
Online Appendix for: Modeling the Evolution of Rates

of Continuous Trait Evolution

B. S. Martin1,∗, G. S. Bradburd2, L. J. Harmon3, and M. G. Weber1

1 Department of Plant Biology, Ecology, Evolution, and Behavior Program, Michigan State University,
East Lansing, MI 48824, USA

2 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
3 Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST),

University of Idaho, Moscow, ID 83843, USA
∗Correspondence to be sent to: bruce.stagg.martin@gmail.com



2 MARTIN ET AL.

Supplemental Tables and Figures1

Table S1. Cetacean body length data and associated references used for empirical example

species length (m) reference
Balaena mysticetus 18.0 Slater et al., 2010

Balaenoptera acutorostrata 10.7 Slater et al., 2010
Balaenoptera bonaerensis 10.2 Konishi et al., 2008

Balaenoptera borealis 16.1 Slater et al., 2010
Balaenoptera edeni 15.4 Slater et al., 2010

Balaenoptera musculus 33.6 Slater et al., 2010
Balaenoptera omurai 10.7 Slater et al., 2010

Balaenoptera physalus 21.2 Slater et al., 2010
Berardius arnuxii 8.9 Slater et al., 2010
Berardius bairdii 12.0 Slater et al., 2010

Caperea marginata 6.2 Slater et al., 2010
Cephalorhynchus commersoni 1.5 Slater et al., 2010

Cephalorhynchus eutropia 1.5 Molina and Oporto, 1993
Cephalorhynchus heavisidii 1.7 Slater et al., 2010

Cephalorhynchus hectori 1.5 Slater et al., 2010
Delphinapterus leucas 3.8 Slater et al., 2010

Delphinus capensis 2.5 Plön et al., 2012
Delphinus delphis 2.3 Slater et al., 2010

Eschrichtius robustus 14.6 Slater et al., 2010
Eubalaena australis 13.9 Slater et al., 2010
Eubalaena glacialis 13.7 Slater et al., 2010
Eubalaena japonica 17.4 Fortune et al., 2021

Feresa attenuata 2.4 Slater et al., 2010
Globicephala macrorhynchus 4.8 Slater et al., 2010

Globicephala melas 5.1 Slater et al., 2010
Grampus griseus 3.7 Slater et al., 2010

Hyperoodon ampullatus 7.9 Slater et al., 2010
Hyperoodon planifrons 7.5 Slater et al., 2010
Indopacetus pacificus 7.2 Slater et al., 2010

Inia geoffrensis 2.0 Slater et al., 2010
Kogia breviceps 3.4 Slater et al., 2010

Kogia sima 2.4 Slater et al., 2010
Lagenodelphis hosei 2.6 Slater et al., 2010

Lagenorhynchus albirostris 3.0 Slater et al., 2010
Leucopleurus acutus 2.4 Slater et al., 2010

Lipotes vexillifer 2.0 Slater et al., 2010
Lissodelphis borealis 2.3 Slater et al., 2010
Lissodelphis peronii 2.3 Baker, 1981
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species length (m) reference
Megaptera novaeangliae 18.0 Slater et al., 2010

Mesoplodon bidens 5.1 Slater et al., 2010
Mesoplodon bowdoini 4.5 Slater et al., 2010
Mesoplodon carlhubbsi 5.3 Mead et al., 1982

Mesoplodon densirostris 4.7 Slater et al., 2010
Mesoplodon europaeus 5.2 Slater et al., 2010
Mesoplodon ginkgodens 4.9 Slater et al., 2010

Mesoplodon grayi 5.3 Slater et al., 2010
Mesoplodon hectori 4.4 Slater et al., 2010
Mesoplodon hotaula 4.8 Dalebout et al., 2014
Mesoplodon layardii 6.2 Slater et al., 2010
Mesoplodon mirus 5.1 Slater et al., 2010
Mesoplodon perrini 4.4 Dalebout et al., 2002

Mesoplodon peruvianus 3.7a Reyes et al., 1991
Mesoplodon stejnegeri 5.7 Slater et al., 2010
Mesoplodon traversii 5.3 Thompson et al., 2012
Monodon monoceros 4.3 Slater et al., 2010

Neophocaena phocaenoides 1.4 Slater et al., 2010
Orcaella brevirostris 2.2 Slater et al., 2010
Orcaella heinsohni 2.2 Arnold and Heinsohn, 1996

Orcinus orca 7.9 Slater et al., 2010
Peponocephala electra 2.8 Lodi et al., 1990

Phocoena dioptrica 1.9 Slater et al., 2010
Phocoena phocoena 1.9 Slater et al., 2010

Phocoena sinus 1.1 Slater et al., 2010
Phocoena spinipinnis 1.7 Slater et al., 2010

Phocoenoides dalli 1.9 Slater et al., 2010
Physeter macrocephalus 11.0 Slater et al., 2010

Platanista gangetica 2.5 Slater et al., 2010
Pontoporia blainvillii 1.5 Slater et al., 2010
Pseudorca crassidens 5.1 Slater et al., 2010
Sagmatias australis 2.1 Slater et al., 2010
Sagmatias cruciger 1.8 Slater et al., 2010

Sagmatias obliquidens 2.4 Slater et al., 2010
Sagmatias obscurus 1.9 Slater et al., 2010

Sotalia fluviatilis 1.5 Slater et al., 2010
Sotalia guianensis 2.1 Barros, 1991
Sousa chinensis 2.4 Slater et al., 2010

Sousa teuszii 2.5 Jefferson and Rosenbaum, 2014
Stenella attenuata 2.1 Slater et al., 2010
Stenella clymene 1.9 Slater et al., 2010

Stenella coeruleoalba 2.3 Slater et al., 2010
Stenella frontalis 2.1 Slater et al., 2010



4 MARTIN ET AL.

species length (m) reference
Stenella longirostris 2.0 Slater et al., 2010
Steno bredanensis 2.6 Slater et al., 2010

Tasmacetus shepherdi 6.5 Slater et al., 2010
Tursiops aduncus 2.1 Slater et al., 2010
Tursiops australis 2.8b Charlton-Robb et al., 2011
Tursiops truncatus 2.4 Slater et al., 2010
Ziphius cavirostris 6.4 Slater et al., 2010
afrom male specimen because no mature females were measured

bsex not reported
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Figure S1. Relationship between simulated and estimated branchwise rate deviation parameters (ln σ2
dev). The solid

line represents the position of the true branchwise rate deviations, while the shallower, dashed line represents the
observed line of best fit for these data.
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Figure S2. Power and error rates for branchwise rate parameters (ln σ2) under relaxed significance thresholds
(posterior probability < 0.1 or > 0.9). Lines depict changes in proportions of branchwise rates considered

anomalously slow (in dark blue) or fast (in light red) as a function of simulated rate deviations (ln σ2
dev). These

results combine all fits to simulated data that detected rate variance (σ2
σ2) significantly greater than 0. The

proportions are equivalent to power when the detected rate deviation is of the same sign as the true, simulated
deviation (left of 0 for anomalously slow rates in dark blue and right for anomalously fast rates in light red), and to
error rate when the detected and true rate deviations are of opposite signs. Here, significant rate deviations for
simulated rate deviations that are exactly 0 are considered errors regardless of sign.
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Approximating Geometric Brownian Motion Time-Averages2

Our model seeks to model rates (σ2) as “evolving” under a trended Geometric3

Brownian Motion (GBM)-like process, whereby the natural log of rates evolve in a trended4

Brownian Motion (BM)-like manner. Unfortunately, this requires an expression for the5

probability distribution of GBM time-averages along each branch in the phylogeny.6

Expressions for such distributions are infamously intractable, necessitating approximate7

solutions (Dufresne, 2004; Lepage et al., 2007). For our model, we use a multivariate8

log-normal approximation to model rate time-averages along each branch (branchwise9

averages, σ̄2) based on two observations. First, as the rate variance parameter (σ2
σ2)10

approaches 0, rates (σ2) will converge to following a simple exponential function with11

respect to time, σ2 = σ2
0exp[µσ2t], where σ2

0 is the starting rate, µσ2 is the trend, and t is12

time. In this case, the branchwise averages can be derived through integration and are13

equivalent to the time-averaged rates expected under a conventional “early/late burst”14

(EB/LB) model (Blomberg et al., 2003). Second, over short amounts of time and/or with15

low rate variance, the arithmetic and geometric time-averages of a GBM process approach16

one another. The geometric time-average of a GBM process is simply the exponentiated17

arithmetic time-average of the GBM process on the natural log scale, which has a18

straight-forward and tractable log-normal distribution (Devreese et al., 2010). Thus,19

assuming that branch lengths in a phylogeny are typically short and rate variance is20

relatively low, we can approximate the distribution of the natural log of branchwise21

averages by adding multivariate normal “noise”, γ, to the natural log of branchwise22

averages expected under a conventional EB/LB model, β. In other words:23

ln(σ2) ≈ β + γ (1)

β = ln(σ2
0) +

{
0 if µσ2 = 0

ln(|exp[µσ2τ2]− exp[µσ2τ1]|)− ln(|µσ2|)− ln(t) if µσ2 6= 0
(2)

γ ∼ MVN (0, σ2
σ2D) (3)
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as in the main text. Here, t is a vector of branch lengths, τ1 and τ2 are vectors of24

the start and end times of each branch (i.e., τ2 − τ1 = t), and D is the variance-covariance25

matrix of branchwise averages for a value evolving under an untrended BM process on a26

phylogeny. Let x̄ and t be vectors of time-averaged trait values and edge lengths,27

respectively, for three edges: two sister edges, i and j, with ancestral edge, k. If traits28

evolve under an untrended BM process and the ancestral trait value of k is fixed, the29

variances of x̄i and x̄j are ti/3 + tk and tj/3 + tk, respectively. The covariance between x̄i30

and x̄j is simply tk, and the covariances between either x̄i or x̄j and x̄k is tk/2 (Devreese31

et al., 2010). From this, we can derive an expression for the variance-covariance matrix of32

branchwise averages given an arbitrary phylogeny, as shown in the main text:33

Di,j =
∑

k∈anc(i,j)

tk −


2ti/3 if i = j

ti/2 if i ∈ anc(j, j)

tj/2 if j ∈ anc(i, i)

0 if i 6= j, i 6∈ anc(j, j), j 6∈ anc(i, i)

(4)

While this multivariate log-normal approximation is rough, we demonstrate here34

that it is largely sufficient for our purposes. Notably, we are not the first to approximate35

GBM time-averages using log-normal distributions in the context of comparative36

phylogenetics (Welch and Waxman, 2008). There are two other tractable strategies for37

approximating these distributions given in the comparative phylogenetics literature. Both38

of these strategies use the fact that values at the nodes of a phylogeny evolving under a39

GBM process follow an exact multivariate log-normal distribution, and instead focus on40

estimating nodewise values. Branchwise averages are then approximated by either41

averaging ancestral and descendant nodewise values for each edge (e.g., Thorne et al.,42

1998) or via the maximum likelihood estimate of branchwise averages given the ancestral43

and descendant nodewise values (e.g., Lartillot and Poujol, 2011; Revell, 2021). We term44

these strategies “endpoint averaging” and “endpoint integration”, respectively. We prefer45

the log-normal approximation due to its convenient formulation and direct focus on46

estimating branchwise, rather than nodewise, quantities. In the spirit of thoroughness,47
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however, we conducted three simulation experiments to investigate the relative48

performance of these different approximation strategies.49

We first conducted a simple experiment where we simulated 100,000 GBM50

time-averages on the natural log scale under each approximation strategy. We also51

estimated a “true” branchwise average distribution for comparison by simulating 100,00052

fine-grained GBM sample paths (1,000 time points) and taking the natural log of each53

sample path’s average. We repeated these simulations for each combination of trend (µσ2)54

and rate variance (σ2
σ2) parameter values used in the main text’s simulation study (Fig.55

S3). All simulations were standardized to occur over a time interval of 1, just as each56

phylogeny in our simulation study was rescaled to have a total height of 1. The results57

below thus represent how “off” each approximation would be for a single branch spanning58

the entire height of a phylogeny in our simuation study. The log-normal approximation59

notably lacks a right skew characteristic of the true distribution and other approximations.60

The log-normal approximation also appears to overestimate the variance of branchwise61

averages when trends are decreasing and underestimates variance when trends are62

increasing, particularly with high rate variance. On the other hand, the endpoint average63

approximation exhibits notable upward bias and consistently underestimates branchwise64

average variance. Additionally, this approximation fails to converge to the correct65

branchwise average when rate variance is 0. Lastly, the endpoint integration approximation66

exhibits no notable bias but underestimates branchwise average variance in the case of no67

or decreasing trends. The accuracy of branchwise average variance under the log-normal68

approximation might be improved by adapting the Fenton-Wilkinson approximation of69

log-normal sums for GBM processes (Safak and Safak, 2002), but we did not explore this70

here.71
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Figure S3. Distributions of simulated branchwise averages under different approximation strategies and the true
distribution given parameter combinations used in the main text’s simulation study. All simulations were run on
single branches of length 1.

The above results help give a sense of where each approximation breaks down in72

parameter space, yet poorly represent the practical behavior of each approximation. In the73

context of our model, these approximations take place on individual branches of a74

phylogeny, which typically span relatively short intervals of time. For our next simulation75

experiment, we scaled up to simulating sets of branchwise averages on entire phylogenies.76

For each parameter combination (excluding combinations where rate variance is 0), we77

repeated the same simulations on 100 pure birth phylogenies with either 50, 100, or 20078

species (generated using the R package phytools ; Revell, 2012) standardized to a height of79

1. For each phylogeny, we simulated 1,000 sets of branchwise averages under each80

approximation strategy, as well as fine-grained GBM sample paths ( 1,000 time points81
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across entire phylogeny’s height) representing the true distribution. Because these samples82

have a high number of dimensions (one for each branch in a phylogeny), we visualized how83

well these multivariate distributions match one another using summary statistics.84

Specifically, for each tree, we recorded the correlation coefficients between the85

means/(co)variances of branchwise averages simulated under each approximation strategy86

and the true distribution (Figs. S4-9). To have a null expectation for these correlation87

coefficients, we also simulated a second true distribution and estimated correlation88

coefficients for means/(co)variances between replicate true distributions.89

Overall, the results indicate that all approximations do a fairly good job at90

recapitulating the means and (co)variances expected under the true distribution. The91

log-normal approximation notably exhibits uncorrelated means in the case of no trend, in92

contrast to other approximations. This is due to the log-normal approximation lacking the93

right skew of the true distribution and other approximations (Fig. 3), which naturally94

inflates the means of branchwise average distributions along long branches. In the case of95

any trend, the endpoint average approximation exhibits somewhat less strong correlations96

between branchwise average means compared to other approximations. When rate variance97

is high, the log-normal approximation exhibits performance intermediate between the98

endpoint average approximation and endpoint integration approximation/null distribution.99

However, even the worst performing simulations nearly always exhibit strong correlations100

in branchwise average means above 0.98. In contrast to means, correlations for branchwise101

average (co)variances consistently varied between about 0.98-0.99 regardless of simulation102

parameters or approximation strategy, closely matching the null distribution.103
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Figure S4. Distributions of correlation coefficients between mean simulated branchwise averages under different
approximation strategies and the true distribution with rate variance (σ2

σ2) set to 3. All simulations were run on
pure-birth phylogenies of height 1.
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Figure S5. Distributions of correlation coefficients between mean simulated branchwise averages under different
approximation strategies and the true distribution with rate variance (σ2

σ2) set to 3. All simulations were run on
pure-birth phylogenies of height 1. Plots are zoomed in on distributions close to 1.
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Figure S6. Distributions of correlation coefficients between mean simulated branchwise averages under different
approximation strategies and the true distribution with rate variance (σ2

σ2) set to 6. All simulations were run on
pure-birth phylogenies of height 1.
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Figure S7. Distributions of correlation coefficients between mean simulated branchwise averages under different
approximation strategies and the true distribution with rate variance (σ2

σ2) set to 6. All simulations were run on
pure-birth phylogenies of height 1. Plots are zoomed in on distributions close to 1.
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Figure S9. Distributions of correlation coefficients between simulated branchwise average (co)variances under
different approximation strategies and the true distribution with rate variance (σ2

σ2) set to 6. All simulations were
run on pure-birth phylogenies of height 1.

Because GBM time-averages are non-normally distributed, we also sought a104

non-parametric method of comparing samples from the approximations and true105

distributions. For this, we attempted to use the R package FNN (Beygelzimer et al., 2019)106

to estimate Kullback-Leibler (KL) divergence from each approximation to the true107

distribution. However, this estimator exhibited severe numerical issues, like negative KL108

divergence estimates. Thus, we instead implemented a crude K nearest neighbor109

probability density estimator (Zhao and Lai, 2021). For each tree in the simulation110

experiment above, we used this estimator to calculate local probability densities under111

each approximation and the true distribution around samples from a replicate true112

distribution. We then calculated log ratios of the true densities to densities under each113
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approximation and averaged the distances between these log ratios and 0 (i.e., equal114

densities). These averaged distances give a rough sense of how well the probability density115

of each approximation matches that of the true distribution, with increased sampling in116

higher-density regions of the true distribution (Figs. S10-11). Overall, the average log117

density ratio distances under each approximation matches the null distribution well. The118

endpoint average and log-normal approximations exhibit marginally elevated distances in119

the case of non-zero trends and decreasing trends, respectively, likely due to these120

approximations’ under/overestimation of branchwise average variance in certain regions of121

parameter space (Fig. S3).122
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Figure S10. Distributions of average log density ratio distances between simulated branchwise average distributions
under different approximation strategies and the true distribution with rate variance (σ2

σ2) set to 3. Probability
densities were estimated via K nearest neighbors. All simulations were run on pure-birth phylogenies of height 3.
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Figure S11. Distributions of average log density ratio distances between simulated branchwise average distributions
under different approximation strategies and the true distribution with rate variance (σ2

σ2) set to 6. Probability
densities were estimated via K nearest neighbors. All simulations were run on pure-birth phylogenies of height 1.

Lastly, we redid our entire simulation study with trait evolution rates simulated as123

evolving under a fine-grained GBM process (∼500 time points across entire phylogeny’s124

height). We present all figures and tables for this simulation study below (Figs. S12-16;125

Tables S2-4). In general, the results qualitatively match those of the simulation study126

presented in the main text, and we feel confident that the log-normal approximation of127

branchwise averages is sufficient for our model. While there is some discrepancy in the128

statistical power of trend detection compared to results in the main text, it is unlikely such129

discrepancies result from systematic bias. Notably, statistical power for trend detection130

even under conventional EB/LB models in this simulation study also differs from the main131

text results, suggesting that any discrepancies are attributable to variation in the132
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simulated data.133

0
5

10
15

20
25

E
st

im
at

ed
 r

at
e 

va
ria

nc
e 

(s
s22

)
-1

0
-5

0
5

10
15

-4 0 4

E
st

im
at

ed
 tr

en
d 

(m
s2

)

Number of species

50 100 200

Simulated trend (ms2)

-4 0 4

Simulated rate variance (ss2
2 )

0 3 6

-4 0 4

Figure S12. Relationship between simulated and estimated rate variance (σ2
σ2) and trend (µσ2) parameters. Each

point is the posterior median from a single fit, while the violins are combined posterior distributions from all fits for
a given trait evolution scenario. Vertical lines represent the 50% (thicker lines) and 95% equal-tailed intervals
(thinner lines) of these combined posteriors, while horizontal lines represent positions of true, simulated values.

P
ro

po
rt

io
n 

of
 fi

ts
 w

ith
ra

te
 v

ar
ia

nc
e 

(s
s22

 >
 0

)
0

1

Decreasing (ms2 = -4)

50 100 200

Simulated trend
None (ms2 = 0)

Number of species
50 100 200

Increasing (ms2 = 4)
Power  Error

50 100 200

Figure S13. Power and error rates for the rate variance parameter (σ2
σ2). Lines depict changes in the proportion of

model fits that correctly showed evidence for rate variance significantly greater than 0 (i.e., power, in black) and
incorrectly showed evidence (i.e., error, in red) as a function of tree size.



APPENDIX: EVOLUTION OF RATES OF EVOLUTION 19
P

ro
po

rt
io

n 
of

 fi
ts

 w
ith

de
cr

ea
si

ng
 tr

en
d 

(m
s2

 <
 0

)
0

1

None (ss2
2  = 0)

P
ro

po
rt

io
n 

of
 fi

ts
 w

ith
in

cr
ea

si
ng

 tr
en

d 
(m

s2
 >

 0
)

0
1

50 100 200

Simulated rate variance

Moderate (ss2
2  = 3)

Number of species
50 100 200

Power  Error
Unconstrained  Constrained

High (ss2
2  = 6)

50 100 200

Figure S14. Power and error rates for the trend parameter (µσ2). Lines depict changes in the proportion of model
fits that correctly showed evidence for trends significantly less and greater than 0 (i.e., power, in black) and
incorrectly showed evidence (i.e., error, in light red) as a function of tree size. Results are shown for both models
allowed to freely estimate rate variance (σ2

σ2) (i.e., unconstrained models, solid lines) and models with rate variance
constrained to 0 (i.e., constrained models, dashed lines). The latter models are identical to conventional early/late
burst models.

0
1

P
ro

po
rt

io
n 

of
 s

ig
ni

fic
an

t

ra
te

 d
ev

ia
tio

ns
 (

ln
 s

de
v

2
¹

0)

sdev
2 < 0   sdev

2 > 0

Simulated rate deviation ( ln sdev
2 )

-8 -6 -4 -2 0 2 4 6 8

Figure S15. Power and error rates for branchwise rate parameters (ln σ2). Lines depict changes in proportions of
branchwise rates considered anomalously slow (in dark blue) or fast (in light red) as a function of simulated rate

deviations (ln σ2
dev). These results combine all fits to simulated data that detected rate variance (σ2

σ2) significantly
greater than 0. The proportions are equivalent to power when the detected rate deviation is of the same sign as the
true, simulated deviation (left of 0 for anomalously slow rates in dark blue and right for anomalously fast rates in
light red), and to error rate when the detected and true rate deviations are of opposite signs. Here, significant rate
deviations for simulated rate deviations that are exactly 0 are considered errors regardless of sign.
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Figure S16. Relationship between simulated and estimated branchwise rate parameters (ln σ2). For each simulation
and posterior sample, branchwise rates were first centered by subtracting their mean. We estimated centered
branchwise rates by taking the median of the centered posterior samples. The solid line represents the position of
the true centered branchwise rates, while the shallower, dashed line represents the observed line of best fit for these
data.

Table S2. Median absolute errors of rate variance, trend, and branchwise rate posteriors
(i.e., median absolute difference between posterior samples and their true, simulated values,
a measure of posterior distribution accuracy), averaged across replicates for each simulated
trait evolution scenario and tree size. σ2

σ2 and µσ2 indicate the true, simulated values of rate
variance and trend parameters, respectively.

rate variance trend branchwise rates
σ2
σ2 = 0 3 6 0 3 6 0 3 6

50 species

µσ2 = -4 0.61 1.58 2.26 0.94 1.68 1.78 0.42 0.80 0.96
0 0.89 1.89 2.23 2.09 1.56 2.22 0.62 0.82 1.04
4 0.58 1.68 2.41 2.15 2.98 2.62 0.63 0.92 0.98

100 species

µσ2 = -4 0.31 2.11 2.37 0.91 1.22 1.43 0.32 0.77 0.86
0 0.31 1.59 1.95 0.81 1.26 1.47 0.32 0.82 0.93
4 0.26 1.49 2.21 1.67 2.16 2.02 0.41 0.85 0.94

200 species

µσ2 = -4 0.14 1.23 1.79 0.62 0.66 1.29 0.23 0.68 0.80
0 0.21 0.93 1.82 0.65 1.09 1.10 0.24 0.72 0.84
4 0.18 0.98 1.50 1.09 1.17 1.27 0.28 0.73 0.84
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Table S3. Breadths of rate variance, trend, and branchwise rate posteriors (i.e., the differ-
ence between the 97.5% and 2.5% quantiles of posterior samples, a measure of posterior
distribution precision), averaged across replicates for each simulated trait evolution scenario
and tree size. σ2

σ2 and µσ2 indicate the true, simulated values of rate variance and trend
parameters, respectively.

rate variance trend branchwise rates
σ2
σ2 = 0 3 6 0 3 6 0 3 6

50 species

µσ2 = -4 3.67 9.11 12.98 4.66 6.02 6.81 2.28 3.24 3.65
0 4.38 10.67 12.60 7.28 7.09 8.00 2.60 3.41 3.89
4 3.35 9.00 13.88 10.34 10.95 12.09 2.81 3.50 4.10

100 species

µσ2 = -4 1.77 7.96 9.58 3.53 4.56 4.72 1.71 3.22 3.46
0 1.64 6.72 9.15 4.04 5.09 5.67 1.76 3.12 3.42
4 1.36 6.77 8.13 6.74 8.08 7.86 1.87 3.31 3.55

200 species

µσ2 = -4 0.71 3.97 7.20 2.64 3.58 4.06 1.24 2.50 3.12
0 1.04 4.26 6.52 3.34 3.98 4.15 1.36 2.77 3.25
4 0.79 3.62 6.89 4.53 4.88 5.69 1.39 2.70 3.37
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Table S4. Coverage of rate variance, trend, and branchwise rate posteriors (i.e., proportion
of times the true, simulated value is greater than the 2.5% posterior distribution quantile and
less than the 97.5% quantile) for each simulated trait evolution scenario and tree size. σ2

σ2 and
µσ2 indicate the true, simulated values of rate variance and trend parameters, respectively.

rate variance trend branchwise rates
σ2
σ2 = 0 3 6 0 3 6 0 3 6

50 species

µσ2 = -4 — 1.00 1.00 1.00 0.80 0.90 1.00 0.95 0.94
0 — 1.00 1.00 0.90 1.00 1.00 0.97 0.98 0.94
4 — 1.00 1.00 1.00 0.80 1.00 0.95 0.94 0.96

100 species

µσ2 = -4 — 0.70 0.90 0.90 1.00 0.90 1.00 0.96 0.96
0 — 1.00 1.00 1.00 1.00 0.90 1.00 0.94 0.94
4 — 1.00 0.90 0.90 0.90 1.00 0.99 0.95 0.93

200 species

µσ2 = -4 — 0.90 1.00 1.00 1.00 0.90 0.99 0.93 0.95
0 — 1.00 0.80 1.00 0.90 1.00 1.00 0.95 0.95
4 — 1.00 1.00 0.90 1.00 1.00 0.99 0.93 0.96

Average Changes in Trait Evolution Rates134

Conventional early/late burst (EB/LB) models of trait evolution assume that rates135

follow a homogeneous, exponential declines or increases with respect to time (Blomberg136

et al., 2003). The definition of EBs/LBs under such models is thus straight-forward–any137

given time slice in a clade’s history is associated with a single trait evolution rate, and138

these rates can only decrease, increase or stay the same. On the other hand, allowing for139

rate heterogeneity independent of overall temporal trends means that any given time slice140

in a clade’s history is associated with a distribution of trait evolution rates. Because of141

this, our new method allows for alternative definitions of EBs/LBs, depending on how one142

summarizes these distributions. In the current study, we mainly consider a definition based143

on whether the medians, or geometric means, of these distributions decrease or increase144

over time (change per unit time given by µσ2 , hereafter the “trend” parameter, as in the145
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main text). Alternatively, one could use a definition based on whether the average, or146

arithmetic means, of these distributions decrease or increase over time (change per unit147

time given by µσ2 + σ2
σ2/2, hereafter the “average change” parameter, δσ2).148

We chose to focus on trend over average change estimation and define EBs/LBs149

based on the trend parameter for a few reasons. First, average change is a composite150

parameter of both the trend and rate variance parameters, posing some interpretational151

challenges. In general, it seems more intuitive to consider the magnitude of deterministic152

changes in trait evolution rates (the trend component) apart from the magnitude of153

stochastic changes (the rate variance component). Second, because rates evolve in an154

approximately log-normal manner under our model, medians are a natural, reliable way of155

summarizing their distributions, corresponding to the exponentiated average of rates on156

the natural log scale. In contrast, the right skew of log-normal distributions causes raw157

averages of trait evolution rates to be highly influenced by few, extreme outliers,158

particularly when rate variance is high. For this reason, our model can produce trait159

evolution scenarios whereby rates exhibit declines in the majority of lineages (directly160

related to changes in median rates) while increasing on average (Figs. S17-18). Lastly,161

many macroevolutionary biologists consider “accounting” for lineages/subclades exhibiting162

unusual trait evolution rates critical to elucidating and understanding changes in rates over163

time (Lloyd et al., 2012; Slater and Pennell, 2014; Benson et al., 2014; Hopkins and Smith,164

2015; Wright, 2017; Puttick, 2018). This implies that many empiricists intuitively define165

EBs/LBs based on majority changes in rates rather than changes in average rates.166

Additionally, by log-transforming traits prior to analysis, many macroevolutionary167

biologists implicitly use GBM processes to model trait evolution, just as we use a168

(approximate) GBM process to model rate evolution here. In the context of trait evolution,169

the analogous trend parameter is widely considered by empiricists and method developers170

alike to determine whether a clade exhibits a directional “evolutionary trend” in traits,171

regardless the estimated variance parameter (Hunt, 2006; Raj Pant et al., 2014; Sookias172
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et al., 2012; Gill et al., 2017).173
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Figure S17. Distributions of 6,000 rates simulated as evolving under a GBM process with trend of -0.015 and rate
variance of 0.05 at various time points, with starting rate of 1 at time t = 0. Parameter values were chosen to
clearly illustrate how rates under our model may exhibit majority declines while increasing on average due to the
skewed nature of rate change. Solid and dashed vertical lines represent the positions of median and average rate
values, respectively, for each time point.
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Figure S18. Changes over time in the median and average of 6,000 rates simulated as evolving under a GBM
process with trend of -0.015 and rate variance of 0.05, with starting rate of 1 at time t = 0. Parameter values were
chosen to clearly illustrate how rates under our model may exhibit majority declines while increasing on average
due to the skewed nature of rate change. Solid and dashed lines depict changes in median and average rate values,
respectively, while the dotted line depicts changes in the proportion of rates greater than the starting rate of 1.

Here, we briefly consider our new method’s performance with respect to estimating174

and detecting average changes in trait evolution rates. Interestingly, our simulation study175

results revealed that, in the presence of time-independent rate heterogeneity, conventional176

EB/LB models (equivalent to our new models with rate variance constrained to 0) appear177

to estimate average change, rather than trend parameters, as defined under our model178

(Figs. S19-20). We are not aware of any previous research explicitly demonstrating this179

phenomenon. When comparing performance of constrained to unconstrained models with180

respect to detecting significant average change (i.e., 95% equal-tailed interval lies entirely181

below or above 0), we generally see only a modest reduction in error rates and greatly182

reduced power to detect negative average change under the full, unconstrained model (Fig.183

S21). Nonetheless, inference of the average change parameter seems substantially improved184

under unconstrained models (Tables S5-7). In the presence of time-independent rate185
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heterogeneity, constrained models tend to exhibit less accurate, overly-narrow posterior186

estimates of average change, particularly when the rate variance and trend parameters are187

high, resulting in low posterior coverage. This warrants caution in interpreting the results188

of conventional EB/LB models fitted to comparative data exhibiting substantial189

time-independent rate heterogeneity, and we recommend estimating rate variance even190

when one’s only goal is to estimate changes in average trait evolution rates over time.191
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Figure S19. Relationship between simulated rate variance (σ2
σ2)/trend (µσ2) and estimated trend parameters. Each

point is the posterior median from a single fit, while the violins are combined posterior distributions from all fits for
a given trait evolution scenario. Vertical lines represent the 50% (thicker lines) and 95% equal-tailed intervals
(thinner lines) of these combined posteriors, while horizontal lines represent positions of true, simulated values.
Results for models with estimated rate variance unconstrained and constrained to 0 are shown on top and bottom,
respectively.
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Figure S20. Relationship between simulated rate variance (σ2
σ2)/trend (µσ2) and estimated average change (δσ2)

parameters. Each point is the posterior median from a single fit, while the violins are combined posterior
distributions from all fits for a given trait evolution scenario. Vertical lines represent the 50% (thicker lines) and
95% equal-tailed intervals (thinner lines) of these combined posteriors, while horizontal lines represent positions of
true, simulated values. Results for models with estimated rate variance unconstrained and constrained to 0 are
shown on top and bottom, respectively.
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Figure S21. Power and error rates for the average parameter (δσ2). Lines depict changes in the proportion of model
fits that correctly showed evidence for average change significantly less and greater than 0 (i.e., power, in black)
and incorrectly showed evidence (i.e., error, in light red) as a function of tree size. Results are shown for both
models allowed to freely estimate rate variance (σ2

σ2) (i.e., unconstrained models, solid lines) and models with rate
variance constrained to 0 (i.e., constrained models, dashed lines). The latter models are identical to conventional
early/late burst models.
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Table S5. Median absolute errors of average change posteriors (i.e., median absolute dif-
ference between posterior samples and their true, simulated values, a measure of posterior
distribution accuracy) under models with rate variance unconstrained and constrained to 0,
averaged across replicates for each simulated trait evolution scenario and tree size. σ2

σ2 and
µσ2 indicate the true, simulated values of rate variance and trend parameters, respectively.

unconstrained constrained
σ2
σ2 = 0 3 6 0 3 6

50 species

µσ2 = -4 1.41 1.61 2.50 1.23 1.50 2.74
0 1.43 2.10 3.08 1.45 2.45 6.08
4 2.22 3.04 3.34 2.05 3.05 3.87

100 species

µσ2 = -4 0.78 1.27 1.70 0.74 1.28 1.78
0 1.15 1.65 1.72 1.08 1.88 3.35
4 1.92 1.98 1.85 1.70 2.08 4.39

200 species

µσ2 = -4 0.79 0.92 1.44 0.78 0.96 1.19
0 0.92 1.21 1.01 0.90 1.35 3.05
4 0.97 1.15 1.51 0.94 1.80 5.06
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Table S6. Breadths of average change posteriors (i.e., the difference between the 97.5% and
2.5% quantiles of posterior samples, a measure of posterior distribution precision) under
models with rate variance unconstrained and constrained to 0, averaged across replicates for
each simulated trait evolution scenario and tree size. σ2

σ2 and µσ2 indicate the true, simulated
values of rate variance and trend parameters, respectively.

unconstrained constrained
σ2
σ2 = 0 3 6 0 3 6

50 species

µσ2 = -4 5.56 7.95 10.27 4.50 4.65 5.63
0 6.25 9.89 11.46 5.47 6.82 8.45
4 11.04 11.69 12.45 9.48 10.81 10.60

100 species

µσ2 = -4 3.42 5.48 6.54 3.07 3.49 3.84
0 4.46 6.27 7.44 3.97 4.58 6.60
4 7.64 8.97 8.56 7.12 8.41 8.40

200 species

µσ2 = -4 2.82 4.14 5.07 2.70 2.87 3.26
0 3.40 4.50 5.13 3.25 3.30 3.37
4 4.51 5.45 6.29 4.38 5.78 8.73
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Table S7. Coverage of average change posteriors (i.e., proportion of times the true, simu-
lated value is greater than the 2.5% posterior distribution quantile and less than the 97.5%
quantile) under models with rate variance unconstrained and constrained to 0 for each sim-
ulated trait evolution scenario and tree size. σ2

σ2 and µσ2 indicate the true, simulated values
of rate variance and trend parameters, respectively.

unconstrained constrained
σ2
σ2 = 0 3 6 0 3 6

50 species

µσ2 = -4 0.90 1.00 0.90 0.80 0.60 0.50
0 1.00 1.00 1.00 0.90 0.80 0.40
4 1.00 1.00 0.90 1.00 1.00 0.80

100 species

µσ2 = -4 1.00 1.00 0.90 1.00 0.80 0.60
0 1.00 0.90 0.90 0.90 0.60 0.60
4 0.90 1.00 1.00 0.90 0.90 0.60

200 species

µσ2 = -4 1.00 1.00 0.90 1.00 0.90 0.80
0 0.90 1.00 1.00 0.90 0.60 0.10
4 1.00 1.00 1.00 1.00 0.90 0.50

Prior Sensitivity Study192

To see how sensitive our method is to alternate prior specifications, we refit models193

to our smallest simulations (50 tips) while varying prior settings. We focus on the smallest194

simulations because the priors are more influential when there is less data. In addition to195

refitting models with default priors to each simulation (see Priors subsection of Materials196

and Methods section in main text), we also refit models with “tight” and “loose” prior197

settings, whereby the priors for rate variance (σ2
σ2), trend (µσ2), and root rate (σ2

0)198

parameters were made more or less informative, respectively. We did this by either199

reducing the prior scale parameter (i.e., standard deviation in the case of normal200

distributions) 5-fold for more precise, informative priors or increasing 3-fold for more201

relaxed, uninformative priors (i.e., prior scales of 1/T for rate variance, 2/T for trend, and202
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2 for root rate under the tight settings and 15/T , 30/T , and 30 under the loose settings,203

where T is the height of the phylogeny). Within each of these three prior settings (tight,204

default, or loose), we additionally shifted the location of the root rate prior by either -3, 0,205

or 3, yielding a total of 9 prior settings. These shifts correspond to ∼20-fold changes in the206

expected root rate.207

Because this simulation study design requires many more model fits compared to208

the main text’s simulation study (9 trait evolution scenarios with 10 replicates refit under209

9 different prior settings, yielding 810 model fits), we only ran 2 Hamiltonian Monte Carlo210

chains consisting of 1,500 iterations for each model fit and discarded the first 750 iterations211

as warmup. Chains still mixed relatively well despite the shorter chains (greatest212

R̂ ≈ 1.021), though effective sample sizes were unsurprisingly lower compared to results in213

the main text. Nonetheless, bulk effective sample sizes always exceeded the minimum214

recommended 100 per chain (Vehtari et al., 2021), and all tail effective sizes exceeded 100.215

Divergent transitions remained relatively rare, with 18 fits exhibiting a single divergent216

transition and another 4 with 2-5 each. Most low tail effective sample sizes and divergent217

transitions were associated with loose prior settings, likely reflecting difficulty in sampling218

the fat tails of posteriors under such priors.219

Overall results suggest that evorates is robust to alternate prior specifications220

unless the priors are overly informative (Figs. S22-24; Tables S8-19). In particular, shifting221

the root rate prior location had little effect on posterior distributions provided the prior’s222

scale is larger than the shift magnitude (as in the case of default and loose prior settings).223

Unsurprisingly, posterior precision generally decreased with more uninformative priors, and224

loose priors thus tended to yield less accurate posteriors with higher median absolute225

errors. Counterintuitively, however, default prior settings often resulted in more accurate226

posteriors than tight prior settings. In the case of branchwise rates, this is likely due to227

lower estimates of rate variance under tight priors, increasing the shrinkage of branchwise228

rate estimates (Fig. S25). In the case of trend and root rate inference, this phenomenon229
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mostly occurred when the root rate prior and simulated trend “conflict” by implying230

different patterns of rate change over time (e.g., a root rate prior shifted by -3 suggests231

rates must have increased over time to yield the observed trait data, while a decreasing232

trend implies the opposite). Accordingly, posterior coverage remained essentially constant233

at ∼95% under default and loose prior settings, but dropped significantly–sometimes as234

low as 10%–under tight prior settings when the root rate prior and simulated trend235

conflicted in this manner.236
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Figure S22. The effect of trait evolution scenario and prior settings on inference of the rate variance parameter
(σ2
σ2). Each point is the posterior median from a single fit, while the violins are combined posterior distributions

from all fits for a given trait evolution scenario and prior setting. Vertical lines represent the 50% (thicker lines)
and 95% equal-tailed intervals (thinner lines) of these combined posteriors, while horizontal lines represent
positions of true, simulated values.
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Figure S23. The effect of trait evolution scenario and prior settings on inference of the trend parameter (µσ2). Each
point is the posterior median from a single fit, while the violins are combined posterior distributions from all fits for
a given trait evolution scenario and prior setting. Vertical lines represent the 50% (thicker lines) and 95%
equal-tailed intervals (thinner lines) of these combined posteriors, while horizontal lines represent positions of true,
simulated values.
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Figure S24. The effect of trait evolution scenario and prior settings on inference of the root rate parameter (σ2
0).

Each point is the posterior median from a single fit, while the violins are combined posterior distributions from all
fits for a given trait evolution scenario and prior setting. Vertical lines represent the 50% (thicker lines) and 95%
equal-tailed intervals (thinner lines) of these combined posteriors, while horizontal lines represent positions of true,
simulated values.
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Figure S25. Relationship between simulated and estimated branchwise rate parameters (ln σ2) under different prior
settings, with tight priors being the most informative and loose priors the least. For each simulation and posterior
sample, branchwise rates were first centered by subtracting their mean. We estimated centered branchwise rates by
taking the median of the centered posterior samples. The solid line represents the position of the true centered
branchwise rates, while the shallower, dashed line represents the observed line of best fit for the data under each
prior setting. Note that tighter, more informative priors result in shallower best fit lines due to increased shrinkage
of branchwise rate estimates.

Table S8. Median absolute errors of rate variance posteriors (i.e., median absolute difference
between posterior samples and their true, simulated values, a measure of posterior distribu-
tion accuracy), averaged across replicates for each simulated trait evolution scenario and
prior settings. σ2

σ2 and µσ2 indicate the true, simulated values of rate variance and trend pa-
rameters, respectively, while σ2

0 prior shifts refer to alteration of the root rate prior location.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 0.46 1.58 4.14 0.70 1.54 3.49 0.79 2.30 3.97
0 0.48 1.70 3.07 0.84 1.67 2.81 0.94 2.21 3.40
4 0.52 1.62 3.39 0.82 1.72 2.79 0.93 2.27 3.08

σ2
0 prior shifted by 0

µσ2 = -4 0.43 1.52 3.98 0.68 1.53 3.51 0.79 2.33 4.04
0 0.45 1.71 3.04 0.81 1.65 2.80 0.95 2.20 3.34
4 0.51 1.63 3.50 0.83 1.72 2.88 0.94 2.34 3.00

σ2
0 prior shifted by 3

µσ2 = -4 0.40 1.52 4.14 0.69 1.53 3.66 0.79 2.28 3.95
0 0.47 1.74 3.10 0.84 1.69 2.73 0.96 2.20 3.46
4 0.52 1.65 3.73 0.83 1.72 2.82 0.94 2.23 3.09
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Table S9. Median absolute errors of trend posteriors (i.e., median absolute difference be-
tween posterior samples and their true, simulated values, a measure of posterior distribution
accuracy), averaged across replicates for each simulated trait evolution scenario and prior
settings. σ2

σ2 and µσ2 indicate the true, simulated values of rate variance and trend parame-
ters, respectively, while σ2

0 prior shifts refer to alteration of the root rate prior location.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 2.03 2.34 2.68 1.32 1.57 1.65 1.35 1.64 1.64
0 1.28 1.32 1.07 1.55 2.22 2.11 1.65 2.45 2.53
4 1.34 2.22 2.18 2.75 2.33 2.78 4.24 2.88 3.86

σ2
0 prior shifted by 0

µσ2 = -4 1.63 1.88 2.16 1.30 1.60 1.61 1.32 1.61 1.66
0 0.91 1.07 0.94 1.54 2.21 2.05 1.64 2.43 2.51
4 2.06 3.04 2.97 2.61 2.30 2.77 4.07 2.85 3.82

σ2
0 prior shifted by 3

µσ2 = -4 1.28 1.50 1.69 1.32 1.58 1.62 1.34 1.62 1.62
0 0.88 1.16 1.12 1.51 2.14 1.98 1.64 2.50 2.50
4 2.94 3.91 3.77 2.51 2.35 2.68 4.15 2.78 3.68
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Table S10. Median absolute errors of branchwise rate posteriors (i.e., median absolute dif-
ference between posterior samples and their true, simulated values, a measure of posterior
distribution accuracy), averaged across replicates for each simulated trait evolution scenario
and prior settings. σ2

σ2 and µσ2 indicate the true, simulated values of rate variance and trend
parameters, respectively, while σ2

0 prior shifts refer to alteration of the root rate prior loca-
tion.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 0.53 0.87 0.98 0.48 0.83 0.90 0.50 0.86 0.91
0 0.44 0.76 0.94 0.52 0.83 1.01 0.54 0.87 1.07
4 0.46 0.83 0.93 0.64 0.87 1.02 0.82 0.95 1.16

σ2
0 prior shifted by 0

µσ2 = -4 0.47 0.83 0.94 0.48 0.83 0.90 0.49 0.86 0.91
0 0.40 0.73 0.95 0.51 0.82 1.01 0.53 0.87 1.07
4 0.52 0.88 0.99 0.63 0.87 1.01 0.80 0.95 1.16

σ2
0 prior shifted by 3

µσ2 = -4 0.43 0.79 0.92 0.48 0.82 0.90 0.50 0.86 0.91
0 0.39 0.73 0.97 0.51 0.82 1.01 0.54 0.88 1.06
4 0.61 0.95 1.06 0.62 0.87 1.00 0.81 0.94 1.14
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Table S11. Median absolute errors of root rate posteriors (i.e., median absolute difference
between posterior samples and their true, simulated values, a measure of posterior distri-
bution accuracy), averaged across replicates for each simulated trait evolution scenario and
prior settings. σ2

σ2 and µσ2 indicate the true, simulated values of rate variance and trend pa-
rameters, respectively, while σ2

0 prior shifts refer to alteration of the root rate prior location.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 1.78 2.54 1.97 1.06 1.41 1.39 1.07 1.45 1.40
0 1.18 1.24 1.18 1.38 1.66 1.82 1.45 1.84 2.20
4 1.08 1.36 2.16 2.49 1.83 2.49 3.87 2.39 3.43

σ2
0 prior shifted by 0

µσ2 = -4 1.38 1.88 1.40 1.04 1.41 1.36 1.06 1.41 1.41
0 0.82 0.82 1.18 1.34 1.64 1.79 1.45 1.84 2.17
4 1.71 2.17 3.05 2.39 1.81 2.50 3.73 2.33 3.36

σ2
0 prior shifted by 3

µσ2 = -4 1.02 1.33 1.09 1.06 1.38 1.39 1.06 1.41 1.38
0 0.79 0.88 1.64 1.33 1.56 1.76 1.44 1.87 2.21
4 2.54 3.07 4.15 2.27 1.83 2.41 3.80 2.27 3.27
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Table S12. Breadths of rate variance posteriors (i.e., the difference between the 97.5% and
2.5% quantiles of posterior samples, a measure of posterior distribution precision), averaged
across replicates for each simulated trait evolution scenario and prior settings. σ2

σ2 and µσ2

indicate the true, simulated values of rate variance and trend parameters, respectively, while
σ2
0 prior shifts refer to alteration of the root rate prior location.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 2.31 8.74 11.61 3.83 10.48 13.13 4.86 14.17 15.74
0 2.42 6.13 10.76 4.24 8.76 12.73 5.33 11.29 16.48
4 2.40 7.14 11.94 3.89 9.60 13.33 4.81 12.18 16.82

σ2
0 prior shifted by 0

µσ2 = -4 2.20 7.73 11.23 3.84 10.45 13.05 4.60 14.78 15.98
0 2.23 6.34 10.18 4.21 8.42 13.17 5.14 11.20 16.64
4 2.40 7.04 11.75 3.93 9.44 13.65 4.78 12.35 16.75

σ2
0 prior shifted by 3

µσ2 = -4 2.10 7.82 11.03 3.82 10.31 12.66 4.74 14.44 16.06
0 2.26 6.10 10.49 4.02 8.34 12.68 5.21 11.50 16.57
4 2.50 6.90 12.57 4.04 9.28 13.47 4.90 12.18 17.02
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Table S13. Breadths of trend posteriors (i.e., the difference between the 97.5% and 2.5%
quantiles of posterior samples, a measure of posterior distribution precision), averaged across
replicates for each simulated trait evolution scenario and prior settings. σ2

σ2 and µσ2 indicate
the true, simulated values of rate variance and trend parameters, respectively, while σ2

0 prior
shifts refer to alteration of the root rate prior location.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 3.62 4.34 4.61 4.87 6.18 6.68 4.99 6.70 7.08
0 4.42 4.95 4.80 6.77 8.67 8.60 7.53 9.72 10.23
4 4.90 5.19 5.38 12.14 10.74 12.73 21.26 15.61 21.57

σ2
0 prior shifted by 0

µσ2 = -4 3.63 4.40 4.64 4.81 6.25 6.73 4.97 6.72 7.04
0 4.23 4.84 4.76 6.77 8.46 8.52 7.44 9.90 10.47
4 4.64 5.00 5.18 11.57 10.51 12.32 19.99 15.26 20.95

σ2
0 prior shifted by 3

µσ2 = -4 3.64 4.37 4.65 4.85 6.23 6.69 4.90 6.64 6.94
0 4.22 4.66 4.66 6.81 8.23 8.52 7.36 10.13 10.61
4 4.63 4.90 5.20 11.56 10.28 11.82 19.62 15.68 19.45
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Table S14. Breadths of branchwise rate posteriors (i.e., the difference between the 97.5% and
2.5% quantiles of posterior samples, a measure of posterior distribution precision), averaged
across replicates for each simulated trait evolution scenario and prior settings. σ2

σ2 and µσ2

indicate the true, simulated values of rate variance and trend parameters, respectively, while
σ2
0 prior shifts refer to alteration of the root rate prior location.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 2.01 3.06 3.21 2.33 3.36 3.49 2.41 3.61 3.67
0 2.05 2.73 3.37 2.52 3.28 3.85 2.65 3.52 4.20
4 2.15 2.91 3.39 3.10 3.59 4.14 4.32 4.25 5.26

σ2
0 prior shifted by 0

µσ2 = -4 1.98 3.00 3.18 2.33 3.36 3.49 2.41 3.61 3.66
0 2.04 2.72 3.33 2.51 3.26 3.83 2.66 3.54 4.21
4 2.14 2.89 3.37 3.03 3.57 4.10 4.11 4.24 5.23

σ2
0 prior shifted by 3

µσ2 = -4 1.97 2.98 3.17 2.33 3.36 3.49 2.41 3.61 3.66
0 2.04 2.70 3.36 2.49 3.22 3.83 2.63 3.57 4.21
4 2.15 2.90 3.41 3.03 3.53 4.06 4.07 4.26 5.03
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Table S15. Breadths of root rate posteriors (i.e., the difference between the 97.5% and 2.5%
quantiles of posterior samples, a measure of posterior distribution precision), averaged across
replicates for each simulated trait evolution scenario and prior settings. σ2

σ2 and µσ2 indicate
the true, simulated values of rate variance and trend parameters, respectively, while σ2

0 prior
shifts refer to alteration of the root rate prior location.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 2.91 3.76 3.85 4.03 5.10 5.54 4.13 5.69 5.86
0 3.86 4.21 4.34 5.94 7.34 7.55 6.52 8.47 9.18
4 4.33 4.56 4.83 10.91 9.50 11.60 19.65 14.21 19.87

σ2
0 prior shifted by 0

µσ2 = -4 2.92 3.65 3.84 4.03 5.22 5.51 4.17 5.52 5.80
0 3.71 4.10 4.20 5.98 7.21 7.37 6.61 8.51 9.39
4 4.17 4.43 4.78 10.40 9.38 11.22 18.51 13.81 19.42

σ2
0 prior shifted by 3

µσ2 = -4 3.01 3.63 3.94 4.06 5.14 5.59 4.12 5.66 5.76
0 3.73 4.09 4.29 5.87 7.10 7.40 6.41 8.71 9.39
4 4.13 4.41 4.80 10.25 9.10 10.72 18.05 14.09 17.82
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Table S16. Coverage of rate variance posteriors (i.e., proportion of times the true, simu-
lated value is greater than the 2.5% posterior distribution quantile and less than the 97.5%
quantile) for each simulated trait evolution scenario and prior settings. σ2

σ2 and µσ2 indicate
the true, simulated values of rate variance and trend parameters, respectively, while σ2

0 prior
shifts refer to alteration of the root rate prior location.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 — 1.00 0.70 — 1.00 1.00 — 1.00 0.90
0 — 0.90 0.80 — 1.00 1.00 — 1.00 1.00
4 — 1.00 0.90 — 1.00 1.00 — 1.00 0.90

σ2
0 prior shifted by 0

µσ2 = -4 — 1.00 0.70 — 1.00 1.00 — 1.00 0.90
0 — 0.90 0.70 — 1.00 1.00 — 1.00 1.00
4 — 1.00 0.80 — 1.00 0.90 — 1.00 0.90

σ2
0 prior shifted by 3

µσ2 = -4 — 1.00 0.60 — 1.00 1.00 — 1.00 0.90
0 — 0.90 0.70 — 1.00 1.00 — 1.00 1.00
4 — 1.00 0.80 — 1.00 1.00 — 1.00 0.90



44 MARTIN ET AL.

Table S17. Coverage of trend posteriors (i.e., proportion of times the true, simulated value
is greater than the 2.5% posterior distribution quantile and less than the 97.5% quantile)
for each simulated trait evolution scenario and prior settings. σ2

σ2 and µσ2 indicate the true,
simulated values of rate variance and trend parameters, respectively, while σ2

0 prior shifts
refer to alteration of the root rate prior location.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 0.50 0.40 0.40 1.00 0.90 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 0.90
4 1.00 0.70 0.80 1.00 1.00 1.00 0.90 1.00 0.90

σ2
0 prior shifted by 0

µσ2 = -4 0.50 0.70 0.60 1.00 1.00 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.90 0.90
4 0.80 0.10 0.30 1.00 1.00 1.00 1.00 1.00 0.90

σ2
0 prior shifted by 3

µσ2 = -4 0.70 0.70 0.80 1.00 0.90 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 0.90 0.90 1.00 0.90 0.90
4 0.10 0.00 0.10 1.00 1.00 1.00 1.00 1.00 0.90
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Table S18. Coverage of branchwise rate posteriors (i.e., proportion of times the true, simu-
lated value is greater than the 2.5% posterior distribution quantile and less than the 97.5%
quantile) for each simulated trait evolution scenario and prior settings. σ2

σ2 and µσ2 indicate
the true, simulated values of rate variance and trend parameters, respectively, while σ2

0 prior
shifts refer to alteration of the root rate prior location.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 0.91 0.89 0.86 0.98 0.95 0.94 0.98 0.96 0.95
0 0.99 0.93 0.91 1.00 0.96 0.94 1.00 0.97 0.94
4 1.00 0.91 0.92 0.99 0.96 0.96 0.97 0.97 0.95

σ2
0 prior shifted by 0

µσ2 = -4 0.94 0.91 0.87 0.98 0.95 0.94 0.98 0.96 0.95
0 1.00 0.93 0.90 1.00 0.96 0.93 1.00 0.97 0.95
4 0.97 0.87 0.89 0.99 0.96 0.95 0.98 0.97 0.96

σ2
0 prior shifted by 3

µσ2 = -4 0.97 0.93 0.88 0.98 0.95 0.94 0.98 0.96 0.95
0 1.00 0.94 0.89 1.00 0.97 0.94 1.00 0.97 0.95
4 0.89 0.83 0.86 0.99 0.96 0.95 0.98 0.97 0.96
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Table S19. Coverage of root rate posteriors (i.e., proportion of times the true, simulated value
is greater than the 2.5% posterior distribution quantile and less than the 97.5% quantile) for
each simulated trait evolution scenario and prior settings. σ2

σ2 and µσ2 indicate the true,
simulated values of rate variance and trend parameters, respectively, while σ2

0 prior shifts
refer to alteration of the root rate prior location.

tight priors default priors loose priors
σ2
σ2 = 0 3 6 0 3 6 0 3 6

σ2
0 prior shifted by -3

µσ2 = -4 0.40 0.30 0.60 1.00 0.80 1.00 0.90 0.90 1.00
0 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.90
4 1.00 1.00 0.60 1.00 1.00 1.00 1.00 1.00 1.00

σ2
0 prior shifted by 0

µσ2 = -4 0.60 0.60 0.80 1.00 0.80 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 0.80 0.40 0.60 1.00 1.00 1.00 1.00 1.00 1.00

σ2
0 prior shifted by 3

µσ2 = -4 0.90 0.80 0.90 1.00 0.80 1.00 1.00 0.80 1.00
0 1.00 1.00 0.60 1.00 1.00 1.00 1.00 1.00 1.00
4 0.10 0.10 0.10 1.00 1.00 1.00 1.00 1.00 1.00

Despite the relatively inaccurate inferences of branchwise rate, root rate, and trend237

parameters under overly informative priors, hypothesis testing was still largely reliable,238

albeit sometimes underpowered, under all prior settings we considered. Across the board,239

error rates remained conservative at around 5% or lower, with decreasing trends never240

mistaken for increasing trends and vice versa. Error rates for detecting significant rate241

variance may be slightly inflated under tight priors (Fig. S26), perhaps due to tighter242

constraints on trend estimation forcing the model to instead attribute apparent rate243

heterogeneity to rate variance. Nonetheless, power to detect significant rate variance244

appears consistent regardless of prior settings. Notably, the same is true for anomalous245

rate detection, despite the increasing shrinkage of branchwise rate estimation under tighter246

priors (Fig. S28). On the other hand, prior settings had considerable influence on power to247

detect trends (Fig. S27), with generally increasing power under looser priors – particularly248
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when the root rate prior shift and simulated trend both imply similar patterns of rate249

change over time (e.g., a root rate prior shifted by 3 and decreasing trend).250
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Figure S26. Power and error rates for the rate variance parameter (σ2
σ2). Lines depict changes in the proportion of

model fits that correctly showed evidence for rate variance significantly greater than 0 (i.e., power, in black) and
incorrectly showed evidence (i.e., error, in light red) as a function of prior settings, with tight priors being the most
informative and loose priors the least. Results are also shown for fits with the location of the root rate (σ2

0) prior
shifted by -3 (solid lines), 0 (dashed lines), and 3 (dotted lines) from the default setting.
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Figure S27. Power and error rates for the trend parameter (µσ2). Lines depict changes in the proportion of model
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incorrectly showed evidence (i.e., error, in light red) as a function of prior settings, with tight priors being the most
informative and loose priors the least. Results are also shown for fits with the location of the root rate (σ2

0) prior
shifted by -3 (solid lines), 0 (dashed lines), and 3 (dotted lines) from the default setting.
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