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Summary 20 

 21 

There is no consensus among scientists on the origin of SARS-CoV-2. One 22 

aspect of the virus that has been much discussed is the so-called “furin 23 

cleavage site” (FCS). Here we explain the structure and function of the 24 

FCS and its significance in SARS-CoV-2. The existing data suggest that 25 

the FCS of SARS-CoV-2, which remains unique among the hundreds of 26 

sarbecoviruses sampled from bats around the world, is fully functional and 27 

is consistent with the properties of FCS in many other substrates of this 28 

protease. Three possible routes have been proposed for how the FCS 29 

appeared in SARS-CoV-2: natural recombination, serial passage in cell 30 

culture or in an animal host and laboratory insertion via gene engineering. 31 

Here we review the merits and limitations of each proposal. All three 32 

proposals are limited by the absence to date of an immediate precursor 33 

virus. We renew our call that virus databases, lab notebooks and electronic 34 

communications be made available for independent scrutiny as part of a 35 

bipartisan investigation into the origins of COVID-19. 36 
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The “furin cleavage site” (FCS), is an important feature of the Spike protein 37 

of the SARS-CoV-2 virus (Figure 1a). The FCS is present in the novel virus 38 

SARS-CoV-2, but is absent in SARS-CoV-1 (Figure 1b) and in all other 39 

members of the group of most closely related viruses, the subgenus 40 

sarbecovirus (Figure 1c) (Coutard et al., 2020; Hoffmann et al., 2020b; 41 

Temmam et al., 2023), which now includes several hundred viruses, almost 42 

all of which were found in bats around the world. 43 

 44 

A great deal has been written and said about the FCS in scientific journals, 45 

in mainstream news outlets and on social media media, yet there is still 46 

considerable confusion about the structure, function, and importance of the 47 

FCS in SARS-CoV-2. We aim to clarify key issues here. 48 

 49 

The FCS is the site at the S1-S2 junction where the Spike protein of the 50 

virus is cut by furin, an enzyme that is expressed in most human cells 51 

(Thomas, 2002). This process is known as proteolysis. Processing of the 52 

Spike protein by a combination of the two enzymes, furin and TMPRSS2 53 

(Hoffmann et al., 2020a, Ou et al., 2021) (Figure 2a) is critical to the entry 54 

of SARS-CoV-2 into cells in the lower respiratory tract (Coutard et al., 55 

2020) to infect the human lung - as well as for the transmission and 56 

pathogenicity of the virus (Johnson et al., 2021, Peacock et al., 2021).  57 

 58 

The importance of furin cleavage for viral entry has been known since the 59 

earliest work on Sindbis virus (Klimstra et al., 1999) but this is not a 60 

universal feature for all viruses. For example, the replication of respiratory 61 

syncytial virus (RSV) does not require furin (Zimmer et al., 2002). We 62 

thought it a good idea to outline here some of the basic biology of furin and 63 

the FCS, and to explain why this become so important to the study of how 64 

the virus enters cells, as well as to discussions of the origins of the virus.  65 

 66 

What is furin? 67 

Furin is an enzyme that cuts proteins, i.e. it is a protease. To be more 68 

specific, it is a member of a group called proprotein covertases, which is to 69 

say it is an enzyme that is responsible for processing larger proteins into 70 

their active final form (Seidah et al., 1998; Seidah & Prat, 2012). 71 

Processing of larger precursors is especially important in endocrinology, 72 

with many hormones such as insulin being derived by proteolysis of larger 73 

protein precursors. Furin itself is produced by auto-proteolysis from a 74 

precursor protein (Thomas, 2012). 75 

 76 
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Furin was first identified and originally designated as PACE, and the gene 77 

was cloned in 1990 (Bresnahan et al., 1990). Unlike other proteases such 78 

as TMPRSS2 that are found at the cell surface (Meng et al., 2020), furin is 79 

mainly located inside the cell, specifically inside membrane-bound 80 

organelles (Figure 2b), being synthesized on the endoplasmic reticulum 81 

and then is modified in the presence of Ca2+, moving through the ER-Golgi 82 

intermediate complex (ER-GIC) to the trans-Golgi network (TGN) where the 83 

mature form of the protein is stabilized at low pH (Thomas, 2002).  84 

 85 

Once in the TGN, furin modifies proteins that have already been 86 

synthesized, including those being packaged into vesicles for export to the 87 

plasma membrane (Figure 2b). In the process, furin itself appears on the 88 

cell surface, from where it is then recycled into endocytic vesicles (Molloy 89 

et al., 1994). Viruses, including coronaviruses, make use of this cellular 90 

sorting machinery to facilitate the manufacture of membrane-bound protein, 91 

forming new virus particles. The Spike protein of SARS-CoV-2 is one 92 

example, and it can be cleaved by furin inside the infected cell before being 93 

packaged into newly synthesized virus containing other viral components. 94 

These are essential steps in the process by which new virions exit the cell. 95 

 96 

What exactly is a furin cleavage site? 97 

Furin works by “cutting” the peptide strand of a precursor protein at one or 98 

more locations, specifically by catalyzing the hydrolysis of a specific 99 

peptide bond, typically between an arginine residue and its immediate 100 

neighbour, which is variable but is typically a smaller (serine or valine) 101 

residue (6). The hydrolysis of the peptide bond at RX is most efficient 102 

when a specific furin recognition sequence is present, which is enriched in 103 

basic amino acid residues (R/K).  The typical furin cleavage site contains at 104 

least 2 basic residues, separated by 2 amino acids, RXXR (this is RRAR in 105 

SARS-CoV-2; Figure 1a), but there are exceptions to this rule. This 106 

minimal consensus recognition sequence is what is usually referred to as a 107 

“furin cleavage site”, although the proteolysis “cleavage” actually takes 108 

place very specifically at what is termed the “scissile bond” (RX), at the 109 

C-terminal end of the RXXR recognition sequence.  110 

 111 

Note that proteins can also be susceptible to proteolysis by other enzymes 112 

found outside cells, such as trypsin and cathepsin B etc., and that the 113 

importance of the specific furin recognition sequence is to enhance the 114 

efficiency of proteolysis by one specific protease, furin, which is expressed 115 

in most cells. There are examples of proteins that contain multiple FCS, so 116 
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that the protein is synthesized in its inactive form, and can then be 117 

activated by the removal of an intervening auto-inhibitory domain, as 118 

occurs with the epithelial sodium channel, ENaC (Kota et al., 2018) and in 119 

the case of furin itself (Thomas, 2002). It is common for viral Spike proteins 120 

to contain more than one FCS (Millet et al., 2014). 121 

 122 

What characterizes a furin cleavage site? 123 

Like all enzymes, furin has a well-characterized catalytic domain, which is 124 

defined as the part of the enzyme that makes contact with the protein 125 

substrate. This is where the chemical reaction “hydrolysis” occurs (Henrich 126 

et al., 2003) and this is located within a hydrophilic region of the protein. 127 

The structure of furin has been solved and the catalytic domain lies within a 128 

substrate-exposed part of the furin structure. The substrate protein binds to 129 

furin in a manner that activates the enzyme (Dahms et al., 2016), in an 130 

example of “induced fit”, interacting not just via the short furin recognition 131 

sequence but over a more extended surface. The furin interaction domain 132 

of the substrate is recognized to be part of an extended FCS strand that is 133 

typically of around 20 amino acids in length (Tian, 2009), that stabilizes the 134 

cleavage site by making close contacts within the catalytic domain of furin.  135 

 136 

An extensive analysis of over a hundred proteins that are cleaved by furin 137 

has shown that the furin recognition sequence has certain conserved 138 

characteristics. The full-length furin cleavage site motif is typically 139 

comprised of about 20 residues, here annotated P14-P6′ (Tian, 2009) 140 

(Figure 3a). The FCS residues are numbered relative to the site (the 141 

scissile bond) where the polypeptide is cut, and thus the arginine at 685 in 142 

the SARS-CoV-2 spike protein is designated as the “P1” position (Figure 143 

3b), with the serine being the “P′1 position”. The other arginines in the 144 

RRAR sequence are thus in the “P3” and “P4” positions, and in the case of 145 

SARS-CoV-2, a proline occupies the “P5” position, a feature that has been 146 

noted by several commentators (Holmes et al., 2021, Garry, 2022).  147 

 148 

Specific physical properties such as volume, charge, and hydrophilicity are 149 

required at specific positions in order to optimize the cleavage of substrate. 150 

The furin cleavage site motif can be divided into two parts: a core region of 151 

8 amino acids, (positions P6-P2′) packed inside the furin binding pocket, 152 

and two flanking regions (Figure 3a) that are both solvent-accessible and 153 

located outside the furin binding pocket – one of 8 polar amino acids, 154 

(positions P7–P14), and another of 4 small amino acids, (positions P3′-155 

P6′). In the case of the SARS-CoV-2 Spike protein, some of the interactions 156 
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with the catalytic domain of furin are thought to be made in the core, with 157 

the flanking regions providing stabilizing interactions (Venkadari, 2020). 158 

More recent work has shown that the flanking regions can also be very 159 

important, as in the case of the QTQTN motif (P7-P11) of the SARS-CoV-2 160 

Spike (Figure 3b), which has been shown to be important for SARS-CoV-2 161 

pathogenesis (Vu et al., 2022) as well as being highly antigenic (Haynes et 162 

al., 2021).  163 

 164 

The S1/S2 junction of the SARS-CoV-1 Spike lacks the FCS but forms a 165 

short solvent-exposed loop (Figure 4a) and this loop is further extended in 166 

SARS-CoV-2 (Figure 4a, 4b) due to the PRRA insert (Jaimes et al., 2020), 167 

exposing the FCS for proteolysis. The intricate details of the SARS-CoV-2 168 

FCS are only truly revealed in an elegant study of its interaction with the 169 

catalytic domain of furin (Figure 5a) (Venkadari, 2020). The basic residues 170 

within the polybasic RXXR sequence of a typical FCS make electrostatic 171 

contacts with negatively charged residues in the catalytic domain of furin 172 

(Venkadari, 2020) (Figure 5b), while in the case of SARS-CoV-2, the “P5” 173 

residue is modeled with the proline side chain oriented away from the 174 

catalytic domain (Figure 5c) so that there is no steric or electrostatic 175 

hindrance. In fact, a variety of smaller amino acids can be tolerated at this 176 

P5 position of FCS (Tian, 2009); there is thus no thermodynamic or steric 177 

“prohibition” against a proline residue being located adjacent to the core 178 

recognition sequence.  179 

 180 

It follows from this survey of many FCS domains that a proline at the P5 181 

position is neither unexpected nor unusual, contrary to some commentary 182 

(Garry, 2022). Indeed, this point is emphasized by the fact that the Spike of 183 

the MERS virus also has a proline at this P5 position (Millet et al., 2014, 184 

Garry, 2022), although opinions may differ on whether the FCS of MERS is 185 

itself fully functional (Millet et al., 2014). 186 

 187 

The furin cleavage site of SARS-CoV-2 is fully functional 188 

The argument has been advanced that the FCS in SARS-CoV-2 is “sub-189 

optimal”. This claim seems to be based on computer algorithms that predict 190 

the functionality of FCS sequences. Two such algorithms are now in 191 

widespread use (e.g. Duckert et al., 2004). Yet these algorithms are known 192 

to give “false negatives”, i.e. the failure to predict a fully functional FCS.  193 

 194 

One example of a predicted “sub-optimal” FCS (Holmes et al., 2021) is the 195 

RRARSVAS sequence of SARS-CoV-2 itself. Although this FCS scores 196 
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lower than others according to prediction algorithms, it is fully and efficiently 197 

cleaved when cells are infected with SARS-CoV-2 (Hoffmann et al., 2020b, 198 

Figure 6a) or with pseudoviruses expressing the SARS-CoV-2 Spike 199 

protein (Walls et al., 2020; Peacock et al., 2021) (Figure 6b), in contrast to 200 

the SARS-CoV-1 Spike (Figure 6c) and this efficient proteolysis is 201 

abolished by deletion of the PRRA sequence (Figure 6c). It is worth noting 202 

that an identical FCS sequence is found in the  subunit of human ENaC 203 

(Anand et al., 2020) and that the ENaC  protein from mouse and rat is 204 

also completely and efficiently cleaved by furin in epithelial cells (Hughey et 205 

al., 2004, Kota et al., 2018).  206 

 207 

Two algorithms predict that the FCS of SARS-CoV-2 is not “ideal”, and this 208 

led several scientists to speculate that the FCS was “sub-optimal” (Holmes 209 

et al., 2021). Of course, the efficient proteolysis described above (Figure 210 

6a-d) and the high human-to-human transmissibility of SARS-CoV-2 (R0 211 

~2-3 for the original Wuhan-1 virus) would seem to argue otherwise.  212 

 213 

Because of the assertions that the FCS is “sub-optimal”, one might expect 214 

to find viral variants that show FCS mutations enhanced proteolysis. In fact, 215 

the RRAR (P4-P1) core sequence has remained remarkably stable (Wolf et 216 

al., 2022), suggesting that such mutations would confer no evolutionary 217 

advantage. A variety of natural polymorphisms (point mutations) within the 218 

extended FCS region have now been tested (Arora et al., 2022), and these 219 

mutations actually resulted in a modest loss of proteolysis efficiency 220 

relative to the original FCS (Figure 6d). While it has been suggested that 221 

the efficiency of proteolysis of the SARS-CoV-2 Spike protein would be 222 

further enhanced by mutation at the P5 residue, including the naturally 223 

observed mutations P681R and P681H (Peacock et al., 2021b), it is now 224 

clear that the experimental data do not in fact support this. In addition, it 225 

has been shown that the FCS of the original SARS-CoV-2 Spike protein 226 

can be imported into the SARS-CoV-1 Spike by engineering and that the 227 

resulting mutant Spike is then fully and efficiently cleaved by furin, in cells 228 

experimentally infected via a pseudovirus (Winstone et al., 2021). There is 229 

thus no convincing evidence that the FCS of SARS-CoV-2 is sub-optimal. 230 

 231 

Insights from Structural Biology: studies of the Spike protein 232 

Elegant work done following the emergence of SARS-CoV-1 had shown 233 

that this virus uses the human membrane protein angiotensin converting 234 

enzyme-2 (ACE2) as its primary receptor on human cells (Li et al, 2005). 235 

Studies of SARS-CoV-2 confirmed that the newer virus also uses human 236 
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ACE2 as its primary receptor on susceptible cells (Shang et al., 2020; 237 

Hoffmann et al., 2020a) and that the Spike protein forms a trimeric 238 

assembly that binds with high affinity to its receptor (Walls et al., 2020). 239 

The trimer exists in multiple conformational sates and binds to hACE2 with 240 

one SB domain of the Spike protein in the open conformation (Wrapp et al., 241 

2020 Walls et al., 2020). In one especially insightful experiment (Wrobel et 242 

al., 2020), a comparison was made between the Spike proteins of SARS-243 

CoV-2 and a close relative termed RaTG13, which is known to infect bats 244 

but is not thought to infect humans. Firstly, it was found that there were 245 

small but significant differences between the structures of the receptor 246 

binding domains (RBD) of the Spike proteins of these two viruses (Figure 247 

7a). Secondly, it was noted that the Spike of RaTG13 binds very weakly to 248 

hACE2, with as much as 1000 times lower affinity (Figure 7b), largely due 249 

to steric constraints in the interaction between the RBD of the Spike and 250 

hACE2 (Figure 7b). Crucially, these and other authors noted that cleavage 251 

by furin destabilized the “closed” conformation of the Spike protein trimer 252 

and hence promoted the “open” conformation, exposing the RBD that is 253 

necessary for the binding of the Spike to hACE2. The lack of FCS in the 254 

RaTG13 limits the Spike cleavage by proteolysis and stabilized the Spike in 255 

the closed conformation associated with low affinity binding to hACE2 256 

(Wrobel et al, 2020). 257 

 258 

The importance of FCS for viral transmission 259 

The importance of FCS for viral entry and transmissibility has been known 260 

for some time. Extensive work has been performed in laboratories around 261 

the world to insert FCS via genetic engineering into pathogenic viruses, 262 

including influenza viruses (Schrauwen et al., 2011) and coronaviruses 263 

such as SARS-CoV-1 (Millet et al., 2015) and the porcine epidemic 264 

diarrhea virus, PEDV (Li et al., 2015). It should be pointed out that the vast 265 

majority of this work was done in the context of pseudovirus experiments, 266 

using an innocuous virus as a backbone, so that the chance of producing a 267 

highly pathogenic virus with increased transmissibility escaping from a 268 

laboratory was minimized (Belouzard et al., 2009). Work done in this format 269 

is therefore considered safe and does not constitute what is known as 270 

“Gain-of-Function” (GoF) research. In at least one case (the example given 271 

above of PEDV), this type of work created a replication-competent novel 272 

recombinant virus (Li et al., 2015), showing that engineering of functional 273 

infectious viruses in this region is neither implausible nor novel. 274 

 275 

276 
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Research on the FCS in SARS-like viruses since SARS-CoV-1 277 

There has obviously been a long-standing interest among coronavirus 278 

researchers in the role of spike protein proteolysis in enhancing viral entry.  279 

Since the original epidemic of SARS and the identification of SARS-CoV-1  280 

as a coronavirus that uses ACE2 as its receptor on epithelial cells, much 281 

attention has been devoted to the study of the SARS-CoV-1 Spike protein 282 

(Li et al., 2005), and FCS has been inserted into the spike protein of this 283 

virus on multiple occasions (Belouzard et al., 2009; Millet et al., 2015). 284 

 285 

Work on proteolysis as a determinant of viral entry was recently extended 286 

to a range of viruses that include bat coronaviruses from the sarbecovirus 287 

group (Menachery et al., 2020) some of which have been suggested to 288 

show the potential for emergence (Menachery et al., 2015). Such work is 289 

sometimes done under conditions of limited containment (BSL-2) because 290 

of the perception that these bat sarbecoviruses lack pathogenic potential. 291 

Work done on these bat viruses has proliferated, and is widely considered 292 

to be a “grey area” that constitutes Gain-of-Function research of concern 293 

(GoFRoC), since chimeric viruses of unknown function are created and the 294 

pathogenicity of the resulting virus cannot be predicted. Laboratory 295 

experiments using pseudoviruses showed that infection of lung cells by 296 

SARS-CoV-2 and transmissibility between ferrets is strongly inhibited by 297 

removal of the PRRA sequence (Peacock et al., 2021), and complementary 298 

work in pseudovirus experiments confirmed that insertion of the PRRA 299 

sequence into the Spike protein of SARS-CoV-1 confers high furin 300 

sensitivity (Winstone et al., 2021) and enhances viral entry into cells. 301 

 302 

The possible origins of the FCS in SARS-CoV-2 303 

A combination of efficient human-to-human transmission with significant 304 

pathogenicity is one of the hallmarks of a pathogen with pandemic potential 305 

(PPP). In fact, the combination of factors that made SARS-CoV-2 a 306 

pandemic virus involves a combination of its high affinity for human ACE2, 307 

its processing by furin and TMPRSS2 (Essalmani et al., 2022) as well as its 308 

ability to down-regulate the “innate immune response” in humans that is 309 

mediated by interferons (Winstone et al., 2021), perhaps via one or more of 310 

the “accessory” proteins of the virus, encoded by 3’-open reading frames 311 

(Orf). All of these features of the virus may have arisen naturally, but the 312 

unique nature of the FCS in SARS-CoV-2 among the SARS-related bat 313 

viruses of the sarbecovirus clade (Coutard et al., 2020, Hoffmann et al., 314 

2020b) is quite remarkable (Figure 1c) and has given rise to speculation 315 

about a possible anthropogenic origin (Chan and Zhan, 2022). Intensive 316 
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study on bats from around the world (Temmam et al., 2022, Sander et al., 317 

2022; Apaa et al., 2023) has led to the identification of hundreds of novel 318 

sarbecoviruses, but not a single virus other than SARS-CoV-2 has been 319 

shown to have an FCS. 320 

 321 

FCS sequences do, of course, exist in many of the common coronaviruses 322 

that infect humans and other animals (Wu and Zhao, 2021) including the 323 

endemic “common cold” viruses, OC43 and HKU-1, which are not 324 

pathogenic in healthy, immunocompetent individuals. The FCS may 325 

contribute to the high transmissibility of these respiratory viruses. In 326 

contrast, the sarbecoviruses are primarily enteric viruses in the bat and 327 

therefore remain confined to a limited host range. These viruses (BANAL-328 

20-236 for example) efficiently infect human intestinal epithelial cells but do 329 

not infect cells of the mammalian respiratory tract (Temmam et al., 2023). 330 

The pathogenic viruses such as SARS-CoV-1 and SARS-CoV-2 are 331 

obviously an important exception to this rule. In this context, it is worth 332 

noting again that the SARS-CoV-1 virus, although highly pathogenic and 333 

capable of human-to-human transmission, lacks the FCS and this feature 334 

may have ultimately limited its pandemic potential. Experimental work 335 

undertaken to investigate the significance of the FCS for pathogenesis has 336 

included multiple examples of insertion of FCS-type sequences into SARS-337 

CoV-1 spike, in the context of a pseudovirus (Watanabe et al., 2008; 338 

Belouzard et al., 2009, Winstone et al., 2021). For this reason, there is little 339 

question concerning the technical feasibility of such an insertion. 340 

 341 

Did the FCS of SARS-CoV-2 Evolve Naturally via Recombination? 342 

Sequence alignments suggest that the possibility that FCS can evolve in 343 

sarbecoviruses via a series of individual point mutations is low. Most of the 344 

viruses are insufficiently similar to permit a convincing alignment in the 345 

S1/S2 region (Holmes et al., 2021; Sander et al., 2022). Only the most 346 

highly similar viruses like RaTG13 and BANAL-20-52 provide the 347 

opportunity to align the amino acid or RNA sequences with SARS-CoV-2 in 348 

this region. 349 

 350 

Well-articulated (but as yet unproven) arguments have been advanced that 351 

invoke processes of natural recombination in the acquisition of the FCS by 352 

SARS-CoV-2. Most notably, proposals from evolutionary biologists (Sander 353 

et al., 2022) and experimental virologists (Gallaher, 2020) invoke the 354 

process of “copy-choice” recombination. Such proposals are plausible but 355 

are not at this point supported by experimental evidence. Among the main 356 
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criticisms of these proposals has been the lack of a natural virus that is a 357 

sufficiently good match to the SARS-CoV-2 RNA sequence to have served 358 

as the immediate precursor for the proposed recombination event (Chan 359 

and Zhao, 2022). Even the closely related virus RaTG13, or the viruses 360 

identified in bats from Laos are not sufficiently similar at the RNA level to 361 

have served as the immediate ancestor to SARS-CoV-2 (Gallaher, 2020; 362 

Temmam et al., 2022). Less well-articulated arguments in favor of a natural 363 

origin of the FCS have been advanced (Garry, 2022) and clearly refuted 364 

(Harrison and Sachs, 2022b).  365 

 366 

Did the FCS of SARS-CoV-2 Arise During Serial Passage? 367 

An alternate explanation for the presence of the FCS in SARS-CoV-2 and 368 

its apparent adaptation to human cells, is that it might have arisen during 369 

the passage of a precursor virus in the laboratory, either during work done 370 

in human cells grown in cell culture or during serial passage in animal 371 

models such as humanized mice. Neither of these possibilities can be ruled 372 

out, but some evidence has accumulated to suggest that this may not have 373 

taken place. A bovine coronavirus was reported to have acquired a 12nt 374 

insert encoding the four amino acids SRRR during passage in human cells 375 

(Borucki et al., 2013), but on closer inspection of the data it emerged that 376 

this was not the case, as the variant carrying the insert was already present 377 

and had been selected for during passage, presumably because it 378 

conferred an advantage to the virus when grown in human cells.  379 

 380 

An interesting and more recent study of serial passage looked at the bat 381 

virus BANAL-20-236, a sarbecovirus that was sampled from bats in Laos 382 

(Temmam et al., 2022) and is one of the closest known relatives of SARS-383 

CoV-2. The sequence of the Spike protein around the S1/S2 junction is a 384 

close (but inexact) match to the sequence present in SARS-CoV-2. 385 

BANAL-20-236 is not able to infect human airway epithelial cells, but by 386 

growing this virus in human intestinal cells in culture, it was possible to 387 

propagate the virus and to look for evidence of adaptation to human cells. 388 

Although evidence was found for point mutations in the RBD during 389 

passage in cell culture, a FCS did not emerge from these experiments. 390 

Serial passage experiments performed with BANAL-20-236 in humanized 391 

mice produced similar results (Temmam et al., 2023). These results do not 392 

support the popular theory that the FCS arose during serial passage in 393 

culture, but are consistent with ideas that have been proposed regarding 394 

the adaptation of the RBD in a laboratory setting (Sirotkin & Sirotkin, 2020).  395 

 396 
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Was the FCS of SARS-CoV-2 Engineered? 398 

It is clear from the DEFUSE grant proposal released in 2021 that the UNC-399 

WIV-EHA group was planning to extend their ongoing studies on 400 

proteolysis (Menachery et al., 2020) as a factor in controlling viral entry, 401 

and that they aimed to do so by identifying novel FCS sequences and 402 

inserting these into newly identified coronaviruses (Lerner, 2021), and this 403 

proposal might obviously include work on unreported viruses that have not 404 

been disclosed. As with the arguments for natural origin, the main criticism 405 

of the idea that lab manipulation was involved is that the precursor virus 406 

(the “template”) necessary for such engineering experiments has not been 407 

identified. It is worth noting here that BANAL-20-52, BANAL-20-236 and 408 

RaTG13, although the closest relatives to SARS-CoV-2, are simply too 409 

different at the nucleotide level to have served as the precursor for either 410 

route of origin (Figure 8a). 411 

 412 

The experiments proposed by EHA and their partners in DEFUSE would 413 

seem to represent a logical extension of the work of many virologists, in 414 

particular the work done on proteolysis as a factor determining host range, 415 

and their long-standing interest in the FCS as a critical determinant of viral 416 

entry. A lack of transparency regarding this research has amplified 417 

concerns that the FCS of the virus might have a laboratory origin (Segreto 418 

and Deigin, 2020; Chan and Zhao, 2022). Insertion of the FCS by 419 

engineering is technically very simple to achieve and has already been 420 

performed many times, for example, with SARS-CoV-1 in pseudovirus 421 

experiments (Watanabe et al., 2008; Belouazard et al., 2009; Winstone et 422 

al., 2021).  423 

 424 

An unusual BsaX I restriction site is found in SARS-CoV-2, bracketing the 425 

P2-P12 residues, and contained within the extended FCS (Figure 8b). This 426 

interesting observation, made by many observers, is consistent with the 427 

idea that the FCS could have been inserted in a lab. In fact, the much-428 

maligned proline (P681) found at the P5 position, adjacent to RRAR, is 429 

both consistent with, and obligatory for, the insertion of a BsaX I site at this 430 

position. This unusual restriction site then provides for a potential 431 

application of what is termed “Golden mutagenesis”, in which any ten 432 

nucleotides can be inserted 3’- to the CUCC sequence, resulting in any 433 

three amino acids being inserted between P5 (P681) and the conserved P1 434 

arginine (R685). Golden mutagenesis is one application of “Golden Gate” 435 

cloning (Engler and Marillonet, 2014) using “type II” restriction enzymes 436 

(REs), a group that includes not only BsaX I (Tengs et al., 2004), but also 437 
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Bsa I and BsmB I, which have been extensively used in the design and 438 

recovery of infectious clones of coronaviruses (Hou et al., 2020). 439 

 440 

The use and application of type II REs was predicted and discussed by the 441 

world’s most accomplished coronavirus biologist several years ago, in 442 

relation to potential biowarfare and bioterrorist activities (Baric, 2007). 443 

There is some concern within the broader scientific community that similar 444 

experiments might have led to the creation of a virus closely related to 445 

SARS-CoV-2, a possibility that was foreseen by experts in biosecurity 446 

many years earlier (Klotz and Sylvester, 2014). The summation of these 447 

and other concerns about coronavirus engineering has led to calls by us 448 

and others for the full disclosure of sequences, email communications and 449 

laboratory notebooks, all as part of a detailed inquiry into the origins of the 450 

virus (Relman, 2020, VanHelden et al., 2021; Harrison and Sachs, 2022a). 451 

 452 
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Figure Legends 521 

 522 

Figure 1. a. A schematic of the Spike protein of SARS-CoV-2, showing the 523 

receptor binding domain and the two protease cleavage sites for furin and 524 

TMPRSS2. From Keller et al. (2022). b. The amino acid sequences at the S1-S2 525 

junction of the Spike proteins of five viruses, with the FCS of SARS-CoV-2 526 

highlighted in red. From Coutard et al. (2020). c. Amino acid sequence alignments 527 

around the S1-S2 junction of the Spike proteins of many members of the sub-genus 528 

Sarbecovirus, with the FCS of SARS-CoV-2 highlighted in red. Adapted from 529 

Hoffmann et al. (2020b).  530 

 531 

Figure 2. a. The direct fusion pathway for SARS-CoV-2 entry is facilitated by 532 

TMPRSS2. Adapted from Hoffmann and Pöhlmann (2021) b. The cell biology of 533 

furin, showing its maturation in the Golgi, transport from the TGN to the plasma 534 

membrane and subsequent uptake by endocytosis. Adapted from Thomas (2002). 535 

 536 

Figure 3. a. A schematic of the generic extended furin cleavage site, illustrating 537 

the core sequence flanked by two solvent-accessible regions. Adapted from Tian 538 

(2009). b. The amino acid sequence of the extended FCS in the Spike protein of 539 

SARS-CoV-2, labeled using the FCS numbering convention in Figure 3a. 540 

 541 

Figure 4. The FCS of SARS-CoV-2 is an extended structure in a solvent-542 

accessible region of the Spike protein structure. a. A comparison between the 543 

S1/S2 junction of SARS-CoV-1 and SARS-CoV-2. The insertion of PRRA extends 544 

the loop structure relative to the analogous region of the SARS-CoV-1 Spike 545 

protein, shown for comparison in these models. The peptide bond between R and S 546 

is exposed to proteases. From Jaimes et al. (2020). b. A model of the extended 547 

furin cleavage loop of SARS-CoV-2 from A668 to Y695, showing the highly 548 

conserved sarbecovirus sequence C671-Y674 (CASY), with the R682-R685 549 

(RRAR) recognition sequence highlighted. From Arora et al. (2022). 550 

 551 

 552 

 553 

  554 
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Figure 5. a. The interaction between molecules of the Spike protein and furin (in 555 

lilac), showing the location of the cleavage site protruding into the solvent. From 556 

Venkadari (2020). b.  The catalytic domain of furin (lilac) has several 557 

electronegative residues (D228, N193, E230 etc..) that can make electrostatic 558 

interactions with the furin cleavage site of the spike protein. From Venkadari 559 

(2020) c. The extended FCS (green) is overlaid over the surface of the furin 560 

catalytic domain (lilac). Positively charged R682, R683 and R685 interact with 561 

furin while P681 projects away from the enzyme. The peptide bond between R685 562 

and S686 is where the enzyme catalyzes the proteolysis of the Spike protein. From 563 

Venkadari (2020). 564 

 565 

Figure 6. a. The Spike protein of SARS-CoV-2 is subject to efficient proteolysis in 566 

cells infected with the virus, while the SARS-CoV-1 Spike is not. Mutation of the 567 

FCS (Sfur/mut) abolishes proteolysis. From Hoffmann et al. (2020b). b. The Spike 568 

protein of SARS-CoV-2 is subject to proteolysis in cells infected with VSV 569 

pseudovirus, while the SARS-CoV-1 Spike is not. Mutation of the FCS (Sfur/mut) 570 

abolishes proteolysis. From Walls et al. (2020). c. The Spike protein of SARS-571 

CoV-2 is subject to proteolysis in cells infected with a psedudovirus, while the 572 

SARS-CoV-1 Spike is not. Deletion of the FCS (-PRRA) abolishes proteolysis. 573 

From Peacock et al. (2021). 574 

 575 

Figure 7. a. Subtle differences in the structure of the Spike protein RBD from 576 

SARS-CoV-2 (blue) and the related bat virus RaTG13 (pink), illustrating 577 

unfavorable interactions between His 505 of RaTG13 and its receptor (green). 578 

From Wrobel et al. (2020) b. The RBD of the SARS-CoV-2 virus binds to hACE2 579 

with high (nanoMolar) affinity, while the RBD of the bat virus binds weakly to 580 

ACE2, due in part to the lack of Phe 486, Glu 484 and 493 in the bat virus. From 581 

Wrobel et al. (2020). 582 

 583 

Figure 8. a. Sequence alignment between the Spike proteins of SARS-CoV-2 and 584 

RaTG13 in the region of the FCS. The enumeration of the FCS begins at C, the 585 

P15 residue in the conserved domain. Despite the sequence identity of the amino 586 

acid sequence the divergent nucleotide sequence suggests that RaTG13 was neither 587 

the immediate evolutionary precursor of SARS-CoV-2, nor a laboratory template. 588 

From Deigin and Segreto (2021). b. A restriction enzyme site for BsaX I is located 589 

within the extended FCS region and flanks the conserved 6 amino-acid sequence 590 

QTQTNS, as well as the 4 amino-acid insert PRRA. 591 

 592 

 593 
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