (A3C), and this method ensures that hotspots are eliminated
by allocating multiple delays. Despite Tang’s and Huang’s meth-
ods attempting to deploy trained agents to unseen scenarios, their
method cannot be considered highly generalised due to potential
flaws in the model design. For Tang’s method, the observation
matrix seems so sparse that it limits agent learning. For Huang’s
method, sector IDs are used as part of the agent observations and
the ID as a code is not computationally meaningful.

In summary, it is difficult to deploy agents trained by these
existing methods in Table 1 directly to an unseen scenario and
obtain a satisfactory solution quickly. Therefore, there is an urgent
need to improve the generalisation of RL-based DCB methods.

1.2. Proposed method
This paper serves as an extension of our previous study40. In this
paper, a locally generalised MARL method for DCB where each
agent has a customised neural network is proposed (the features of
our method are also summarised in Table 1).

Generalisation is one of the most critical indicators of RL meth-
ods. To our knowledge, this is a dilemma for the DCB problem,
however. On the one hand, the scale of each DCB problem (the
number of flights or sectors) is different, while the dimension of the
observation matrix in an RL method is usually required to be fixed.
On the other hand, maybe we could technically remove the limitation
of the observation matrix. However, completely homogenising in-
dividuals in large-scale DCB problems could significantly decrease
the solver’s optimisation performance and make it difficult to meet
the differentiated preferences of different flights. Hence, a balance
needs to be found in this dilemma to maximise the advantages of
the RL method.

Considering that flight schedules for commercial flights are
usually cyclical, we can train an agent with a customised neural
network for each flight schedule and deploy it in any scenario that
contains that flight. Our method has both a local generalisation and
the optimisation performance improvement led by heterogeneous
individuals in the multi-agent system. We set the cooperation co-
efficient in the reward function to adjust the cooperation preference
of the flight, thereby adjusting the distribution of the global delay
time allocation. Our neural network outputs are only two discrete
actions. We employ the state-of-the-art algorithm based on DQN,
Rainbow DQN43, which significantly improves RL efficiency by
integrating multiple DQN enhancement technologies. Besides, we
design a multi-iteration mechanism for the DCB decision-making
framework to deal with problems arising from non-stationarity in
MARL, thereby enabling the solver to eliminate hotspots.

1.3. Summary of contributions
(1) Trained agents of the proposed method can be deployed directly

to unseen scenarios in a specific ATFM region to obtain a
satisfactory solution quickly.

(2) A cooperation coefficient is introduced to adjust the distribution
of flight delay time allocation.

(3) A multi-iteration mechanism is designed for the DCB decision-
making framework to enable the solver to eliminate all hotspots.

(4) Systematic experiments based on large-scale high-complexity
real-world scenarios are performed to verify the proposed method’s
effectiveness and efficiency.

4 Y. Chen et al.

2. Problem formulation

The demand and capacity balancing problem to be handled in this
article is ensuring that the number of flights entering the sector
per unit time does not exceed its capacity (that is, all hotspots are
eliminated) by implementing the ground delay program before the
operation.

2.1. Demand and capacity
All initial flight schedules can be obtained one day before the flight
operation. The flight schedule of the 𝑖th flight is denoted by 𝑓𝑖 ,
which consists of a set of binary arrays, as shown in Fig. 1:

Fig. 1 Flight schedule

𝑓𝑖 =
{(
𝑒𝑖 𝑗 , 𝑡𝑖 𝑗

)
| 𝑗 = 1, 2, ..., 𝑀𝑖

}
𝑖 ∈ 𝐼 (1)

where 𝑒𝑖 𝑗 denotes the 𝑗 th sector through which the 𝑖th flight is
scheduled to pass, 𝑡𝑖 𝑗 denotes the time of entry into that sector,
𝑀𝑖 denotes the number of sectors through which the 𝑖th flight is
scheduled to pass, and 𝐼 denotes the set of flights. The set of initial
flight schedules 𝐹Initial is represented as

𝐹Initial = { 𝑓𝑖 |𝑖 ∈ 𝐼 } (2)

To simplify the problem, we only consider the current day’s flight
segments and use the next day’s flight segments as input to the DCB
problem the following day. Every sector has its specific capacity,
which changes over time, and the update circle is 𝜏 (typically 20
min). As a result, one day is divided into 𝑁T time windows of
𝜏 width (𝑁T × 𝜏 = 24 hours), with 𝐶 𝑗𝑡 denoting the capacity of
the 𝑗 th sector in the 𝑡th time window. 𝑊𝑡 denotes the time range
of the 𝑡th time window, where 𝑇 is the set of time windows and
𝑇 =

{
1, 2, ..., 𝑁T}:

𝑊𝑡 = [(𝑡 − 1) 𝜏, 𝑡𝜏) 𝑡 ∈ 𝑇 (3)

For example, if the width of time windows 𝜏 is 20 min, the time
range of the 10th time window is [180, 200), which corresponds to
03:00–03:20 of the operation day (not including 03:20).

In practice, sectors are divided into two types, elementary sec-
tors and collapsed sectors. An elementary sector is the most funda-
mental sector unit in the airspace, while a collapsed sector comprises
several adjacent elementary sectors. The basic sector units operate
as elementary sectors or collapsed sectors depending on the sec-
tor opening scheme. In this paper, the sector opening scheme is
considered, and the state of the sectors changes over time windows.

For example, in a sector opening scheme as shown in Fig. 2,
there are four elementary sectors (𝑒1, 𝑒2, 𝑒3 and 𝑒4) and two col-
lapsed sectors (𝑒5 and 𝑒6). 𝑒5 is made up of 𝑒2 and 𝑒3. 𝑒6
is made up of 𝑒3 and 𝑒4. If the 𝑗 th sector is closed in the
𝑡th time window, 𝐶 𝑗𝑡 equals 0. The 𝑖th flight is scheduled to

Fig. 2 Sector opening scheme

pass through the four elementary sectors in turn, and their entry
times, respectively, are 𝑡1, 𝑡2, 𝑡3 and 𝑡4. 𝑓𝑖 will be represented
as {(𝑒1, 𝑡1) , (𝑒2, 𝑡2) , (𝑒5, 𝑡2) , (𝑒3, 𝑡3) , (𝑒6, 𝑡3) , (𝑒4, 𝑡4)}. 𝐷 𝑗𝑡 de-
notes the demand of the 𝑗 th sector in the 𝑡th time window. It is
defined as the number of flights entering the 𝑗 th sector in the 𝑡th
time window. Please note that when calculating 𝐷 𝑗𝑡 , only the time
the flight enters the sector is considered, regardless of how long it
will be in that sector. For example, if the 𝑖th flight is scheduled to
enter the 𝑗 th sector in the 𝑡th time window and leave in the (𝑡 + 2)th
time window, it is only taken as the demand of the 𝑗 th sector in the
𝑡th time window, but not the (𝑡 + 1)th and (𝑡 + 2)th time windows.
If the 𝑗 th sector is closed in the 𝑡th time window, both 𝐶 𝑗𝑡 and 𝐷 𝑗𝑡

equal 0. 𝑆 denotes the sector opening scheme, where 𝐽 denotes the
set of sectors:

𝑆 =
{
𝐶 𝑗𝑡 | 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇

}
(4)

In summary, the DCB problem in this paper is defined as bal-
ancing the traffic demand with the airspace capacity through shifting
flight take-off time to avoid hotspots. The sector opening scheme
is considered. The optimisation objective is to minimise the total
delay time for all flights.

2.2. Partially observable decision-making
We propose a multi-agent decision-making framework to tackle the
DCB problem through the MARL method, as shown in Fig. 3. All
flights are divided into 𝑁𝑇 groups according to the time window to
which their scheduled departure time belongs. Each flight will be
decided to depart or hold in this time window from the first time
window by the agent deployed on the flight. In each time window,
the agents are distributed. If the flight is decided to hold, it will
be delayed for 𝜏, moving to the next time window. Time windows
are operated sequentially until all flights get their departure time or
are delayed until the next day. The DCB problem is formulated as
a partially observable decision-making problem in our method. A
flight in the current time window 𝑡 has access to an observation 𝒐𝑖𝑡 ,
which only provides partial knowledge about the environment and
computes a decision-making action 𝑎𝑖𝑡 that tries to avoid hotspots.

In our formulation, the observation 𝒐𝑖𝑡 is drawn from the global
state 𝒔𝑖𝑡 (𝒐𝑖𝑡 ∼ O

(
𝒔𝑖𝑡
)
), and it only provides partial information about

the state 𝒔𝑖𝑡 . It is easy to obtain the global state 𝒐𝑖𝑡 in our model, but

Locally generalised multi-agent reinforcement learning for demand and capacity balancing with customised neural networks 5

Fig. 3 Multi-agent decision-making framework (top-level framework of the proposed method) where all agents are distributed.

the dimensions of the global state are too large. For example, the
global state 𝒐𝑖𝑡 is represented by an 𝑀 × 𝑁 matrix; 𝑀 and 𝑁 denote
the number of sectors and flights, respectively; the elements in the
matrix are 𝑡𝑖 𝑗 . If so, for example, in a scenario with 10000 flights
and 400 sectors, the dimensions of the global state are 10000×400,
that is, 4 × 106 elements are contained. Technically, convolutional
neural networks can reduce the dimensionality of the global state.
However, we found by experiments that the optimisation results were
not satisfactory if using convolutional neural networks. It may be
due to the loss of crucial information in the global state during the
convolution process, which severely limits decision optimisation.
Hence, partial observation is applied in our method to keep the
dimensions of observation in an acceptable range.

When flights are in the current time window, given the par-
tial observation 𝒐𝑖𝑡 , each flight independently computes a decision-
making action 𝑎𝑖𝑡 , sampled from its specific policy 𝝅𝑖

𝜃𝑖
, where 𝜃𝑖

denotes the policy parameters:

𝑎𝑖𝑡 ∼ 𝝅𝑖𝜃𝑖

(
𝑎𝑖𝑡

���𝒐𝑖𝑡) (5)

𝚷Θ denotes the set of policies, where Θ is the parameter:

𝚷Θ =

{
𝝅𝑖𝜃𝑖 |𝑖 ∈ 𝐼

}
(6)

We can take 𝚷Θ as a DCB solver, and 𝚷𝜃

(
𝐹Initial |𝑆

)
denotes the

optimal solution of the solver for the DCB problem with the initial
flight schedules 𝐹Initial and the sector opening scheme 𝑆, where
Δ𝑡𝑖 denotes how long the 𝑖th flight is expected to be delayed in its
departure airport:

𝚷Θ

(
𝐹Initial |𝑆

)
= {Δ𝑡𝑖 |𝑖 ∈ 𝐼 } (7)

Δ𝑡𝑖 = 𝑘𝜏, where 𝑘 is a non-negative integer in our model. 𝑓𝑖 (Δ𝑡𝑖)
denotes the flight schedule of the 𝑖th flight with the implementation
of GDP:

𝑓𝑖 (Δ𝑡𝑖) =
{(
𝑒𝑖 𝑗 , 𝑡𝑖 𝑗 + Δ𝑡𝑖

)
| 𝑗 ∈ 𝐽𝑖

}
(8)

The set of flight schedules that meets DCB requirements can be
represented as

𝐹 =

 𝑓𝑖 (Δ𝑡𝑖) 𝑖 ∈ 𝐼

������Δ𝑡𝑖 ∼ 𝚷Θ

(
𝐹Initial |𝑆

)
𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 :

𝐷 𝑗𝑡 ≤ 𝐶 𝑗𝑡

 (9)

To find an optimal policy, we adopt an objective by minimizing
the expectation of the average delay time of all flights in the same
scenario, which is defined as

arg min
𝚷Θ

𝐸

[
1
𝑁

∑︁
𝑖∈𝐼

Δ𝑡𝑖 |𝚷Θ

]
(10)

where 𝑁 is the number of flights. The average delay time will also
be an essential metric to evaluate the trained policy in Section 4.

3. Approach

In this section, we first introduce the key ingredient of our rein-
forcement learning setup. Then, the detail of the architecture of
the policy network based on a neural network is proposed. Next,
we present the MARL training algorithm based on Rainbow DQN
and the design of training scenarios. Finally, we discuss the multi-
iteration mechanism.

3.1. Reinforcement learning setup
We assume all flights in the environment are heterogeneous to tackle
the DCB problem through the MARL method. Each flight has
different aircraft types, routes, and preferences. More importantly,
most commercial flight plans are generally repeated every week, and
there is a limited amount of flight routes in the real world. Thus,
we treat all flights over time as a set of flights based on historical
data and train an agent for each flight using reinforcement learning
methods. If so, we can solve DCB problems based on a subset of this
set of flights by deploying corresponding agents to flights. Based
on the problem formulation in Section 2.2, the DCB problem can
be transferred into a Partially Observable Markov Decision Process
(POMDP) solved with MARL. A POMDP can be described as a
six-tuple (S,A,P,R,𝛀,O). S is the state space, A is the action
space, P is the state-transition model, R is the reward function, 𝛀 is
the observation space (𝒐 ∈ 𝛀), and O is the observation probability
distribution given the system state (𝒐 ∼ O(𝒔)), where 𝒔 is the global
state. An agent is deployed on each aircraft in this environment, and
all the agents form a distributed decision-making system. Therefore,
a multi-aircraft state-transition modelP determined by the aircraft’s
delay time and uncertainty is unnecessary. The action spaceA, the
observation space𝛀 and the reward functionR are defined as below.

3.1.1. Action space
As mentioned in Section 2.2, there are two actions for agent 𝑖 to
choose; namely, 𝑎𝑡

𝑖
∈ {0, 1}. When 𝑎𝑡

𝑖
= 0, it means to hold; when

𝑎𝑡
𝑖
= 1, it means to choose to take off. If the agent chooses to hold

6 Y. Chen et al.

on the ground, it will be delayed by a time window width time (𝜏)
moving to the next time window; if the agent chooses departure,
its departure time will be determined as the currently scheduled
departure time.

3.1.2. State space
In our model, the observation 𝒐𝑖𝑡 consists of the current state of
the sectors that the flight 𝑖 is scheduled to pass through 𝚽𝑖

𝑡 , the
current time window 𝑡 and the number of holdings that the flight
has performed ℎ𝑖𝑡 :

𝒐𝑖𝑡 =
[
𝚽𝑖

𝑡 , 𝑡, ℎ
𝑖
𝑡

]
(11)

The current state of the sectors 𝚽𝑖
𝑡 contains all the sectors that the

flight 𝑖 is scheduled to pass through:

𝚽𝑖
𝑡 =

{
𝝓 𝑗𝜒𝑖𝑡

𝑗
| 𝑗 ∈ 𝐽𝑖

}
(12)

where 𝝓 𝑗𝜒𝑖𝑡
𝑗

denotes the state of sector 𝑗 in time window 𝜒𝑖𝑡
𝑗

, and

𝜒𝑖𝑡
𝑗

represents the time window when flight 𝑖 will enter sector 𝑗

if it takes off in time window 𝑡. 𝝓 𝑗𝜒𝑖𝑡
𝑗

consists of the remaining

capacity 𝑐
Remaining
𝑗𝜒𝑖𝑡

𝑗

and potential demand 𝑑Potential
𝑗𝜒𝑖𝑡

𝑗

of sector 𝑗 in

time window 𝜒𝑖𝑡
𝑗

:

𝝓 𝑗𝜒𝑖𝑡
𝑗
=

[
𝑐

Remaining
𝑗𝜒𝑖𝑡

𝑗

, 𝑑Potential
𝑗𝜒𝑖𝑡

𝑗

]
(13)

𝑐
Remaining
𝑗𝜒𝑖𝑡

𝑗

is represented as:

𝑐
Remaining
𝑗𝜒𝑖𝑡

𝑗

=

𝐶 𝑗𝜒𝑖𝑡

𝑗
− ∑

𝑖′∈𝐼Departure
𝑡−1

𝜓𝑖′

𝑗𝜒𝑖𝑡
𝑗

𝐶 𝑗𝜒𝑖𝑡
𝑗
> 0

0 otherwise
(14)

where 𝐶 𝑗𝜒𝑖𝑡
𝑗

is the capacity of sector 𝑗 in time window 𝑗 𝜒𝑖𝑡
𝑗

,

𝐼
Departure
𝑡−1 is the set of flights departing before or in time window
(𝑡 − 1) and 𝜓𝑖′

𝑗𝜒𝑖𝑡
𝑗

is a binary parameter. If flight 𝑖′ enters sector 𝑗 in

time window 𝜒𝑖𝑡
𝑗

, then 𝜓𝑖′

𝑗𝜒𝑖𝑡
𝑗

= 1; otherwise, 𝜓𝑖′

𝑗𝜒𝑖𝑡
𝑗

= 0. Therefore,

𝑐
Remaining
𝑗𝜒𝑖𝑡

𝑗

refers to the remaining capacity based on the demand that

has been identified so far. If sector 𝑗 is not open in time window
𝜒𝑖𝑡
𝑗

(that is, 𝐶 𝑗𝜒𝑖𝑡
𝑗
= 0), the remaining capacity 𝑐

Remaining
𝑗𝜒𝑖𝑡

𝑗

will be

set to zero. 𝑑Potential
𝑗𝜒𝑖𝑡

𝑗

is represented as

𝑑Potential
𝑗𝜒𝑖𝑡

𝑗

=

{ ∑
𝑖′∈𝐼𝑡

𝜁 𝑖
′

𝑗𝜒𝑖𝑡
𝑗

𝐶 𝑗𝜒𝑖𝑡
𝑗
> 0

0 otherwise
(15)

where 𝐼𝑡 is the set of flights in time window 𝑡 currently, and 𝜁 𝑖
′

𝑗𝜒𝑖𝑡
𝑗

is

a binary parameter. If flight 𝑖′ chooses to take off in time window 𝑡

and enters sector 𝑗 in time window 𝜒𝑖𝑡
𝑗

, then 𝜁 𝑖
′

𝑗𝜒𝑖𝑡
𝑗

= 1; otherwise,

𝜁 𝑖
′

𝑗𝜒𝑖𝑡
𝑗

= 0. Therefore, 𝑑Potential
𝑗𝜒𝑖𝑡

𝑗

refers to the potential demand based

on the assumption that all flights in time window 𝑡 choose to take
off in the current time window. Similar to 𝑐

Remaining
𝑗𝜒𝑖𝑡

𝑗

, if sector 𝑗 is

not open in time window 𝜒𝑖𝑡
𝑗

, the potential demand 𝑑Potential
𝑗𝜒𝑖𝑡

𝑗

will

be set to zero.

As mentioned in Section 2.1, since our method only considers
flight segments on the operation day, no sector opening scheme
for the next day is inputted in the solver. However, as the flight
is delayed in the decision-making framework, part of the flight
segment may be moved to the next day. To handle this problem, we
set the corresponding remaining capacity 𝑐

Remaining
𝑗𝜒𝑖𝑡

𝑗

and potential

demand 𝑑Potential
𝑗𝜒𝑖𝑡

𝑗

to zero for any part on the next day.

The number of elements in observation 𝒐𝑖𝑡 is (2𝑀𝑖 + 2), where
𝑀𝑖 denotes the number of sectors that flight 𝑖 is scheduled to pass
through. The size of observation 𝒐𝑖𝑡 is much smaller than the global
state 𝒔𝑖𝑡 (mentioned in Section 2.1).

3.1.3. Reward design
Our objective is to avoid overloads and minimise the mean delay
time of all flights. A reward function is designed to guide a set of
flights to achieve this objective. 𝑟𝑖𝑡 denotes the reward for action 𝑎𝑖𝑡 ,
which is received by flight 𝑖 at time window 𝑡. 𝑟𝑖𝑡 is represented as
a sum of three terms:

𝑟𝑖𝑡 =

(
𝑟Overload

) 𝑖
𝑡
+
(
𝑟Optimisation

) 𝑖
𝑡
+
(
𝑟Holding

) 𝑖
𝑡

(16)

where
(
𝑟Overload

) 𝑖
𝑡

is used to avoid overloads;
(
𝑟Optimisation

) 𝑖
𝑡

is

used to reduce the total delay time;
(
𝑟Holding

) 𝑖
𝑡

is used to adjust the
distribution of delays.

Specifically, when flight 𝑖 chooses to take off and thus causes
overloading of any sector it is scheduled to pass through, it is pe-

nalised by
(
𝑟Overload

) 𝑖
𝑡
:(

𝑟Overload
) 𝑖
𝑡
=

{
−𝜅 × 𝜎𝑖

𝑡 𝑎𝑖𝑡 = 1
0 otherwise (17)

where 𝜅 is the overload penalty coefficient, and 𝜎𝑖
𝑡 denotes the sum

of the overloads in the sectors through which the flight 𝑖 is scheduled
to pass based on the actions of flights 𝑖 ∈ 𝐼Departure

𝑡 :

𝜎𝑖
𝑡 =

∑︁
𝑗∈𝐽𝑖
ℜ

©«
∑︁

𝑖′∈𝐼Departure
𝑡

𝜓𝑖′

𝑗𝜒𝑖𝑡
𝑗

− 𝐶 𝑗𝜒𝑖𝑡
𝑗

ª®®¬ (18)

whereℜ is the Rectified Linear Unit (ReLU) andℜ (𝑥) = max (𝑥, 0).
When flight 𝑖 chooses to take off, it will receive

(
𝑟Optimisation

) 𝑖
𝑡

based on the total delay time for all flights:(
𝑟Optimisation

) 𝑖
𝑡
=

{
− 1

𝑁

∑
𝑖′∈𝐼

ℎ𝑖
′

final 𝑎𝑖𝑡 = 1

0 otherwise
(19)

where ℎ𝑖final represents the number of times the flight 𝑖 ended up
holding and 𝑁 is the number of flights. To encourage the flight to
choose a suitable departure time based on its collaboration prefer-
ences, we give the flight 𝑟Holding for its holding:(
𝑟Holding

) 𝑖
𝑡
=

{
− 1

𝜇𝑖
× ℎ𝑖𝑡

𝑁
𝑎𝑖𝑡 = 0

0 otherwise
(20)

where 𝜇𝑖 is the coefficient of cooperation. The larger the cooper-
ation coefficient 𝜇𝑖 of flight 𝑖, the smaller the penalty it receives
per holding and the more it prefers to cooperate (to delay itself to
reduce the total delay time for all flights).

Locally generalised multi-agent reinforcement learning for demand and capacity balancing with customised neural networks 7

Note that, unlike traditional optimisation methods, reinforce-
ment learning methods cannot add constraints to the model; instead,
the constraints are transferred to the reward function. Therefore, the
reward function needs to fulfil the functions of both optimisation
objectives and constraints. The three terms of reward function 𝑟𝑖𝑡 in

our model play different roles.
(
𝑟Overload

) 𝑖
𝑡

serves as a constraint

to avoid sector overload for safety.
(
𝑟Optimisation

) 𝑖
𝑡

and
(
𝑟Holding

) 𝑖
𝑡

together serve as an optimisation objective to reduce the total delay
while considering the delay distribution.

For reward functions of RL-based DCB models, factors of in-
terest (such as safety) must be designed carefully44. Due to reward
function 𝑟𝑖𝑡 being a sum of the three terms (refer to Eq. (16)), the

weights of each part can be treated as 𝜅, 1 and 1/𝜇𝑖 for
(
𝑟Overload

) 𝑖
𝑡
,(

𝑟Optimisation
) 𝑖
𝑡

and
(
𝑟Holding

) 𝑖
𝑡
, respectively (refer to Eqs. (17),

(19) and (20)). In practice, the cooperation factor for each flight
can vary according to ATM requirements and airline preference. To
simplify the problem, we set all the cooperation coefficients to the
same value (𝜇𝑖 = 1, 𝑖 ∈ 𝐼) as a basic model, and more discussion
about the cooperation coefficient can be seen in Section 4. To fulfil

the constraint function of
(
𝑟Overload

) 𝑖
𝑡
, we set 𝜅 to 100, which is

much greater than other weights, so that it can be prioritised.
The three terms of reward function 𝑟𝑖𝑡 are negative or zero. The

closer the agent’s action is to the expectation, the closer 𝑟𝑖𝑡 is to 0. In
our method, the agent chooses the action with the greatest value; the
agent only cares about the relative value of the rewards for different
actions, regardless of whether they are positive or negative.

3.2. Network architecture
This paper’s policy network consists of a four-layer neural network
,as shown in Fig. 4. Firstly, the observation matrix 𝒐𝑖𝑡 is composed
of 𝚽𝑖

𝑡 , 𝑡 and ℎ𝑖𝑡 , where 𝚽𝑖
𝑡 is obtained by partial observation of

the environment. Then, 𝒐𝑖𝑡 is flattened as the input layer of the
neural network. The number of neurons in the input layer is equal
to the number of elements in the observation 𝒐𝑡

𝑖
, that is, (2𝑀𝑖 + 2).

The hidden 1 layer is the main hidden layer (like other standard
three-layer neural networks) which contains (𝑀𝑖 + 1) neurons. The
hidden 2.A layer and hidden 2.V layer, respectively, represent the
advantage function and the value function for the Duelling DQN
technology (please refer to Section 3.3). The hidden 2.A layer and
hidden 2.V layer consist of two neurons and one neuron, respec-
tively. The values of the output layer’s neurons are obtained by a
linear combination of the values of the neurons in the hidden 2.A
layer and hidden 2.V layer (please refer to Algorithm 1, line 9).
Therefore, the output layer consists of two neurons. The input, hid-
den 1, hidden 2.A and hidden 2.V layers are all fully connected.
The selected action 𝑎𝑖𝑡 corresponds to the neuron with the maxi-
mum value in the output layer. If the action is to hold, the flight
will be moved to the next time window. Then it repeats the above
process until it chooses departure.

3.3. Training method
3.3.1. Training algorithm
Because the proposed reinforcement learning model’s action is dis-
crete and has only two actions, DQN is ideal as an efficient rein-
forcement learning algorithm for discrete actions45. In recent years,
several DQN performance improvement techniques have been pro-
posed. We adaptively employ and combine the Double-DQN46,
Duelling DQN47 and Prioritised Replay Buffer48 to enhance the

performance of DQN, inspired by a recently proposed advanced
DQN method, Rainbow DQN43.

The algorithm of learning for DCB is summarised in Algo-
rithm 146–49. In this algorithm, each episode consists of two parts.
One is the simulation and collecting transitions (lines 4–29), and
the other is the policy update (lines 31–37).

Simulation and collecting transitions The simulation scenario
is reset first (line 4, please refer to Section 3.3.2). From the first time
window (line 5), when the current time window is on the current
day, all flights in the current time window evaluate the value of each
action 𝑄

(
𝒐𝑡
𝑖
, 𝑎; 𝜃

)
based on Duelling DQN (line 9)47 and then

choose the action 𝑎𝑖𝑡 with the greatest value by 𝜀-greedy method
(line 10). If flight 𝑖 chooses to hold, the number of its holdings will
be updated (line 12), and it will be moved to the next time window

(line 13). Next, the holding reward
(
𝑟Holding

) 𝑖
𝑡

is collected (line 15).
Then, the data of sector remaining capacity and potential demand
is updated based on actions in the current time window (line 17).
Moreover, for every action in the current time window, the number
of overloads of flight 𝑖 is calculated so that the overload reward(
𝑟Overload

) 𝑖
𝑡

can be collected (line 20). Then the next observation

𝒐𝑡+1
𝑖

is collected. The above process will be repeated in the next
time window (line 23) until all the time windows in the current day
are iterated. After that, for every action in the current episode, the

optimisation reward
(
𝑟Optimisation

) 𝑖
𝑡

is calculated and collected (line

26). Then, we collect the reward 𝑟𝑖𝑡 because we have collected each
component of it (line 27). Finally, the transition (𝒐𝑖𝑡 , 𝑎𝑖𝑡 , 𝑟𝑖𝑡 , 𝒐𝑖𝑡+1) is
stored in buffer ℘𝑖 (line 28).

Policy update Transitions stored in buffer ℘𝑖 are sampled by
SumTree, one of the key technologies in Prioritised Replay Buffer
(line 33)48. Then, the loss function 𝑙 is calculated by Double DQN
(line 34)46. Next, the evaluation network 𝜋𝑖

𝜃𝑖
is updated by gradient

descent every step (line 35), while the target network 𝜋𝑖
𝜃𝑖
′ is updated

by copying the parameters of 𝜋𝑖
𝜃𝑖

every period (line 36)46. Finally,
the trained policy 𝜋𝑖

𝜃𝑖
is obtained.

As agents in our MARL model are distributed, several parts of
the algorithm can run in parallel, including lines 7–16, lines 18–22
and lines 31–37.

3.3.2. Training scenarios
This paper’s scenario data consists of the sector opening scheme
and flight schedule. We use the real data of French and Spanish
airspace, as shown in Fig. 5. Specifically, 12187 flights on 2019-08-
27 and 12138 flights on 2019-08-28 are selected for training (a total
of 24325 flights), and a unique agent is deployed on each of them.
The sector opening schemes for each day in August 2019 (31 sector
opening schemes in total) are used for training scenarios. Three
hundred ninety-six sectors are considered, including elementary
sectors and collapsed sectors. Based on the real data mentioned
above, each training scenario comprises a set of flight schedules and
a sector opening scheme for any day. Thus, there are 62 different
training scenarios in total, and one of them is randomly selected in
each episode for training (refer to Algorithm 1, line 4).

3.4. Multi-iteration mechanism
Due to the non-stationarity in MARL, in our model, the trained
agents do not guarantee that hotspots will be wholly eliminated
with just one iteration. One iteration refers to that the trained agents
make action decisions for all flights of the day according to the

8 Y. Chen et al.

Algorithm 1 Learning to solve DCB problems46–49.
Input: The dataset of simulation scenarios, including flight schedule and sector opening scheme

1: Initialise the evaluation network 𝜋𝑖
𝜃𝑖

and target network 𝜋𝑖
𝜃𝑖
′ for flight 𝑖 ∈ 𝐼, and set hyper-parameters as shown in Table 2

2: for episode = 1, 2, ..., do
3: # Simulation and collecting transitions
4: Reset the simulation scenario
5: 𝑡 ← 0 # the first time window
6: while 𝑡 < 𝑁T do
7: for flight 𝑖 ∈ 𝐼𝑡 do
8: # in parallel

9: Evaluate each action value based on Duelling DQN: 𝑄
(
𝒐𝑖𝑡 , 𝑎; 𝜃𝑖

)
= 𝑉

(
𝒐𝑖𝑡
)
+ 𝐴

(
𝒐𝑖𝑡 , 𝑎

)
−

∑
𝑎′ ∈{0,1}

𝐴(𝒐𝑖
𝑡 ,𝑎
′)

2 , 𝑎 ∈ {0, 1} 47

10: Choose (𝜀-greedy) the action with the greatest value: 𝑎𝑖𝑡 = arg max
𝑎

𝑄
(
𝒐𝑖𝑡 , 𝑎; 𝜃𝑖

) 49

11: if 𝑎𝑖𝑡 = 0 then
12: ℎ𝑖𝑡 ← ℎ𝑖𝑡 + 1
13: Move flight 𝑖 from 𝐼𝑡 to 𝐼𝑡+1
14: end if
15: Collect the holding reward

(
𝑟Holding

) 𝑖
𝑡

16: end for
17: Update sector remaining capacity 𝑐

Remaining
𝑗𝑡

and potential demanding 𝑑Potential
𝑗𝑡

, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇
18: for every 𝑎𝑖𝑡 in this time window do
19: # in parallel

20: Calculate overloads 𝜎𝑖
𝑡 and collect overload reward

(
𝑟Overload

) 𝑖
𝑡

21: Collect the observation of the next step 𝒐𝑡+1
𝑖

22: end for
23: 𝑡 ← 𝑡 + 1 # next time window
24: end while
25: for every 𝑎𝑖𝑡 in this episode do

26: Calculate the total holding times for all flights and collect the optimisation reward
(
𝑟Optimisation

) 𝑖
𝑡

27: Collect the reward 𝑟𝑖𝑡 =

(
𝑟Overload

) 𝑖
𝑡
+
(
𝑟Optimisation

) 𝑖
𝑡
+
(
𝑟Holding

) 𝑖
𝑡

28: Store the transition (𝒐𝑖𝑡 , 𝑎𝑖𝑡 , 𝑟𝑖𝑡 , 𝒐𝑖𝑡+1) in the buffer ℘𝑖 whose capacity is 𝑛BC
29: end for
30: # Policy update
31: for flight 𝑖 ∈ 𝐼 do
32: # in parallel
33: Sample 𝑛BS transitions by Prioritised Replay Buffer (SumTree)48 from the buffer ℘𝑖

34: Calculate the loss function by Double DQN : 𝑙 =
(
𝑟𝑖
𝑡+1 + 𝛾𝑄

(
𝒐𝑖𝑡 , arg max

𝑎∗
𝑄

(
𝒐𝑖
𝑡+1, 𝑎

∗; 𝜃𝑖
)

; 𝜃𝑖 ′
)
−𝑄

(
𝒐𝑖𝑡 , 𝑎

𝑖
𝑡 ; 𝜃𝑖

))2
46

35: Update the evaluation network 𝜋𝑖
𝜃𝑖

: 𝜋𝑖
𝜃𝑖
← 𝜋𝑖

𝜃𝑖
− 𝛼 𝜕𝑙

𝜕𝜋𝑖
𝜃𝑖

every step46

36: Update the target network 𝜋𝑖
𝜃𝑖
′ : 𝜋𝑖𝜃𝑖 ′ ← 𝜋𝑖

𝜃𝑖
every 𝑛TN steps46

37: end for
38: end for
Output: Policy 𝜋𝑖

𝜃𝑖

Locally generalised multi-agent reinforcement learning for demand and capacity balancing with customised neural networks 9

Fig. 4 Architecture of policy network, showing the working process of an agent and focusing on neural network.

Fig. 5 French and Spanish sectors.

order of the time window until all flights are assigned a departure
time or delayed to the next day. Note that, to date, there are few
proven methods to handle non-stationarity in MARL effectively50.
Therefore, a multi-iteration mechanism is introduced to deal with
the problem arising from the non-stationarity in MARL. If there are
still hotspots that have not been eliminated after the first iteration,
multiple iterations are performed based on the assigned departure
time until all hotspots are eliminated. Please note that the iteration
following the first iteration differs from the first iteration. For
legibility, we call an iteration after the first iteration a subsequent
iteration. The framework of the subsequent iteration in the multi-
iteration mechanism is shown in Fig. 6. In each time window of
the subsequent iteration, flights are divided into two categories:

(1) One is the flight (represented by Flight A in Fig. 6) which does
not cause hotspots based on the currently assigned departure
time. Its departure time will remain unchanged; it is scheduled
to take off in the current time window.

(2) The other is the flight (represented by Flight B in Fig. 6) which
causes hotspots based on the currently assigned departure time.

Through its trained neural network, the agent deployed on the
flight will decide whether the flight will take off at the current
time window or be delayed to the next time window.

Please note that this multi-iteration mechanism is only used
for trained agents to solve a DCB problem and not for training.
In training, only one iteration is performed. In solving, the first
iteration (refer to Fig. 3) is performed firstly. If, after the first
iteration, there are still hotspots that have not been eliminated,
subsequent iterations (refer to Fig. 6) are performed until all the
hotspots have been eliminated.

4. Simulation experiments

In this section, we first introduce the training setup and present the
training results. Next, we test the proposed method’s generalisa-
tion and compare it with state-of-the-art RL-based DCB methods.
Finally, we discuss the sensitivity analysis of the cooperation coef-
ficient.

4.1. Training
The neural networks are constructed based on the Pytorch library
in the Python environment and are trained on a computer with
one i5-8300H CPU. The Adam optimisation algorithm51 updates
the network parameters. We determine the values of the hyper-
parameters in Algorithm 1 through tuning experiments, and they
are summarised in Table 2. Specifically, the exploration rate 𝜀 is set
to 0.95; the buffer capacity 𝑛BC is set to 200; the batch size 𝑛BS is
set to 20; the discount rate 𝛾 is set to 0.9; the learning rate 𝛼 is set
to 1 × 10−3; the target network update cycle 𝑛TN is set to 100. In
each training episode, one of the 62 scenarios in the training dataset
is randomly input to the reinforcement learning environment as the
training scenario (refer to Section 3.3.2 for details).

To study the training process and the effectiveness of each DQN
enhancement technology in our model, we introduce and compare
the training results of five models: Model-1, Model-2, Model-3,

10 Y. Chen et al.

Fig. 6 Framework of the subsequent iteration in the multi-iteration mechanism.

Table 2 Hyper-parameter settings for training algorithm.
Hyper-parameter Value
Exploration rate 𝜀 in line 10 0.95
Buffer capacity 𝑛BC in line 28 200
Batch size 𝑛BS in line 33 20
Discount rate 𝛾 in line 34 0.9
Learning rate 𝛼 in line 35 1 × 10−3

Target network update cycle 𝑛TN in line 36 100

Model-4 and Model-5. The features of each model are summarised
in Table 3, where the checkmark (✓) means that the model uses the
corresponding DQN enhancement technology while the circle (◦)
means not.

Table 3 Model features.

Model DQN enhancement technology

Double DQN Duelling DQN Prioritised
replay buffer

1 ✓ ✓ ✓
2 ◦ ✓ ✓
3 ✓ ◦ ✓
4 ✓ ✓ ◦
5 ◦ ◦ ◦

Model-1 is the DQN method used in our MARL method, and it
is enhanced by Double DQN, Duelling DQN and Prioritised Replay
Buffer technology. Model-2, Model-3 and Model-4 are enhanced by
corresponding two of the three enhancement technologies. Model-5
is the original DQN method without any enhancement technology.
In each episode, all neural networks are evaluated as a whole by the
average reward 𝜉Ave

𝑝 , where 𝑝 is the episode number, 𝑁 𝑝 denotes
the number of flights in the 𝑝th episode, 𝐼 𝑝 is the set of flights in
the 𝑝th episode,

(
𝚲𝑖

) 𝑝
represents the set of actions of flight 𝑖 in the

𝑝th episode and
(
𝑎𝑖𝑡
) 𝑝 denotes the action in it:

𝜉Ave
𝑝 =

1
𝑁 𝑝

∑︁
𝑖∈𝐼 𝑝

∑︁
(𝑎𝑖

𝑡)𝑝∈
(
𝚲𝑖

) 𝑝 𝑟𝑖𝑡 (21)

The training result is shown in Fig. 7. The light curves are
the actual result data and the dark ones are fitted curves based on
the former by 90% smoothing coefficient for legibility. We can find
that the trend of change of these curves is the same; after a short
fluctuation, it rises rapidly and then tends to stabilise and gradu-
ally converge. Model-1 and Model-2 grow the fastest and converge

around the 800th episode. The other three curves stabilised around
the 1600th episode. In terms of performance, according to the aver-
age reward, Model-1 is the best, and Model-2 is the second. Model-3
and Model-4 are nearly identical. Model-5 is significantly inferior
to the others. In summary, the training of our neural networks is
effective, and the DQN enhancement technologies in our model can
effectively improve training efficiency and model performance.

Fig. 7 Training result.

4.2. Performance test
4.2.1. Benchmark and test scenario
To verify the optimisation performance of the proposed MARL
method, we use CASA as a benchmark52. CASA is a DCB solver
based on a heuristic algorithm, and it is often used in actual ATM
operations. It has the advantages of requiring less computing time
and being simple to use in the real world. CASA is a general term for
a class of methods whose specific algorithms are often fine-tuned
to suit specific scenarios. For ease of comparison, in this paper,
we use a standard CASA introduced in ATFCM OPERATIONS
MANUAL - Network Manager by EUROCONTROL53, and the
CASA’s source code based on Python3 is available on our Github.

To test the performance of our proposed method in diverse sce-
narios different from the training scenarios, we use sector opening
schemes in July 2019 and combine the flights on 2019-08-27 and
2019-08-28 to generate test scenarios, as shown in Fig. 8. Three
sets of test scenarios are generated for three corresponding tests to
verify the generalisation of our method for sector opening schemes,
flight schedules and problem scales, respectively. The numbers
shown in Fig. 8 represent the number of the corresponding ele-
ment. For example, in Test 2, it means that there are 7 sets of
flight schedules and 31 sector opening schemes, and they make up
a total of 217 scenarios. Besides, we compare our method with two
state-of-the-art RL-based DCB methods. The experimental design

https://github.com/CCCCCCCCCChen/CASA

Locally generalised multi-agent reinforcement learning for demand and capacity balancing with customised neural networks 11

Fig. 8 Scenarios generation for performance tests.

and results are shown as follows.

4.2.2. Generalisation for sector opening scheme (Test 1)
Test 1 aims to verify the generalisation of our method for the sector
opening scheme. Although commercial flights are repeated for a
certain period, the flight schedules for corresponding days will not
be the same. Therefore, we randomly select 90% of flights on
2019-08-27 and 10% of flights on 2019-08-28 to form a new set
of flight schedules which contains 12182 flights. To differentiate
from the training scenario, we use the 31 sector opening schemes
in July 2019 in the test scenarios. The new set of flight schedules
and the 31 sector opening schemes form 31 test scenarios (also
refer to Fig. 8). Two performance indicators are used to reflect
the optimisation performance of the method, namely the number
of delayed flights and the average delay time. Please note that the
average delay time is the mean for all flights in a scenario. The 31
test scenarios are solved by our proposed MARL method and CASA.
The results are shown in Fig. 9, where the sector opening scheme ID
corresponds to the day in July 2019 (for example, 01 refers to 2019-
07-01). Compared with CASA, MARL decreases the average delay
time and the number of delayed flights by about 72.5% and 74.6%,
respectively. Since the performance of our method, according to
the benchmark, does not vary significantly in different scenarios of
Test 1, it can be considered generalised for various sector opening
schemes.

4.2.3. Generalisation for flight schedule (Test 2)
Test 2 aims to verify the generalisation of our method for flight
schedules. We generate seven sets of flight schedules by combining
the flights on 2019-08-27 and 2019-08-28 with different propor-
tions. We use the rate of difference to represent the proportion
of non-same-day flights. Assuming that the flights on 2019-08-27
are taken as main flights in a test scenario while the test set of
flight schedules consists of 𝑥 flights on 2019-08-27 and 𝑦 flights
on 2019-08-28, the rate of difference is 𝑦

𝑥+𝑦 . We randomly select
flights on 2019-08-27 and 2019-08-28 based on seven specific rates
of difference and test them in 31 sector opening schemes in July
2019; there are 217 test scenarios in total (also refer to Fig. 8).
The results of Test 2 are shown in Fig. 10, where C and M in the
boxes below the figure represent CASA and MARL, respectively

(grey represents CASA and red represents MARL; this representa-
tion is also used in Fig. 11). IQR is interquartile range. Although
the average delay time and the number of delayed flights of the
results when the rate of difference is 0 in both are the smallest on
average, the two performance indicators, by comparing with the
results of CASA, show no significant uptrend as the rate of differ-
ence increases. In other words, the method does not significantly
decrease performance due to the rise in the rate of difference in
flights. Therefore, it is demonstrated that the proposed method can
cope with limited flight combinations.

4.2.4. Generalisation for problem scale (Test 3)
Test 3 aims to verify the generalisation of our method for problem
scale. To obtain several scenarios with different scales, we first
select the sector opening scheme of 2019-07-27 and then randomly
select a specific number of sectors to form a new sector opening
scheme. We generate 6 sets of 10 sector opening schemes in to-
tal, with each set’s sector opening schemes containing a different
number of sectors. The flight schedule in Test 1 is tested in each
opening scheme separately for 60 scenarios in Test 3 (also refer to
Fig. 8). The results of Test 3 are shown in Fig. 11. In addition
to the average delay time and the number of delayed flights, each
scenario’s computing time and initial condition are also presented
for reference. For the 60 scenarios in Test 3, the initial number of
hotspots and the initial number of flights increase with the number
of sectors, as shown in Fig. 11(d). As expected, the average delay
time and the number of delayed flights increase as the problem scale
increases. The growth trends of the two optimisation indicators for
MARL are linear, similar to the growing trend of the problem scale.
Therefore, the optimisation performance of our proposed method is
similar in scenarios of different problem scales, which demonstrates
its generalisation for problem scales. As shown in Fig. 11(c), al-
though MARL’s computing time is much longer than CASA’s in the
same scenario, its growth trend is almost linear rather than expo-
nential as the problem scale increases, and the computing time for
the scenario with 300 sectors and more than 10000 flights is about
30 s, which is acceptable for a DCB problem of this scale.

12 Y. Chen et al.

Fig. 9 Experimental results of method generalisation test for sector opening schemes.

Fig. 10 Experimental results of method generalisation test for flight schedules.

4.2.5. Comparison with state-of-the-art RL-based DCB methods
This test aims to compare the proposed method with the state-of-
the-art RL-based DCB methods. Because Tang’s41 and Huang’s42

methods have the potential for generalisation, we compare our
method with them in the computing time and average delay time.
The same way is followed to train them as with the proposed method.
Because the two methods do not consider sector opening schemes,
we upgrade them to enable dealing with DCB problems with sector
opening schemes. The comparison is based on ten random scenar-
ios of Test 2, and the experimental results are shown in Fig. 12,
where MARL represents the proposed method, T represents Tang’s
method41 and H represents Huang’s method42. Although this test
is for comparing RL-based DCB methods, the performance data
of CASA are still added to Fig. 12 for reference. We can find
that the proposed method outperforms the two state-of-the-art RL-
based DCB methods. In terms of the average delay time, compared
with the proposed method, Tang’s method and Huang’s method
increase by about 116% and 79%, respectively. The reason may
be that their methods do not have enough generalisation for the
test scenarios. In terms of the computing time, compared with the
proposed method, Tang’s method and Huang’s method increase by
about 43% and 620%, respectively. The delay time allocated by
the agent in Huang’s method is tiny at each iteration, so a consider-
able number of iterations are needed to eliminate hotspots, which is
significantly time-consuming. The decision-making framework of

Tang’s method is similar to ours; a longer average time means that
agents make more actions, which is also time-consuming. It tends
to explain why the computing time for Tang’s method is longer than
ours but very close.

4.3. Sensitivity analysis
Sensitivity analysis on the coefficient of cooperation (refer to Eq. (20))
is performed to explore the impact on our proposed method. We
re-train another four sets of neural networks in the training scenarios
(mentioned in Section 3.3) with different coefficients of coopera-
tion. With the set of neural networks trained on the base model,
there are five sets of neural networks for training flights; the coef-
ficient of cooperation, respectively, is set to 0.25, 0.5, 1, 2 and 4.
Then, the five sets of neural networks are deployed on the corre-
sponding flights and tested in the scenarios of Test 1, respectively.
The experimental results in the average delay time and the number
of delayed flights are shown in Fig. 13. From a statistical point of
view, as the coefficient of cooperation increases, the average delay
time decreases while the number of delayed flights increases. The
reason is that the greater the coefficient of cooperation, the lower
the proportion of the penalty of holding in the total reward, and the
more likely the flight is to promote the achievement of the global
optimisation goal even if its own delay time is longer. Thus, in prac-
tice, an appropriate cooperation coefficient should be set according
to the actual needs of air traffic operations to balance the average

Locally generalised multi-agent reinforcement learning for demand and capacity balancing with customised neural networks 13

Fig. 11 Experimental results of the method generalisation test for problem scales.

Fig. 12 Experimental results of the comparison of RL-based DCB methods.

14 Y. Chen et al.

Fig. 13 Experimental results of sensitivity analysis on coefficient of
cooperation.

delay time and the number of delayed flights.

5. Conclusions

In this paper, we have presented a locally generalised multi-agent
reinforcement learning for demand and capacity balancing with cus-
tomised neural networks. DQN-based enhancement technologies
(i.e., Double DQN, Duelling DQN and Prioritised Replay Buffer)
have been proven to improve the learning efficiency of agents. We
have evaluated the performance of our method using a series of
comprehensive experiments based on large-scale high-complexity
real-world scenarios. By analysing the experimental results, we can
draw the following conclusions:

(1) The proposed method is generalised for sector opening schemes,
flight schedules and problem scales in the scope of interest.

(2) The proposed method outperforms CASA in optimisation per-
formance.

(3) The proposed method outperforms the state-of-the-art RL-based
DCB methods41 42 in computing time and optimisation perfor-
mance.

(4) The trend of average delay time and the number of delayed
flights are negatively correlated as the cooperation coefficient
changes in the proposed method.

This work serves as our first step toward reducing the gap be-
tween the theory and practice of multi-agent reinforcement learning
methods used for demand and capacity balancing. We are fully
aware that the situation in practice is far more complicated than that
in our experiments. Compared with traditional methods (such as
exact solution methods), reinforcement learning methods have the
potential to deal with uncertainty because they are based on prob-
ability inherently. In the future, the uncertainty should be taken
into account in RL-based DCB methods to improve the potential
for practical application. Furthermore, without compromising the
optimisation performance, we will further enhance the generalisa-
tion of the technique to reduce the training cost. For example, all
agents with the same flight path share the same neural network.

Acknowledgements

The research described in this paper has been partly conducted
in the framework of a project that has received funding from the
SESAR Joint Undertaking within the framework of the European

Union’s Horizon 2020 research and innovation programme under
grant agreement No 891965. This study is co-funded by the Na-
tional Natural Science Foundation of China (No.61903187), the
National Key R&D Program of China (No.2021YFB1600500), the
China Scholarship Council (No.202006830095), the Natural Sci-
ence Foundation of Jiangsu Province (No.BK20190414) and the
Jiangsu Province Postgraduate Innovation Fund (No.KYCX20 0213).

References

1. Mannino C, Nakkerud A, Sartor G. Air traffic flow management with
layered workload constraints. Comput Oper Res 2021;127:105159.

2. ICAO. Global Air Traffic Management Operational Concept. Montreal:
ICAO; 2005. Report No.: Doc-9854.

3. EUROCONTROL. European ATM master plan - digitalising Europe’s
aviation infrastructure [Internet]. 2019 Dec [cited2022 Mar 23]. Avail-
able from: https://www.sesarju.eu/masterplan2020.

4. EUROCONTROL. Exploring the boundaries of air traffic manage-
ment - a summary of SESAR exploratory research results [Internet].
2018 [cited 2022 Mar 23]. Available from: https://www.sesarju.eu/sit
es/default/files/documents/reports/ER Results 2016 2018.pdf.

5. Odoni AR. The flow management problem in air traffic control. Flow
control of congested networks. Berlin: Springer; 1987. p. 269-88.

6. Choroba P, Van Der Hoorn L. Towards a more harmonised and wider
use of Short-Term Atfcm Measures (STAM). 30th congress of the
international council of the aeronaurical sciences. 2016 Sep 25-30;
Daejeon, Korea. Bonn: ICAS; 2016. p. 1-10.

7. Ivanov N, Jovanović R, Fichert F, et al. Coordinated capacity and
demand management in a redesigned Air Traffic Management value-
chain. J Air Transp Manag 2019;75:139-52.

8. Montlaur A, Delgado L. Flight and passenger efficiency-fairness trade-
off for ATFM delay assignment. J Air Transp Manag 2020;83:101758.

9. Liu YL, Liu Y, Hansen M, et al. Using machine learning to analyze air
traffic management actions: Ground delay program case study. Transp
Res E: Logist Transp Rev 2019;131:80-95.

10. Diao XD, Chen CH. A sequence model for air traffic flow management
rerouting problem. Transp Res E: Logist Transp Rev 2018;110:15-30.

11. Murca MCR. Collaborative air traffic flow management: Incorporat-
ing airline preferences in rerouting decisions. J Air Transp Manag
2018;71:97-107.

12. Huang JL, Xu QC, Yan YJ, et al. Generalized method of modeling
minute-in-trail strategy for air traffic flow management. Math Probl
Eng 2019;2019:1-14.

13. Zhang Y, Xu DH, Guo YCF, et al. Research on performance analysis of
air traffic flow management combined strategy impacted by uncertainty.
Proceedings of the 4th international conference on Humanities Science,
Management and Education Technology (HSMET 2019). 2019 Jun 21-
23; Singapore, Singapore. Paris: Atlantis Press; 2019. p. 238-44.

14. Sandamali GGN, Su R, Sudheera KLK, et al. A safety-aware real-
time air traffic flow management model under demand and capacity
uncertainties. IEEE Trans Intell Transp Syst 2022;23(7):8615-28.

15. Guo YCF, Hu MH, Zou B, et al. Air traffic flow management integrating
separation management and ground holding: An efficiency-equity bi-
objective perspective. Transp Res B Methodol 2022;155:394-423.

16. Xu Y, Prats X, Delahaye D. Synchronised demand-capacity balancing
in collaborative air traffic flow management. Transp Res C Emerg
Technol 2020;114:359-76.

17. Xu Y, Dalmau R, Melgosa M, et al. A framework for collaborative air
traffic flow management minimizing costs for airspace users: Enabling
trajectory options and flexible pre-tactical delay management. Transp
Res B Methodol 2020;134:229-55.

18. Xiao MM, Cai KQ, Abbass HA. Hybridized encoding for evolutionary
multi-objective optimization of air traffic network flow: A case study
on China. Transp Res E: Logist Transp Rev 2018;134:35-55.

19. Torres S. Swarm theory applied to air traffic flow management. Proce-
dia Comput Sci 2012;12:463-70.

20. Agustı́n A, Alonso-Ayuso A, Escudero L, et al. Mathematical opti-

https://www.sesarju.eu/masterplan2020
https://www.sesarju.eu/sites/default/files/documents/reports/ER_Results_2016_2018.pdf
https://www.sesarju.eu/sites/default/files/documents/reports/ER_Results_2016_2018.pdf

Locally generalised multi-agent reinforcement learning for demand and capacity balancing with customised neural networks 15

mizationg models for air traffic flow management: A review [Internet].
2010 Feb [cited 2022 Mar 23]. Available from: https://burjcdigital.urj
c.es/bitstream/handle/10115/3405/ATFM SOTA.pdf?sequence=1&i
sAllowed=y.

21. Kistan T, Gardi A, Sabatini R, et al. An evolutionary outlook of air
traffic flow management techniques. Prog Aerosp Sci 2017;88:15-42.

22. Shone R, Glazebrook K, Zografos KG. Applications of stochastic mod-
eling in air traffic management: Methods, challenges and opportunities
for solving air traffic problems under uncertainty. Eur J Oper Res
2021;292(1):1-26.

23. Pham DT, Tran PN, Alam S, et al. Deep reinforcement learning based
path stretch vector resolution in dense traffic with uncertainties. Transp
Res C Emerg Technol 2022;135:103463.

24. Zhao P, Liu YM. Physics informed deep reinforcement learn-
ing for aircraft conflict resolution. IEEE Trans Intell Transp Syst
2022;23(7):8288-301.

25. Sui D, Xu P Wei, Zhang K. Study on the resolution of multi-aircraft
flight conflicts based on an IDQN. Chin J Aeronaut .

26. Yilmaz E, Sanni O, Kotwicz Herniczek M, et al. Deep Reinforcement
Learning Approach to Air Traffic Optimization Using the MuZero Al-
gorithm. Reston: AIAA; 2021. Report No.: AIAA-2021-2377.

27. Li S, Egorov M, Kochenderfer M. Optimizing collision avoid-
ance in dense airspace using deep reinforcement learning [Internet].
2019 Dec [cited 2022 Mar 23]. Available from: https://arxiv.org/pdf/
1912.10146.pdf.

28. Wen H, Li H, Wang Z, et al. Application of DDPG-based collision
avoidance algorithm in air traffic control. 2019 12th International
Symposium on Computational Intelligence and Design (ISCID). 2019
Dec 14-15; Hangzhou, China. Piscataway: IEEE Press; 2019. p. 130-3.

29. Tran NP, Pham DT, Goh SK, et al. An intelligent interactive con-
flict solver incorporating air traffic controllers’ preferences using re-
inforcement learning. 2019 Integrated Communications, Navigation
and Surveillance conference (ICNS). 2019 Apr 9-11; Herndon, USA.
Piscataway: IEEE Press; 2019. p. 1-8.

30. Ghosh S, Laguna S, Lim SH, et al. A deep ensemble multi-
agent reinforcement learning approach for air traffic control [Internet].
2020 Apr [cited 2022 Mar 23]. Available from: https://arxiv.org/pdf/
2004.01387.pdf.

31. Zhang K, Yang YP, Xu CT, et al. Learning-to-dispatch: Reinforcement
learning based flight planning under emergency. 2021 IEEE interna-
tional Intelligent Transportation Systems Conference (ITSC). 2020 Sep
19-21; Indianapolis, USA. Piscataway: IEEE Press; 2021. p. 1821-6.

32. Crespo AMF, Gang L, De Barros AG. Reinforcement learning agents to
tactical air traffic flow management. Int J Aviat Manag 2012;1(3):145-
61.

33. Agogino AK, Tumer K. A multiagent approach to managing air traffic
flow. Auton Agents Multi-Agent Syst 2012;24(1):1-25.

34. Kravaris T, Vouros GA, Spatharis C, et al. Learning policies for resolv-
ing demand-capacity imbalances during pre-tactical air traffic manage-
ment. German conference on multiagent system technologies. 2017
Aug 23-26; Leipzig, Germany. Cham: Springer International Publish-
ing; 2017. p. 238-55.

35. Spatharis C, Kravaris T, Vouros GA, et al. Multiagent reinforcement
learning methods to resolve demand capacity balance problems. Pro-
ceedings of the 10th hellenic conference on artificial intelligence. 2018
Jul 9-12; Patras, Greece. New York: ACM; 2018. p. 1-9.

36. Kravaris T, Spatharis C, Blekas K, et al. Multiagent reinforcement
learning methods for resolving demand-capacity imbalances. 2018
IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). 2019
Sep 23-27; London, UK. Piscataway: IEEE Press; 2018. p. 1-10.

37. Duong T, Todi KK, Chaudhary U, et al. Decentralizing air traffic
flow management with blockchain-based reinforcement learning. 2019
IEEE 17th International conference on Industrial informatics (INDIN).
2019 Jul 23-25; Helsinki, Finland. Piscataway: IEEE Press; 2019. p.
1795-800.

38. Spatharis C, Blekas K, Bastas A, et al. Collaborative multiagent re-
inforcement learning schemes for air traffic management. 2019 10th
international conference on Information, Intelligence, Systems and Ap-

plications (IISA). 2019 Jul 15-17; Patras, Greece. Piscataway: IEEE
Press; 2019. p. 1-8.

39. Spatharis C, Bastas A, Kravaris T, et al. Hierarchical multiagent rein-
forcement learning schemes for air traffic management. Neural Comput
Applic 2023;35:147-59.

40. Chen YT, Xu Y, Hu MH, et al. Demand and capacity balancing tech-
nology based on multi-agent reinforcement Learning. 2021 IEEE/AIAA
40th Digital Avionics Systems Conference (DASC). 2021 Oct 3-7; San
Antonio, USA. Piscataway: IEEE Press; 2021. p. 1-9.

41. Tang YF, Xu Y. Multi-agent deep reinforcement learning for solving
large-scale air traffic flow management problem: A time-step sequential
decision approach. 2021 IEEE/AIAA 40th Digital Avionics Systems
Conference (DASC). 2021 Oct 3-7; San Antonio, USA. Piscataway:
IEEE Press; 2021. p. 1-10.

42. Huang C, Xu Y. Integrated frameworks of unsupervised, supervised
and reinforcement learning for solving air traffic flow management
problem. 2021 IEEE/AIAA 40th Digital Avionics Systems Conference
(DASC). 2021 Oct 3-7; San Antonio, USA. Piscataway: IEEE Press;
2021. p. 1-10.

43. Hessel M, Modayil J, Van Hasselt H, et al. Rainbow: Combining
improvements in deep reinforcement learning. 32nd AAAI conference
on artificial intelligence. 2018 Feb 2-7; New Orleans, USA. Reston:
AIAA; 2018. p. 1-14.

44. Cruciol LL, De Arruda Jr AC, WG Li, et al. Reward functions for
learning to control in air traffic flow management. Transp Res C Emerg
Technol 2013;35:141-55.

45. Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through
deep reinforcement learning. Nature 2015;518(7540):529-33.

46. Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with
double q-learning. Proceedings of the AAAI conference on artificial
intelligence. 2016 Feb 12-17; Phoenix, USA. Reston: AIAA; 2016. p.
1-7.

47. Wang ZY, Schaul T, Hessel M, et al. Dueling network architectures
for deep reinforcement learning. Proceedings of the 33rd international
conference on machine learning. 2016 Jun 20-22; New York, USA.
New York: PMLR; 2016. p. 1995-2003.

48. Schaul T, Quan J, Antonoglou I, et al. Prioritized experience replay
[Internet]. 2016 Feb [cited 2022 Mar 23]. Available from: https://arxi
v.org/pdf/1511.05952.pdf.

49. Dabney W, Ostrovski G, Barreto A. Temporally-extended 𝑒𝑝𝑠𝑖𝑙𝑜𝑛-
greedy exploration [Internet]. 2020 Jun [cited 2022 Mar 23]. Available
from: https://arxiv.org/pdf/2006.01782.pdf.

50. Papoudakis G, Christianos F, Rahman A, et al. Dealing with non-
stationarity in multi-agent deep reinforcement learning [Internet].
2020 Jun [cited 2022 Mar 23]. Available from: https://arxiv.org/pd
f/1906.04737.pdf.

51. Kingma DP, Ba J. Adam: A method for stochastic optimization [Inter-
net]. 2014 Dec [cited 2022 Mar 23]. Available from: https://arxiv.org/
pdf/1412.6980.pdf?source=post page---------------------------.

52. Ivanov N, Netjasov F, Jovanović R, et al. Air traffic flow management
slot allocation to minimize propagated delay and improve airport slot
adherence. Transp Res A Policy and Pract 2017;95:183-97.

53. EUROCONTROL. ATFCM operations manual - network manager
[Internet]. 2021 Jan [cited 2022 Mar 23]. Available from: https://ww
w.eurocontrol.int/sites/default/files/2021-01/eurocontrol-atfcm-opera
tions-manual-24-1-18012021.pdf.

https://burjcdigital.urjc.es/bitstream/handle/10115/3405/ATFM_SOTA.pdf?sequence=1&isAllowed=y
https://burjcdigital.urjc.es/bitstream/handle/10115/3405/ATFM_SOTA.pdf?sequence=1&isAllowed=y
https://burjcdigital.urjc.es/bitstream/handle/10115/3405/ATFM_SOTA.pdf?sequence=1&isAllowed=y
https://arxiv.org/pdf/1912.10146.pdf
https://arxiv.org/pdf/1912.10146.pdf
https://arxiv.org/pdf/2004.01387.pdf
https://arxiv.org/pdf/2004.01387.pdf
https://arxiv.org/pdf/1511.05952.pdf
https://arxiv.org/pdf/1511.05952.pdf
https://arxiv.org/pdf/2006.01782.pdf
https://arxiv.org/pdf/1906.04737.pdf
https://arxiv.org/pdf/1906.04737.pdf
https://arxiv.org/pdf/1412.6980.pdf?source=post_page---------------------------
https://arxiv.org/pdf/1412.6980.pdf?source=post_page---------------------------
https://www.eurocontrol.int/sites/default/files/2021-01/eurocontrol-atfcm-operations-manual-24-1-18012021.pdf
https://www.eurocontrol.int/sites/default/files/2021-01/eurocontrol-atfcm-operations-manual-24-1-18012021.pdf
https://www.eurocontrol.int/sites/default/files/2021-01/eurocontrol-atfcm-operations-manual-24-1-18012021.pdf

	Introduction
	Related work
	Proposed method
	Summary of contributions

	Problem formulation
	Demand and capacity
	Partially observable decision-making

	Approach
	Reinforcement learning setup
	Action space
	State space
	Reward design

	Network architecture
	Training method
	Training algorithm
	Training scenarios

	Multi-iteration mechanism

	Simulation experiments
	Training
	Performance test
	Benchmark and test scenario
	Generalisation for sector opening scheme (Test 1)
	Generalisation for flight schedule (Test 2)
	Generalisation for problem scale (Test 3)
	Comparison with state-of-the-art RL-based DCB methods

	Sensitivity analysis

	Conclusions

