
Efficient Evaluation of Large Abstractions for Decoupled Search:
Merge-and-Shrink and Symbolic Pattern Databases – Supplementary Material

Daniel Gnad1, Silvan Sievers2, Álvaro Torralba3

1 Linköping University, Sweden
2 University of Basel, Switzerland

3 Aalborg University, Denmark
daniel.gnad@liu.se, silvan.sievers@unibas.ch, alto@cs.aau.dk

The presented supplementary material contains full proofs
for Theorem 1, Corollary 2, and Proposition 5 of the main
paper, as well as additional experimental results that evaluate
the size of the explored search space.

Full Proofs
Theorem 1. Let A be an ADD that represents a PDB heuris-
tic h, sF a decoupled state, and B ∈ R+ ∪ {∞} a bound. It
is NP-complete to decide if hF (sF) < B.

Proof. For membership, one can guess a state s ∈ [sF] and
check if h(s) < B in polynomial time.

For hardness, consider the following planning task encod-
ing 3-SAT. For a 3-CNF formula with propositions X and
clauses {C1, . . . , Cm}, we construct Π as follows:

• V = {vg} ∪ {vx | x ∈ X} ∪
{vLi

x , vLi
y , vLi

z , vLi | x, y, z in Ci} with domains:
– D(v) = {u, 0, 1} (unassigned, false, true) for
v ∈ {vLi

w | w in Ci, 1 ≤ i ≤ m} =: V1

– D(v) = {i, g} (initial, goal) for v ∈ {vg} ∪
{vx | x ∈ X} ∪ {vLi | 1 ≤ i ≤ m} =: V2

• I = {v = u | v ∈ V1} ∪ {v = i | v ∈ V2}
• G = {v = g | v ∈ V2}

The factoring F is such that for every clause Ci, there is a
leaf factor Li = {vLi

x , vLi
y , vLi

z , vLi} that contains a variable
vLi
w for every proposition w in Ci and vLi for book-keeping.

The center factor is C = {vg} ∪ {vx | x ∈ X}.
For every leaf Li and every assignment that satisfies Ci

(there are seven such assignments) there exists an action
aLij (1 ≤ j ≤ 7) that sets vLi from i to g and sets the
propositional variables vLi

w for all w in Ci from u to the cor-
responding value. Moreover, there exist 2|X|+ 1 global ac-
tions: there are two actions a0x and a1x per x ∈ X with pre-
conditions pre(a0x) = {vx = i} ∪ {vLi

x = 0 | ∀Li : x in Ci}
and pre(a1x) = {vx = i} ∪ {vLi

x = 1 | ∀Li : x in Ci} and
effect eff(a0x) = eff(a1x) = {vx = g}. Finally, there is an
action ag with precondition pre(ag) = {vLi = g | 1 ≤ i ≤
m} ∪ {vg = i} and effect eff(ag) = {vg = g}. All actions
have cost 0.

In decoupled search, the initial state IF has a price of 0
for the initial leaf states {vLi = i, vLi

x = u, vLi
y = u, vLi

z =

u} and all leaf states that satisfy vLi = g and that set the

propositional variables vLi
x , yLi , zLi to truth values which

correspond to a satisfying assignment for x, y, z in clause
Ci (these leaf states can be reached via the leaf actions aLi).

Let sF be the decoupled state that results from applying
ag to IF . Our proof works by showing that we can com-
pactly represent a PDB heuristic as an ADD that detects if
sF is a dead end, which is true iff the 3-CNF formula is un-
satisfiable.

Let h be the PDB heuristic that uses the pattern P = {vx |
x ∈ X} ∪ {vLi

w | w in Ci, 1 ≤ i ≤ m}. Observe that an
assignment vx = g implies that all vLi

x have the same value,
because otherwise a0/1x , which sets vx to g, is not applicable.
Therefore, every state s where, for any two clauses Ci, Cj

that share a proposition x ∈ X , the values assigned to vLi
x

and v
Lj
x differ is a dead end in the abstract state space, so

h(s) = ∞. All other states have a heuristic value of 0.
We next show that the 3-CNF formula is satisfiable if and

only if hF (sF) = 0, and otherwise hF (sF) = ∞. Observe
first that, in sF , all leaf states with vLi = i are not reached
due to the precondition vLi = g of ag . That means that the
compliant leaf paths of all leaves must involve some leaf
action setting vLi to g, thereby also setting all propositional
variables vLi

w for w in Ci to a truth value. Observe further
that every satisfying assignment for all clauses Ci is reached
in sF . Finally, sF is solvable only if for every x ∈ X there
exists a reached leaf state in every Li that contains x such
that all vLi

x have the same value. This is exactly captured by
h and is the case iff the formula is satisfiable.

Therefore, all that remains to show is that we can repre-
sent h with an ADD of polynomial size. Indeed, we con-
struct an ADD A using a variable order that keeps next to
each other all variables encoding the proposition x ∈ X in
different clauses, and concatenate these clusters using an ar-
bitrary ordering of the propositions:

⟨vx, vL1
x , . . . , vLk

x , vy, v
Lo
y , . . . , vLp

y , vz, v
Lq
z , . . . , vLr

z , . . .⟩

Figure 1 illustrates a (simplified) part of the ADD, with
two gray blocks that correspond to the clusters of variables
just described, for two exemplary propositions x, y ∈ X .
The dashed edges from a node vx, for x ∈ X , represent
the value g (implying that all vLi

x have the same value) and
the solid edges represent the value i. The ADD in the figure
represents h: if vx = i in the given state, we need to check

that all values of vLj
x for 1 ≤ j ≤ k are equal to ensure that

we are in a non-dead-end state; if vx = g, the given state
cannot be a dead end due to x and we can continue with
y. Hence, from all nodes vLi

x in the cluster of proposition
x ∈ X , edges either go to a node in the cluster, where the
left branch (dashed edges) indicates that vLi

x = 0 and the
right branch (solid edges) that vLi

x = 1, or go to either ∞ or
vy , where y is the successor of x in the ordering of X .

We remark that, as the variables vLi
x are non-binary, the

illustration of A in Figure 1 is imprecise, assuming that
vLi
x ̸= u always holds. This is a simplification without loss

of generality for an easier visualization: the proper encoding
of the PDB heuristic h described above uses twice the num-
ber of nodes, duplicating each vLi

x node to handle the case
vLi
x = u.

We next show that the size of A can be bounded
by O(|X||C|). In Figure 1, every cluster of variables
vx, v

L1
x , . . . , vLk

x for each x ∈ X is expressed as an ADD
that uses 2k ≤ 2|C| internal nodes, as at every of the k lay-
ers, we only need two nodes to distinguish the case where all
previous variables were 0 or 1. Note that no node needs to
represent the case where two variables differ because in that
case, we go directly to the terminal node ∞. The clusters
are independent, and therefore the corresponding ADDs are
just stacked on top of each other (Edelkamp and Kissmann
2008), like for x and y in the illustration.

So all involved components, the planning task, factoring,
and ADD are polynomially bounded by the size of the 3-
CNF formula. The claim follows since sF is detected as a
dead-end by hF iff the formula is satisfiable.

Corollary 2. Let σ be an FM that represents a merge-
and-shrink heuristic h and sF a decoupled state. It is NP-
complete to decide if hF (sF) < B.

Proof. Membership follows trivially as before. For hard-
ness, we remark that every ADD can be transformed into
an FM in polynomial time (Edelkamp, Kissmann, and Tor-
ralba 2012; Torralba 2015). With that, we can take the ADD
A constructed in the proof of Theorem 1, transform it into an
FM σ, and evaluate the same decoupled state on it. Again,
all operations are polynomial in the size of the input 3-CNF
formula and sF is detected as dead-end iff the formula is
satisfiable.

Proposition 5. Let F be a factoring and σ an FM. If σ is
strongly compliant with F , then σ is compliant with F .

Proof. We show that σ and all its descendants have a nested-
ness of at most 1, which implies compliance with F . First,
we consider FMs that exactly cover a leaf factor and their
descendants, then we consider the remaining FMs.

Let ΣL be the set of descendants σL of σ that exactly
cover a leaf L ∈ L and do not cover any other leaf, i. e.,
cov(σL) = ec(σL) = {L}. Observe that for all σL ∈ ΣL

(and all their descendants), we have that |cov(σL)| ≤ 1.
This implies that all these FMs have nestedness of at most 1,
implying compliance with F .

y

vLo
y

v
Lo+1
yv

Lo+1
y

v
Lp
yv

Lp
y

vy

0 ∞

x

vL1
x

vL2
xvL2

x

vL3
xvL3

x

v
Lk
xv

Lk
x

vx

Figure 1: Illustration of a part of the ADD described in the
proof of Theorem 1.

It remains to show that FMs that are neither in ΣL, nor
one of their descendants, are compliant, too. Let Σ>1L de-
note the subset of these FMs σ′ where |cov(σ′)| > 1 (again,
compliance is implied if |cov(σ′)| ≤ 1). Let σ′ ∈ Σ>1L. As
σ is strongly compliant, every leaf L ∈ cov(σ) is exactly
covered in one of its descendants, excluding σ itself. So ev-
ery such leaf is covered in either of the components of σ, but
not in both components, formally cov(σL) ∩ cov(σR) = ∅.
For the same reason, the leaves are also fully covered either
in σL or σR, so pc(σL) = pc(σR) = ∅. The same is true
for all descendants σ′ of σ that are in Σ>1L, which do not
exactly cover any leaf. Thus, N (σ′) ≤ 1 for all σ′ ∈ Σ>1L,
concluding the proof.

Additional Experiments
In the main paper, we indicate that the number of state eval-
uations differs only for very few instances when the FM is
not forced to be general. We show detailed results about this
in Figure 2 (right). When there is a difference in state eval-
uations (the points not on the diagonal), this difference is
almost always smaller than a factor of two. There are only
five instances where the factor is larger, with a maximum
of 16. In comparison with the runtime plot (Figure 2, left),
though, it is clear that the differences in runtime are mostly
independent from the state evaluations.

References
Edelkamp, S.; and Kissmann, P. 2008. Limits and Possi-
bilities of BDDs in State Space Search. In Proceedings of

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

General FM

C
om

pl
ia

nt
FM

M&S DP – Random Linear

gen. FM is compliant
gen. FM is general

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

General FM
C

om
pl

ia
nt

FM

M&S DP – Random Linear

gen. FM is compliant
gen. FM is general

Figure 2: Per-instance comparison of the search time (left)
and the number of state evaluations (right) for M&S with
random linear merging comparing general to compliant
FMs.

the Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI 2008), 1452–1453. AAAI Press.
Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2012. Sym-
bolic A∗ Search with Pattern Databases and the Merge-and-
Shrink Abstraction. In De Raedt, L.; Bessiere, C.; Dubois,
D.; Doherty, P.; Frasconi, P.; Heintz, F.; and Lucas, P., eds.,
Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI 2012), 306–311. IOS Press.
Torralba, Á. 2015. Symbolic Search and Abstraction Heuris-
tics for Cost-Optimal Planning. Ph.D. thesis, Universidad
Carlos III de Madrid.

