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1. Introduction1

Convective weather is a well known aviation hazard; turbulence, wind2

shear, lighting, and hail are elements arising in thunderstorms that can be3

catastrophic for aircraft. In Europe, convective weather, i.e. thunderstorms4

typically occur in the summer and coincide with a period of high air traffic5

demand on the airspace system. This combination of bad weather and high6

demand causes significant disruption to air traffic management operations7

resulting in delays throughout the network. In 2018, 25 % of the total delay8

in the European airspace was attributed to adverse weather, resulting in a9

total of 4.8 million minutes, the majority can be attributed to convective10

weather (EUROCONTROL, 2019). Using the estimated rate of 100e per11

minute of delay (Cook & Tanner, 2015), the costs associated with the weather12

delay in 2018 can be quantified at 0.48 billion euros.13

A key reason why thunderstorm phenomena are so disruptive is the dif-14

ficulty of forecasting their birth and evolution. While some meteorological15

conditions are required for thunderstorm formation and can be forecast in16

advance, the specific location and timing of convective initiation triggers is17

harder to identify. As a consequence, thunderstorm prediction is usually per-18

formed using nowcasting. Nowcasting are short term predictions, typically 119

- 3 hours, based on extrapolation of sensor data such as Doppler radars or20

satellite (Wilson et al., 1998). However, extrapolation degrades rapidly as21

the forecasting horizon increases. One nowcasting system of particular inter-22

est for aviation is the Corridor Integrated Weather System (CIWS) (Evans23

& Ducot, 2006), which is in use in the US.24

Due to the poor prediction precision of convective weather at time hori-25

zons greater than 3 hours, air navigation service providers and airlines typi-26

cally do not make strategic modifications to their operational plans, instead27

preferring to make tactical adjustments in real-time according to the evolv-28

ing weather situation. This reactive approach in handling convective weather29

events, is not conducive to coordination among multiple Air Navigation Ser-30

vice Providers (ANSP) and leads to inefficiency in the system.31

The process of Air Traffic Flow Management (ATFM) aims at minimising32

network disruptions in the system by matching the airspace and airport ca-33

pacity with the varying levels of traffic demand to ensure safety and efficiency34

throughout the airspace system. ATFM is a coordinated effort between mul-35

tiple stakeholders including the Network Manager, national ANSPs, and air-36

craft operators. ATFM is a multi-phase iterative process beginning months37
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before the day of operations.38

The pre-tactical phase of ATFM focuses on measures to be applied at least39

one day prior to the day of operations. In this stage, analysis is performed40

to refine capacity and demand estimates, and assess ATFM measures. The41

outcome of this phase is a plan for the day of operations, known as the ATFM42

Daily Plan (ADP) in Europe.43

While weather condition are considered during this phase of ATFM, the44

weather information available for input to the ATFM Daily Plan is limited.45

In Europe, EUROCONTROL’s Network Operations Portal provides a Daily46

Network Weather Assessment, a document containing a brief written descrip-47

tion of the general weather outlook for the Network, and severe weather alerts48

for en route airspaces and airports. The weather assessment also contains49

a series of static maps providing forecasts of temperature, winds and pre-50

cipitation for the day. While this daily product is useful in providing some51

awareness of the meteorological conditions for the day, it fails to capture52

evolving weather phenomena such as convection. In order to effectively min-53

imise the disruptions on the network, traffic managers require high confident54

convective weather forecast with sufficient lead time.55

In order to extend the lead time in thunderstorm prediction it is necessary56

shift away from nowcasting methods and exploit the advances in Numerical57

Weather Prediction (NWP) tools. NWPs use computer simulations to model58

the atmospheric processes at a computational grid. The fluid motion and59

thermodynamic characteristics of the atmosphere are modeled using partial60

differential equations, capturing interactions among neighboring grid cells61

and calculating a broad set of atmospheric parameters for each grid cell.62

These NWP products are able to predict the state of the atmosphere multiple63

days into the future with fairly good accuracy. Indeed, the majority of the64

weather forecast we use in our daily lives rely on NWPs. However, NWPs65

have not traditionally been used for thunderstorm prediction because the size66

and lifespans of thunderstorms are small compared with the spatiotemporal67

resolution of medium-range NWP models.68

Advances in weather science and high performance computing have greatly69

improved the prediction skill of NWPs in recent years. In our research we70

set out to leverage these improvements and machine learning techniques to71

predict thunderstorms using NWPs at timescales (greater that 24 hours)72

required for the pre-tactical phase air traffic flow management.73

At shorter time horizons, machine learning and NWPs have been used74

successfully to improve nowcasting of thunderstorms. In (Mecikalski et al.,75
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2015), machine learning techniques were applied on satellite data to improved76

their nowcasting algorithm’s ability to predict which cloud objects would77

display convective initiation within the hour. Also, in (Li et al., 2019)78

machine learning techniques are applied to Doppler radar images to predict79

gale force winds. Also, in (Khandan et al., 2018) a Random Forest is used80

to predict convection initiation for the next 6 hours from satellite and NWP81

data. However, predictions at these time scales are not compatible with82

pre-tactical ATFM operations.83

Machine learning has also been applied on NWP data to predict thun-84

derstorms for longer time horizons. In (Šaur, 2017), NWP and historical85

weather data are used to train a back-propagation algorithm to predict con-86

vective precipitation that may cause to flash floods over the Zlin region of87

Czech Republic up to 24 hours in advance. In (Collins & Tissot, 2015), a88

deep-learning neural network model is developed using cloud to ground light-89

ning data to predict the occurrence of thunderstorms in certain regions of90

Texas, US within 2 hour time steps at time horizons up to 15 hours. Random91

Forest has also been applied on NWP to predict the probability of lightning92

strike over the Alaskan tundra (He & Loboda, 2020). In (Simon et al.,93

2018), thunderstorm occurrence within a 6 hour period is predicted over the94

European eastern Alps up to 5 days in advance using generalized additive95

models (GAMs) and gradient boosting with cloud-to-ground lightning data.96

Convolutional Neural Networks have also been applied on NWP products to97

predict multiple types of convective weather within a 6 hour period up to98

72 hours in advance (Zhou et al., 2019). While these works have been suc-99

cessful in using machine learning to predict convective weather, their specific100

applications did not require spatial-temporal resolution nor the continental101

scale geographic domain necessary for pre-tactiacl ATFM application. While102

works predicting convective events with high spatial-temporal resolution do103

exist (Spiridonov et al., 2020; Baldauf et al., 2011), they rely on physics-104

based computational fluid dynamic models rather than machine learning,105

and are limited in their geographical domain.106

In this paper we apply machine learning to predict thunderstorm occur-107

rence over a large portion of western Europe in hourly time steps at time108

horizons up to 36 hours. An ensemble NWP with 0.25 degree spatial res-109

olution and satellite observations from the EUMETSAT NWC-SAF Rapid-110

Development Thunderstorm product are used to train a neural network to111

provide the likelihood of convective weather. To the authors’ knowledge,112

the use of satellite storm data is novel approach, previous works using ma-113
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chine learning to predict convective weather has relied on cloud-to-ground114

lightning.115

Model results are used to create a convection indicator that enables the116

consideration of thunderstorms during the pre-tactical phase of ATFM. The117

novel indicator is compared with an existing convection indicator found in118

the literature. The remainder of this paper is organized as follows. Section 2119

presents an overview of the data used, while details of the neural network at120

provided in Section 3. Next, results are presented in Section 4, followed by121

examples of model application within an ATFM context in Section 5. Finally,122

a summary is provided in Section 6 where conclusions and future work are123

discussed.124

2. Weather Data125

Convection is a vertical phenomena in the atmosphere created by the126

uneven heating of the Earth’s surface due to solar radiation. Heat from the127

Earth’s surface warms the air directly above it, causing the air to expand,128

becoming less dense than the surrounding air, and creating thermal columns129

of rising air. If moisture is also present, the warm moist air will rise and130

in the processes cool and condense. If sufficient instability is present in the131

atmosphere, this process can form extensive towering cumulonimbus clouds132

creating ideal conditions for thunderstorms. Convective storms can become133

quite extensive and be observed from space.134

In developing the convection prediction model, data from ensemble NWP135

forecasts and satellite thunderstorms observations are used. Given the lead136

times required for pre-tactical ATFM, the model input is provided by en-137

semble NWP forecasts, as these are available 36 hours in advance. Satellite138

image data is used for training and evaluation of the model as it provides139

an accurate representation of convective events. The data used is from June140

2018 with a geographical domain covering vast portions of western Europe141

and northern Africa as seen in Figure 1.142

2.1. Ensemble NWP143

Ensemble probabilistic forecasting is a technique used to provide an es-144

timate of the uncertainty associated with predictions of the atmosphere.145

Rather than forecasting one future scenario as in traditional NWPs, multiple146

future scenarios are created, using a variety of techniques including perturb-147

ing initial conditions, running multiple models, or using different combina-148
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Figure 1: Geographical domain of forecast and observational weather data.

tions of physical parameterization schemes. The perturbation techniques are149

inline with the observational errors in the current state of the atmosphere. An150

assumption in using ensemble forecasts is that the probability of occurrence151

for each member is equally likely. A priori, there is no way of knowing which152

members will more closely resemble actual conditions. Furthermore, one en-153

semble member may be closest to the truth at a given geographical location,154

but this need not be the case at another location (Palmer et al., 2006).155

The spread of the members will reflect the predictability of the atmosphere,156

with a larger deviation between members indicative of a less predictable at-157

mosphere. The goal of the ensemble system it to capture reality within the158

range of predictions. The ensemble NWP data used in this research comes159

from European Centre for Medium-Range Weather Forecasts (ECMWF) En-160

semble Prediction System (EPS). The EPS product is comprised of a control161

member, using the most accurate estimate of the initial conditions, plus 50162

perturbed members. The forecasts are released twice a day at 00:00 and 12:00163

UTC and provide a prediction of the weather up to 15 days ahead (Molteni164

et al., 1996).165

In developing our model we use data from the 50 perturbed members,166

focusing on the forecast provisions for the next 36 hours in 1 hour steps. The167

spatial resolution of the EPS perturbed members is a quarter of a degree168

in latitude and longitude, this equates to roughly 15 nautical miles between169

grid points.170
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In selecting the NWP parameters for training or model we chose those171

that could best capture the physics of convective weather and thunderstorms.172

Our selection was guided based on the principle that thunderstorms are most173

likely to occur under the following conditions (Oxf, 2015):174

• Lifting force or trigger mechanism to produce early saturation of air. In175

convective storms, this trigger action is typically caused by heat from176

the earth’s surface causing moist air to rise.177

• Sufficient moisture in the atmosphere to form and maintain the cloud.178

• Atmospheric instability determined by the vertical temperature profile179

or lapse rate.180

With these conditions in mind, 18 NWP parameters from the EPS were181

selected to train the NN model. Besides these 18 NWP parameters, we also182

included additional parameters to train our model. The parameter hour of183

the day was added to account for the weather patterns that occur throughout184

the diurnal cycle. The time horizon or range of forecast was also added, this185

parameter describes how far into the future a prediction is made. We hy-186

pothesized that our model may give more weight to certain parameters based187

on the range. Additionally, we also trained the model with the Convective188

available potential energy (cape) parameter values from the three previous189

time steps of the ensemble product because large values of cape correlate190

with time periods leading up to the storm, rather than during the storm191

itself. This provided us with a total of 23 input parameters (18 ECMWF192

parameters + 1 Hour of day + 1 Range of forecast + 3 time lagged CAPE193

) to train our model. The complete list of parameters and abbreviation is194

provided in Table 1.195

2.2. Satellite Data196

Geostationary satellites with orbital periods that match the Earth’s rota-197

tion allow for continuous observation of specific regions. Visual and infrared198

satellite imagery captures vital information regarding cloud cover, water va-199

por and temperature that allow for monitoring and tracking of weather.200

The Rapid-Development Thunderstorm (RDT) product was developed201

by Météo-France within the EUMETSAT NWC-SAF framework. The RDT202

algorithm employs primarily geostationary satellite data to provide informa-203

tion about clouds related to significant convective systems from the mesoscale204
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Table 1: Total list of parameters used to train model.

Parameter Short Name

2 metre dewpoint 2d
2 metre temperature 2t
convective available potential energy cape
convective available potential energy 1 hour before cape-1
convective available potential energy 2 hours before cape-2
convective available potential energy 3 hours before cape-3
convective inhibition cin
convective precipitation cp
convective rain rate crr
height of convective cloud top hcct
hour of day hour
K index kx
large scale precipitation lsp
large scale rain rate lsrr
surface latent heat flux slhf
surface pressure sp
surface sensible heat flux sshf
range of forecast range
total cloud cover tcc
total column water tcw
total column water vapor tcwv
total totals index totalx
geopotential z

(200–2000 km) down to tenths of kilometers (Lee et al., 2020). The RDT205

product outputs storm information on a 15 minute interval. For each cloud206

cell, the RDT product defines a series of parameters capturing the loca-207

tion, shape, cloud top, movement, severity, and life cycle phase. Despite the208

rich characterization of thunderstorms by the RDT product, only the loca-209

tion and shape information of convective cells is used to create the labeled210

”truth” training data required for supervised learning type problems.211
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2.3. Data Integration212

Train, validation and test data sets are created by integrating the NWP213

forecast and the RDT satellite images. By projecting the NWP grid onto214

the higher resolution satellite images and identifying the grid points within215

the RDT storm polygons it is possible to express the data using a common216

spatial resolution of .25 degree x .25 degree. To reconcile the differences in217

the temporal resolution, 1 hour for the NWP predictions versus 15 minutes218

for the RDT observations, a grid point is classified as convective if a storm219

observation is present during any of the four observations instances within220

the hour. In this way a binary training target function is constructed repre-221

sentative of storm cell occurrence at a grid location within the hour. Figure222

2 shows an example of how four satellite images are processed to establish223

from the target function.224

Because we are interested in a time horizon of 36 hours, and forcasts are225

released every 12 hours, different range forecasts valid for the same time are226

used to train, validate and test the model. Having data at varying forecast227

ranges will allow us to analyse how the forecast degrades with increasing time228

horizon.229

(a) Satellite Observations (b) Binary Storm Target Function

Figure 2: RDT satellite observations and resulting target function for thunderstorms oc-
curring at 17:00 on June 8th, 2018.
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3. Methodology230

Before undertaking this study, a series of smaller preliminary case studies231

was conducted on a limited data set. Multiple machine learning models were232

developed using storm observations from the RDT product and one ensemble233

member from the ECMWF EPS product. The NWP product consisted of234

a 0.25 degree spatial grid, a 3 hour time step and 48 hour forecast range.235

Eight days of worth of data, June 4th - June 11th, were split to create236

train, validation and test data sets. Results from the study showed that237

a Neural Network architecture was superior than other methods including238

Logistic Regression, Decision Tree, and Random Forrest. It was assumed239

that the advantage in prediction skill for the NN method would hold true240

on a data set incorporating all 50 members and smaller time step of 1 hour.241

A Convolutional Neural Networks (CNN) architecture was also considered,242

however given the high resolution of our data set; hourly time steps, 36 hour243

forecast range, .25 degree spatial resolution, a geographical domain of western244

Europe, and the 50 ensemble members, using a CNN approach supposed a245

significant increase in computational cost. While a CNN methodology may246

be able to capture correlation among neighboring grid points, it is assumed247

that the physical process behind these interactions is already captured to248

some degree within the NWP model. As a result, for the purposes of training249

the neural network model, the data from each grid point is assumed to be250

an independent data sample. Also, during training each forecast member is251

treated individually. In this way, during training the model sees 50 separate252

data samples from each grid point in the ensemble forecast. The intention is253

for the model to benefit from ensemble distribution of parameters and adjust254

the neural network node weights accordingly.255

The convection predictive model is trained to predict the probability of a256

thunderstorm occurring at given location and time. Only the 23 parameters257

defined in Table 1 are considered in making a prediction. In evaluating the258

model, each forecast member is evaluated separately, and results are averaged259

over the 50 members to obtain a probability.260

For this study an integrated data set of EPS forecast and RDT observa-261

tions covering the month of June 2018 is used. From the 30 days in June, 16262

days are selected for training, 7 days for validation and 7 for testing, exact263

dates used for each data subset can be seen in Table 2. This partition was264

preferred over a sequential split to ensure sufficient convective samples in265

each subset. It is acknowledged that having a test data set embedded within266
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the training data could introduce look-ahead bias in our results, however267

considering the NWP forecast is provided in hourly time steps and that the268

lifespan of convective events is on the order of hours, each day is treated269

independently. We assume that the convective events occurring on a specific270

day are independent from those occurring on a separate day. While tem-271

poral correlations exist in the atmosphere over consecutive days, we assume272

these correlations are more likely to be inherent within the NWP input than273

learned by the model.274

3.1. Neural Network Model275

The learning task of predicting convective weather was formulated as276

a binary classification problem. Based on the 23 inputs derived from the277

NWP forecast our model was trained to classify a grid-point as either con-278

vective (class 1) or not-convective(class 0). It is important to note that the279

model does not consider the latitude-longitude of the grid-point, providing280

a location-independent prediction based only on the physical NWP parame-281

ters.282

Figure 3: Schematic of neural network model, showing data flow from ensemble NWPs to
convection indicator.
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A Multi-layer Perceptron (MLP) neural network was created using the283

python keras library to fit the data. The 23 NWP features were normalized284

using a standard scaler function before fitting the model to account for the285

order of magnitude differences between the values. The model consisted of286

the input layer with 23 nodes, two hidden layers of 16 nodes each and the287

output layer containing one node. The nodes in the hidden layers of the288

model used a Rectified Linear Unit activation function, while the node in the289

output layer used a Sigmoid activation function. By having a Sigmoid output,290

the model predicts a value between 0 and 1 instead of binary. This output291

value is representative of the confidence the sample is convective (class 1).292

Additionally, during training dropout layers of fraction 0.2 were introduced293

after each hidden layer. Dropout is a technique to prevent over-fitting of the294

model by randomly ignoring a fraction of the nodes during each iteration295

of training, in effect reducing the interdependent learning between neurons296

(Srivastava et al., 2014). In figure 3 a schematic representation shows the297

model architecture and data process from EPS data to convection indicator.298

It is important to note that the data was highly imbalanced, with roughly299

90 % of the samples belonging to the non-convective class. To account for300

this imbalance, class weighting factors were applied during training. By im-301

plementing a class weighting factor, the binary cross-entropy loss function302

used for training assigned higher values to instances of the minority convec-303

tive class. This reduces the impact of the majority class in the loss func-304

tion, preventing the generation of models that basically predict the majority305

(non-convective) class for all samples. The weighted binary cross entropy306

loss function is defined in Equation 1, where wi is the weight factor for each307

class, t is the truth value of 0 or 1, and p is the probability of the sample308

belonging to the convective class.309

CE = −wi

C′=1∑
i=0

tilog(pi) = −wi[tlog(p) + (1− t)log(1− p)] (1)

4. Results310

In this section we present the results of the neural network model for the311

seven days in in our test data set. For comparison we also present the results312

from an existing NWP based convection indicator, in our discussion we will313

refer to this indicator as the baseline. A brief description of the baseline314

indicator is provided below.315
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Table 2: Dates used for training, validation and testing

Training Validation Test

Jun-01 Jun-02 Jun-03 Jun-04
Jun-05 Jun-06 Jun-07 Jun-08
Jun-09 Jun-10 Jun-11 Jun-12
Jun-13 Jun-14 Jun-15 Jun-16
Jun-17 Jun-18 Jun-19 Jun-20
Jun-21 Jun-22 Jun-23 Jun-24
Jun-25 Jun-26 Jun-27 Jun-28
Jun-29 Jun-30

4.1. Baseline Indicator Description316

An existing convection indicator used within an aviation context was317

found in the literature (González-Arribas et al., 2019). The indicator re-318

lies on two parameters from a numerical weather prediction product; Total319

Totals Index and Convective Precipitation . Total Totals Index (totalx) is320

the temperature and moisture gradient in the lower levels atmosphere and321

an indication of instability. Convective Precipitation (cp) is the accumulated322

water that falls to the Earth’s surface that is generated by convection. Con-323

vection can be defined as an area where there is atmospheric instability and324

precipitation. Thus we can evaluate each point of the numerical weather325

prediction model for convection using the logistic expression in Equation 2.326

Convection = (totalx > TTTH) ∧ (cp > 0) (2)

where TTTH is defined as the Total Totals Index threshold value. This327

threshold value can be associated with various levels of convection. The cor-328

relation between threshold value and convection severity is provided below.329

• 44-45 isolated moderate thunderstorms330

• 46-47 scattered moderate / few heavy thunderstorms331

• 48-49 scattered moderate / few heavy / isolated severe thunderstorms332

• 50-51 scattered heavy / few severe thunderstorms and isolated torna-333

does334
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• 52-55 scattered to numerous heavy / few to scattered severe thunder-335

storm / few tornadoes336

• 55+ numerous heavy / scattered severe thunderstorms and scattered337

tornadoes338

Equation 2 is used to evaluate each grid point of the NWP. If both condi-339

tions in the logistic expression are met the grid point location is classified as340

convective (1), if the conditions are not met the location is classified as non-341

convective (0). These binary values are then averaged over the 50 ensemble342

members to provide the final Baseline Indicator score.343

In our application of the baseline indicator we will assume a Totals Total344

Index threshold value of 44, and rather than using cp, which gives an accu-345

mulated value of convective precipitation since the forecast release, we will346

utilize the convective rain rate (crr). It is important to note that while cp347

is an accumulated paratemer, crr is considered an instantaneous parameter,348

and not representative of the rain rate over the entire time step. Nonethe-349

less, using the parameter crr instead of cp will better account for convective350

weather at discrete time steps in the forecast. The expression used to calcu-351

late the baseline convection indicator is provided in Equation 3.352

Convection = (totalx > 44) ∧ (crr > 0) (3)

4.2. Model Comparison353

The effectiveness of our NN convection indicator is compared with the354

baseline indicator using a receiver operating characteristic (ROC) curve. A355

ROC curve is a technique used to evaluate binary classifiers by plotting the356

sensitivity, or true positive rate (TPR), against (1-specificity), or the false357

positive rate (FPR), for various threshold settings (Mandrekar, 2010). The358

TPR provides the probability of detection, and the FPR provides the prob-359

ability of false alarm. The ideal classifier would have a curve close to the360

upper left corner of the graph and maximizing the area under the curve361

(AUC). The diagonal line dividing the ROC space represents a random clas-362

sifier, points above the line indicate the classifier performs better than ran-363

dom guessing. Model performance can be tuned by selecting a threshold364

value on the curve, which leads to a specific pair (FPR,TPR). In practice,365

the selection of a threshold value is linked with the amount of risk a user is366

willing to assume. A low threshold would increase the likelihood of capturing367
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the thunderstorms, while also overestimating their presence in the airspace368

(false alarm). However, choosing a high threshold value would minimize the369

false alarm rate, at the risk of missing a portion of the storms. In presenting370

the results, rather than defining a threshold value, the raw indicator values371

are compared. A probabilistic representation of the indicator is preferred for372

an ATFM application allowing the user to evaluate the risks in making a373

decision.374

Figure 4: ROC curve comparing performance of baseline and neural network indicators
for entire test data set.

In Figure 4 results are compared between the NN and baseline indicators375

for the 7 days in the test data set. From the figure it is evident that the NN376

model outperforms the baseline indicator given the greater value of AUC.377

Moreover, because the NN curve is always above the baseline curve, the NN378

model outperforms the baseline independently of a chosen threshold value.379

It is important to note that the AUC value is dependent on the particular380

data set being analyzed. The NN model is good at identifying areas without381

convection (true negatives), thus analysis of days with few convective storms382

will yield greater AUC values.383

In Figure 5 results are presented for the entire test data set using the384

prediction score by class. Histograms are provided for the baseline and neural385

network model. In the graphs the convection class is shown in red, while the386

non-convective class is shown in grey. Given the class imbalance in the test387
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data set, the distributions have been normalized so that the two classes oc-388

cupy the same area in the graphs. Ideally, we would like the two distribution389

completely separated, with the non-convective (grey) distribution closer to a390

prediction score 0 and the convective distribution (red) closer to a prediction391

score of 1. The histogram on the left, shows the baseline model does a good392

job at evaluating the non-convective areas with a low probability score. How-393

ever it is also unable to distinguish a large portion of the convective areas394

from non-convective areas. The histogram on the right, corresponding to the395

NN model shows less overlap between the two class distributions indicating396

better performance.397

(a) Baseline Class Distribution (b) NN Model Class Distribution

Figure 5: Normalized histograms showing the class distributions by predictive score of
baseline and neural network models for test data set.

Figure 6 shows a map representation of the target function alongside the398

baseline and neural network model predictions for a geographical domain399

centered over Italy. ROC AUC values corresponding to the data portrayed400

on the maps are provided. From the figure we can see that while the baseline401

correctly identifies some areas where storms will develop, it tends to provide402

low prediction scores and there is a large portion of the convective areas403

that it misses completely. The NN model although may tend to slightly404

overestimate the storms, the prediction probability seems to be more gradual405

for the convective areas. A traffic manager wanting reroute traffic flows406

around convective weather based on the predictive score from the indicators,407

would get a more accurate representation of the convective regions in the408

airspace by using the neural network based convective indicator.409

In Figure 7 results for the NN convection indicator are shown for the410

entire geographical domain. The figure shows the target function and model411
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(a) Target Function (b) Baseline, AUC: 0.737 (c) NN Model, AUC: 0.849

Figure 6: Binary thunderstorm target function compared with baseline and nueral network
model predictions for 17:00 UTC on June 8th, 2018 (Forecast range:17 hours).

predictions for June 20, 2018 from 13:00 - 16:00 UTC based on the forecast412

from June 19, 12:00.413

The map representation of results from Figures 6 and 7 show the convec-414

tive predictions made on the day before operations. Continuous monitoring415

of an upcoming convective situations is necessary for an ATFM operations,416

therefore it is important to understand how the predictions of the indicator417

change over the prediction time horizon. In Figure 8, we show how the418

ROC curves for both indicators behave given different forecast ranges. From419

the figure can see that the AUC for the NN model remains fairly constant420

at ranges up to 24 hours, and degrades slightly when extended to 36 hours.421

These results indicate that the quality of the results do not degrade at the422

time scales required for the pre-tactical phase of ATFM.423

17



Figure 7: Convection prediction for June 20, 2018 made on June 19, 12:00.

4.3. Study of Feature Relevance424

A permutation analysis was performed to understand which of the ECMWF425

EPS parameters were most important in predicting convection. The theory426

behind the permutation analysis is to measure the importance of a feature by427

calculating the degradation of model performance after permuting the fea-428

ture. A more important feature will increase the model error after shuffling429

its values because the model relies on this feature to make its prediction,430
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(a) Baseline Model ROC (b) NN Model ROC

Figure 8: ROC curves showing model sensitivity to forecast range variation.

while shuffling the values of a less important feature will have little impact431

on the model error. This technique was first introduced specifically for ran-432

dom forest models (Breiman, 2001), and later expanded to a model-agnostic433

version (Fisher et al., 2019).434

Figure 9: Error in AUC after permutation of surface ECMWF parameters.

In our analysis we measure the model error by the increase in 1 - AUC.435

Figure 9 shows the results of a permutation analysis performed on several436

batches from the test data set. For each parameter we are able to see the437

distribution of error associated with permuting that feature. From the figure438

we see can see that permuting the surface pressure (sp), total totals index439

(totalx), total cloud cover (tcc) and total column water (tcw) parameters440
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produce the greatest error. Interestingly enough we can relate these parame-441

ters to the already mentioned conditions that are favorable to thunderstorms;442

moisture (tcc,tcw), instability (totalx), and lifting force (sp). This type of443

analysis will be useful in selecting additional NWP to include in future ver-444

sions of out model.445

4.4. Study of Model Sensitivity to Ensemble Data446

In this section a series of case studies are presented to better understand447

the model sensitivity to the ensemble data. A random subset of the test448

data set is selected to evaluate the model for various cases. In the first case,449

various methods of aggregating the ensemble data are compared. Evaluating450

the model on each individual member and averaging the outputs is compared451

with taking the mean of each parameter prior to evaluating the model. Ad-452

ditionally, results are also shown for using an input based on the the median453

value for each parameter. In Figure 10a it is shown that while the various en-454

semble aggregation methods do not impact the results, averaging the output455

is slightly better.456

(a) Comparison of ensemble aggregation
methods for model evaluation.

(b) NN model results using a subset of the
ensemble members.

Figure 10: ROC curves showing model sensitivity to ensemble data.

In the second case, we explore how model results compare if a subset of457

the ensemble members are used to make a prediction. For this study the458

same random subset of the test data is evaluated multiple times using a459

limited number of ensemble members. Results are shown when the model is460

evaluated using only 1, 5, and 25 randomly selected members and compared461

with results when using the entire ensemble. From Figure 10b, it is evident462

that results improve as the number of ensemble members used is increased,463
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although the incremental improvement is diminished as more members are464

added.465

In the last case study, the model performance is compared on four data466

sets; the training, validation and test data partitions, as well as an addi-467

tional data set comprised of ECMWF predictions for the month of July 2018468

using only 10 ensemble members. Within each of these four data groups,469

50 randomly selected hourly predictions we used to evaluate the model. A470

ROC curve comparing the model performance across the four data sets is471

provided in Figure 11, from the figure we can see the model classification472

skill is similar for all data sets. It is important to highlight the performance473

for the July data set comprised of only 10 ensemble members is similar to474

that of the other data sets which comprised of all 50 members, this further475

confirms the results presented in Figure 10b. Finally, given that the ROC476

curve AUC value is sensitive to the weather conditions within each data set,477

Figure 12 shows map representations of the July data.478

Figure 11: ROC curve comparing NN model evaluation using subsets of training, validation
and test data sets. An additional data set based on forecast predictions for July 2018 is
also compared.

5. ATFM Application479

In this section we present an example of possible application of the neural480

network indicator in an ATFM operational setting. The objective of this work481

is to provide traffic managers with awareness of where and when convective482
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(a) Prediction for July 5, 17:00 (Range: 29 hours)

(b) Prediction for July 27, 13:00 (Range: 25 hours)

Figure 12: Convection predictions for July 2018 based on 10 members from ensemble.

weather will develop. Perhaps, the most obvious application would be to483

overlay the convective prediction on a map of structured airspace, in this way484

traffic managers could have information on which sectors will be impacted485

be convective weather. A conceptual map of our indicator overlaid atop486

the European Area Control Centres (ACC), ACCs establish the areas of487

jurisdiction for the various control units in the European airspace. In Figure488

13 we compare the actual storm situation as captured by the RDT data with489

the convection prediction of the NN indicator. From the figure we can see490

that there was storm activity in multiple Spanish ACCs on June 28th, 2018491

at 15:00 UTC, the neural network indicator prediction one day before the492

day of operations (D-1) at noon is able to capture the general area of the493

storms. In another application the information is presented in a manner that494

is specific for a unit of airspace. In this example we focus on he Marseille495

ACC, a region of airspace responsible for 15.2% of ATFM delay in Europe in496
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(a) Actual Storm Data (b) Neural network model prediction

Figure 13: Convection prediction captures storms in Spanish ACCs one day before.

2018 (EUROCONTROL, 2019). Specifically we focus on Sector B within the497

Marseille ACC as shown in Figure 14. Based on the NWP resolution, the area498

covering this unit of airspace can be represented with 25 grid points. Using499

the model predictions from these 25 points it is possible to define a metric500

to evaluate the convection situation in the sector. In Figure 15 multiple501

convection metrics based on the baseline and NN model are compared with502

the RDT data from June 24th 2018. Figures 15a and 15b show metrics based503

on the average indicator value over the 25 points for the baseline and NN504

model. In Figures 15c and 15d the metric is based on the NN model output505

and the percentage of grid points exceeding specific thresholds. The various506

dashed colored lines corresponding to the left y-axix relate to the calculated507

convection metric with the Marseille ACC for various forecast releases on508

the day before operations (D-1) and the day of operations (D). The solid509

black line corresponding to the right y-axis, shows the percentage of airspace510

region with storms according to the target function.511

From Figure 15 it is evident that while all metrics capture some convec-512

tive activity, using the neural network model results with an applied thresh-513

old better captures the convective situation within LFMM Sector B. It is514

imagined that the neural network model output can be used to define con-515

vection metrics within European airspace to continuously monitor and assess516

the weather situation. Further analysis is needed to better understand how517
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(a) Target function representation (b) Nueral network model prediction

Figure 14: Marseille Sector B and convective weather situation on June 24th,2018 at 12:00
and prediction (Range: 24 hours.)

these convection metrics impact ATFM attributes such as airspace capaci-518

ties, traffic demand, and weather regulations. Understanding the relationship519

between weather prediction and the impact on the traffic would allow traffic520

managers to make better decisions during the pre-tactical phase of ATFM.521
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6. Summary and conclusions522

In this paper we have applied machine learning techniques to predict523

convective areas within the next 36 hours. By combining data from satellite524

storm observations and ensemble NWP products, a neural network algorithm525

is trained to predict the occurrence of convective weather. The NN model526

is able to outperform an existing convection indicator currently used in avi-527

ation applications. Analyses of the model on a test data set indicate that528

model performance does not degrade significantly for forecast ranges up to529

36 hours. Additional evaluation of the model showed that model perfor-530

mance is maintained when evaluating on a subset of the ensemble forecast.531

Furthermore, a permutation analysis was completed to detect which EPS pa-532

rameters are most relevant to convection prediction. Findings confirm those533

parameters related to the physical process of convection, correspond to the534

most relevant features of our model. Lastly, examples are provided for the535

use of the indicator in an ATFM operational setting. Visualization of model536

predictions show that the model is able to accurately predict regions where537

convection will develop. Model predictions are used to develop convection538

metrics and used to evaluate the weather situating within a specific sector539

within the Marsielle ACC and compared against storm observations. This540

analyses suggest that applying a threshold atop of the model predictions can541

improve the detection of convective weather.542

Despite these initial positive results, several areas of improvement remain543

to be tackled in future efforts. One area of improvement is to move away544

from the assumptions of treating each ensemble member and each grid point545

as independent. It is acknowledged that more efficient use of the NWP546

ensemble product would be to provide model input that jointly considers547

all ensemble members. Additional data processing and integration of the548

NWP data is required to provide the model with an input representative549

of all ensemble members. Furthermore, other model architectures including550

Convolution Neural Networks and Long Short-Term Memory Networks need551

to be considered to better extract the spatial-temporal relationships within552

the data.553

Another area of improvement is the quality of the data that is used to554

train the models. Making use of higher resolution NWP products as well555

as additional parameters at various atmospheric levels could provide im-556

proved model inputs. Additionally, we could also incorporate other sources557

of convection observation data, such as radar or lightning, to provide the558
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model with a more precise target function to be used during training. Fu-559

ture research efforts should focus on how to best integrate these various data560

sources.561

Furthermore, the model uses a binary classification scheme to predict the562

probability that convection will occur. However, in the future we hope to563

expand the model to also identify key characteristics associated with con-564

vection, such as storm severity and cloud top altitude; both relevant infor-565

mation in an air traffic flow management context. These efforts could be566

accomplished by moving away from a binary representation and elaborating567

a more sophisticated target function able to capture those storm character-568

istics that have a major impact on ATFM operations.569

Lastly, an important step in the application of the model in an ATFM570

operation setting is further refinement of raw model output in order to pro-571

vide traffic managers with simple and relevant information. One possible572

solution is to translate the model output into a color-scheme, similar to what573

is currently in use today.574

The goal of this research is to provide traffic managers with improved575

convective weather information at time frames compatible with pre-tactical576

ATFM planning. While this objective has been achieved to some extent,577

further research efforts are still needed to relate the convection prediction578

with ATFM metrics such as airspace capacities, traffic demand, and ATFM579

mitigation strategies. Only then can the full benefit to ATFM operations be580

achieved.581
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(a) Average value Baseline Indicator

(b) Average value Neural Network Model

(c) Neural Network with threshold of 0.6

(d) Neural Network with threshold of 0.7

Figure 15: Convection metrics evaluting the weather situation in Marseille Sector B for
multiple forcast releases.
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