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a b s t r a c t

When designing a microgrid, developers usually regard economic metrics, and occasionally consider
reliability and environmental aspects. However, sociopolitical, supply chain, and geographical facets,
among others, are often never included in project-design because they are really difficult to model,
especially, in the context of developing countries. Traditional planning methodologies offer an optimal
solution, disregarding solutions with similar profitability but different size of components, even when
these second-best solutions can better fit the non-considered intangible developer needs. In this paper,
we define the concept of Multiple Design Options (MDO) for a single-objective optimization. We
propose a novel methodology (MDO-PSO) for sizing stand-alone hybrid energy systems that, by using
Particle Swarm Optimization, identifies the optimal solution and post-processes the search history
to select second-best options of interest. While searching for the traditional optimum, the proposed
iterative algorithm stores all tried configurations. Moreover, a Pareto-like frontier, denoted as MDO-
Pareto, is proposed to highlight the tradeoff between Net Present Cost (NPC) and CAPEX. The proposed
Pareto-like frontier is also compared to a standard multi-objective optimization to illustrate how MDO-
PSO successfully captures multiple goals. The numerical case study for a PV-battery-diesel-tank system
in Uganda confirms that MDOs differing up to 32% in capacity can achieve NPC values within 2%–
5% optimality with both load following and predictive MILP rolling-horizon operating strategies, thus
suggesting important implications for business decision making.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Motivation

Supporting power system quality and renewable penetra-
ion [1], microgrids are increasingly being installed worldwide,
ot only in developed countries, but also in developing countries,
here they are fostering rural electrification and socio-economic
rowth [2]. As there is no one-size-fits-all solution [2], the op-
imal design of each system shall be tailored to the specific
ircumstances of the project, some of which are often difficult
o quantify and properly model in mathematical tools [3]. This
urns out to increase the risk profile of microgrids, especially
ithin challenging sociological, economic, political and technical
ontexts of rural areas in developing countries, where the un-
ertain load consumption and the commonly low ability-to-pay

∗ Corresponding author.
E-mail addresses: davide.fioriti@ing.unipi.it (D. Fioriti), davide.poli@unipi.it

D. Poli), pduenas@mit.edu (P. Duenas-Martinez), andrea.micangeli@uniroma1.it
A. Micangeli).
ttps://doi.org/10.1016/j.segan.2022.100644
352-4677/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
make that the expected revenues may not compensate the risks,
unless stable and secured public support is available [4].

In the literature, the typical approach to design off-grid sys-
tems consists in optimizing one or more variables, that is single-
or multi-objective optimization [5–8], respectively. However, in
both cases, the mathematical modeling may not fully capture
all external circumstances to the project [3,9]. For example, the
maintenance complexity, supply chain logistics, or the bureau-
cratic burden, among others, are difficult to model and usually not
included in the quantitative evaluations. This suggests that the
traditional mathematical solution, be it a single point or a curve
(single- or multi-objective optimization), may not completely
capture the specific facets of the project. As a result, develop-
ers usually tend to adjust and modify the final (and optimal)
obtained solution according to their expert knowledge and risk
appetite; habitually, with the economic component as a major
concern [10–12].

Traditional algorithms pursue the first-best economic effi-
cient solution, typically defined in terms of cost or income (or
profits). However, these algorithms tend to completely disre-
gard second-best solutions, i.e. slightly sub-optimal design points
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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within 1%–2% optimality with respect to the ‘‘optimal’’ solution,
even though these other designs could better suit the intangible
needs of a developer for a specific project. To the best of the
authors’ knowledge, no advanced technique, based on single-
objective optimization, has been developed in the literature to
satisfy the needs of developers in identifying comparable ‘‘op-
timal points’’. Acknowledging these gaps in the literature, it is
worthy and timely to define, formulate and develop the concept
of Multiple Design Options (MDO) that was previously quali-
tatively introduced in [3] and, for multi-objective optimization,
in [9].

1.2. Literature analysis

Except for some impact investors [13] or the public sector [2],
he majority of private developers usually aim at maximizing
he economic return on their investments, thereby typical opti-
ization tools remain focused on economic indicators [6,10,14].
owever, recently, environmental [11,15] reliability [12,16], tech-
ical [17] and socio-political [18] elements have been increas-
ngly considered, yet often with a secondary role. Nevertheless,
s introduced in [3], mathematical indicators and their modeling
ay not exhaustively represent all the challenges of microgrid
rojects, especially in the context of rural electrification of de-
eloping countries. Even traditional measures like Net Present
alue (NPV) or Internal Rate of Return (IRR) are subject to specific
rawbacks and lead to significantly different solutions [19], which
uggests that developers would be more at ease with a possible
et of efficient solutions with similar economic performances but
ifferent characteristics, rather than the cheapest only. This con-
ept could be approached in principle also with multi-objective
ptimization, but it is worth to remark that the main interest of
evelopers is often a single economic indicator, which is often the
ain objective function to be optimized.
In terms of optimization algorithms, both metaheuristic and

inear programming techniques have been used for the sizing
nd operation of microgrids, achieving good performances [14,
6,20]. Programming techniques, such as Mixed-Integer Linear
rogramming (MILP), have been extensively used to optimize
he design of microgrids [21] as well as their operation [20],
lso thanks to their capabilities to converge towards the global
olution [22]. However, the intrinsic limits of the mathematical
odeling emerge as the problem grows in size and the computa-

ional burden of MILP can soon be unbearable, which makes the
ptimization problem difficult to be solved especially for non-
inear models [22]. Conversely, by using an iterative procedure,
etaheuristic algorithms are able to easily solve even non-linear
on-convex models and converge quicker than traditional MILP
ethodologies, as discussed in [14]. The comparison performed
y the authors in [14] between Particle Swarm Optimization
PSO) and the standard MILP suggested that the metaheuristic
roblem not only can converge in half of the time, or lower,
ith respect to MILP but the solution obtained by the PSO was
heaper than the MILP one, when predictive operating strategies
re implemented, for that particular case. Similar results are
upported by the study in [23], where a Genetic Algorithm (GA)
chieved an optimal solution similar to the equivalent problem
ormulation with MILP, but in about 10% the computational time
f the latter. For these reasons, metaheuristic approaches have
een widely accepted in sizing procedures both in single- [24]
nd multi-objective optimization [25,26]. In particular, given the
ood performances in terms of accuracy and computational re-
uirements [5,14,27], in this study, Particle Swarm Optimization
as been considered and improved.
Given the interests in achieving the highest profits, software

ools and methodologies for the optimal sizing of microgrids have
2

usually prioritized a single economic indicator [24]; other envi-
ronmental, social and political concerns have usually a secondary
role, and sometimes they are accounted for by using penalties
or hard constraints [2,4,28]. For this reason, traditional sizing
tools focus on achieving the optimal solution that minimizes or
maximizes the given objective function(s), while all the other size
configurations are disregarded, be them far or close to the optimal
one(s). In this study, we aim to go beyond this traditional goal and
provide developers with multiple solutions with almost the same
profitability.

As initially introduced in [3] and partially in [9], developers
can be better off when provided with Multiple Design Options
(MDO) that are configurations of the system with similar values
of the objective function (e.g. within 1% optimality) but different
size of the components. In fact, rarely the mathematical model-
ing capture all the specific characteristics and needs of a given
project, such as logistics, maintenance complexities, availability
of spare parts, country and regional risks, among others. The
same concept is supported by the features of commercial tools
that provide developers with tuning parameters, so that they can
manually search different sizing options [29]. In the literature,
except for [3,9], similar concepts have only been tackled by means
of multi-objective optimization [17], but even in this case the
concept of MDO still applies as multiple configurations can lead to
a similar point in the Pareto frontier [9]. Furthermore, especially
when the developer prioritizes a single objective function, the
multi-objective optimization easily lead to excessive computa-
tional burden and/or low resolution of the Pareto frontier, which
makes the tool difficult to use. In other cases [30,31], method-
ologies have focused on the variation of the objective functions
and/or no intermediate design solutions where identified to map
the feasible space, as in the proposed methodology based on
MDO. In [3], the concept of MDO has only been qualitatively in-
troduced and its rational was only highlighted by means of maps
and the practical use of this first model was limited. The MDO
concept has been also proposed for multi-objective optimization
in [9], but when the focus is on a single indicator, this method-
ology can be significantly less efficient and less accurate. For
these reasons, the present study properly defines MDO for single-
objective optimization and also performs a detailed comparison
with multi-objective optimization.

Moreover, both studies [3,9] considered only a simple Load
Following strategy (LFS) to operate the system, according to
which the dispatch of the resources is based on a priority-list
rule: first the renewable sources, then the storage and finally the
fuel-fired generators. However, predictive operating strategies
are recently seen as promising solutions to reduce the system
needs and the size of required components [14]. Therefore, in this
study a sensitivity over the operating strategy, load-following or
predictive, is also performed.

1.3. Contribution

To the authors’ best knowledge, this paper details the first
definition of Multiple Design Options (MDO) for single-objective
optimization and develops the corresponding methodology to
successfully draw MDOs. In the proposed approach, a metaheuris-
tic optimization called MDO-PSO, based on Particle Swarm Opti-
mization, is developed to size an off-grid microgrid and all the
intermediate solutions are stored till convergence of the solver.
Then, all the intermediate solutions within a given optimality tol-
erance with respect to the final optimal sizing are post-processed
to identify a handful number of MDOs that can be manageable
by the developer. Furthermore, in order to stress the possible use
of MDO-PSO for identifying Pareto-like curves, typically used in
multi-objective optimization, a Pareto-like curve, denoted MDO-
Pareto, is derived at least in a reduced region based on the search
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history and compared to the standard multi-objective optimiza-
tion. Finally, a sensitivity analysis with respect to the optimality
tolerance is also proposed. In short, the main novelties are listed
below.

1. Definition of Multiple Design Options (MDO) for single-
objective optimization.

2. Development of the Multiple Design Options-Particle Swarm
Optimization (MDO-PSO) method to collect MDOs in single-
objective optimization for a PV-battery-diesel-tank micro-
grid.

3. Comparison of a novel Pareto-like frontier, denoted as
MDO-Pareto frontier and focused on Net Present Cost (NPC)
and the investment costs (CAPEX), with a standard multi-
objective approach.

4. Sensitivity w.r.t. the operating strategy: Load Following
(LFS) or predictive Rolling Horizon Strategy (RHS).

1.4. Organization

Section 2 details the topology of the system taken as a ref-
erence; Section 3 clearly states the definition of MDO for single
objective optimization and Section 4 describes the MDO-PSO
algorithm to calculate the optimal design of an off-grid microgrid.
Section 5 and VI describe the case study and the corresponding
results for a system in Soroti, Uganda, respectively. Lastly, the
conclusions are drawn.

2. The microgrid system

2.1. Description

Given the multi-faceted characteristics of rural electrification,
this study analyzes a traditional off-grid microgrid in developing
countries, composed by a solar PV plant, a battery energy storage
system, a DC/DC converter, an inverter, a diesel generator and its
fuel tank, as shown in Fig. 1. The batteries and photovoltaic plant
are tied at the DC busbar; the diesel generator is tied at the AC
busbar, and the inverter is the component that links the AC and
DC busbars.

The resources within the microgrid are dispatched by an En-
ergy Management System (EMS) using the operating strategies
detailed in the following subsection.

2.2. The system operation

The local EMS controls the devices of the microgrid with
the objective of minimizing the operating charges. Traditionally,
being simple and with limited hardware requirements, simple
dispatching protocols based on ‘‘if-then’’ rules have been used
for rural microgrids, by which resources are dispatched by merit-
order criteria [14]: firstly the renewable energies are exploited,
then the energy stored in the batteries is used and finally the fuel-
fired generators are dispatched. In particular, the ‘‘Load Following
Strategy’’ (LFS) is the most used and simple to use: the generator
is turned on only to meet the residual demand when the other
renewable units or storage cannot, otherwise the generator is not
dispatched. With LFS, the generator is not meant to charge the
batteries, contrary to other priority-list methodologies such as
Cycle Charging [14].

The study in [14] also highlighted that predictive operating
strategies can increase the coordination of the system and enable
reducing its life-cycle costs, but the control unit is more com-
plex and requires accurate forecasts to operate, which may be
difficult to perform on rural microgrids. In such cases, the load
and renewable production of the system is forecasted for a given
time horizon (e.g. a day) and then an optimization algorithm
3

Fig. 1. The topology of the microgrid.

identifies the optimal dispatching strategy for the same time
horizon. This procedure, called "Rolling Horizon Strategy" (RHS),
is usually repeated every a fixed period of time (e.g. 4 h), to
revise the previous scheduling once updated forecasts become
available; this enables advancing the peak demand by leveraging
especially on the energy storage, with corresponding benefits
both on the reliability and the economics of the microgrid. In
the time between two consecutive redispatching procedures, the
unavoidable forecasting errors in the renewable production and
the load are corrected by the EMS, typically employing simple
real-time rules similarly to LFS, especially in the case of rural
microgrids. When unexpected deviations of load and RES, from
what forecasted, are very small, energy storage absorbs prac-
tically all of them; anyway, especially the demand forecasting
must be accurate to avoid jeopardizing the benefits of predictive
approaches, hence the forecasting system has to be properly
calibrated.

Conversely to the previous work in [3,9], which was limited
to LFS, in this activity both LFS and RHS are simulated, so to
highlight the benefits of the MDO method in different operating
conditions. The forecasting uncertainties of RHS are simulated
and corrected in real-time by using LFS-based rules [14].

3. Definition of multiple design option

Let us assume an optimization problem in the form of (1)
where x is the optimal design with value f (x). In this document,
we define the set of Multiple Design Options (MDOs) X̂ as a
selected group of system configurations whose value of objective
function(s) is nearly equivalent (tolerance ∆ on distance func-
tion d(·, ·)) to the optimal solution provided by the optimization
problem but highlights important features of interest by the
developer, as described by functions γi(·) in (2). In fact, given the
externalities in practical applications, objective functions within
a reduced tolerance (i.e. 2%) may be practically equivalent. This
is captured by the concept of nearly-equivalent solutions de-
scribed by the distance function d, such as a norm-1 function
(d(f (x̂), f (x)) = ∥f (x̂) − f (x)∥1).

x = min
{
f (x) s.t. g(x) ≤ 0

}
(1)

X̂ =

⋃
i∈I

argmin
{
γi(x̂) s.t. d

(
f (x̂), f (x)

)
≤ ∆

}
(2)

The above novel definition has been proposed accounting for the
relevant literature on MDOs and near-optimal design [3,9,32].
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The following sections detail a robust methodology to auto-
atically obtain MDOs from a standard automatic optimization
rocedure, including selection criteria to provide the developer
ith a handful number of meaningful MDOs that are easier to
ompare. In particular, in this paper the γi(·) functions are spe-
cialized to capture the specific extreme design of the system
topology.

4. The multiple design option approach

This section aims at detailing the mathematical model of the
optimization problem and the proposed MDO-PSO technique,
shown in Fig. 2, that calculates the optimal sizing of an off-grid
microgrid, selects all MDOs within a given tolerance, and reduces
the within-tolerance MDO set to a handful number of suitable
options that are manageable for the developer. Similarly to other
approaches [3,9], in every iteration of the MDO procedure the
processed relevant information is stored, but, once convergence
is reached, the data are post-processed to select a handful set of
suitable options for the developer and compare them to multi-
objective optimization, also including sensitivity analyses w.r.t.
operating strategies and optimality tolerance.

The proposed approach is an advancement of current PSO
algorithms [33] on which our additions have allowed us to suc-
cessfully implement the proposed post-processing, as detailed in
this section. The source code of the optimization algorithm has

been released in [34] as discussed in Appendix.

4

4.1. Mathematical model

The objective of the optimization algorithm is to minimize NPC
that accounts, as detailed in (3), for the investment costs (CAPEXy),
the operating charges (OPEXy), the replacement expenses (REPy),
and the residual value (RESy) of the system at the last year of the
project; d is the discount rate, NT refers to the project lifetime and
y denotes the year. The operating costs (OPEXy) take into account
the fuel costs, the maintenance and the economic value of the
load curtailment, according to the management strategy (LFS or
RHS). RESy models the residual value of each asset, calculated as
linear proportion to the remaining lifetime of each component.

in NPC =

NT∑
y=0

CAPEXy + OPEXy + REPy − RESy
(1 + d)y

(3)

The CAPEX formulation accounts for the economies of scale
and volume as detailed in (4), where Ca

0 represents the cost of
the asset a sized to capacity xa0, and parameter βa is a specific
parameter to shape the cost function. Operating charges OPEXy
account for the maintenance fees Ca,M

y of all assets, except for the
fuel-fired generator, the fuel costs CD

t , the maintenance charges
CDM
t of the generator, and the costs related to the Energy Not

Served (ENS) C LC
t , assumed to be linear to the quantity of ENS

(PLC
t ). A piece-wise linear function is used to model the fuel

consumption FD and the fuel price is assumed to be a constant
t
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CAPEX =

∑
a∈A

Ca
0

(
xa

xa0

)βa

(4)

OPEXy =

∑
a∈A/{D}

Ca,M
y +

8760∑
t=1

CD
t + CD,M

t + C LC
t (5)

Eqs. (6) and (7) guarantee the AC and DC electrical balance. In
the first, PD

t represents the dispatch of the diesel generator, P I+
t is

the power supplied by the inverter, P I−
t is the power absorbed by

the inverter, PL
t refers to the load demand and PLC

t is the curtailed
power. In the DC balance (7), PR

t represents the dispatch of the
renewable plant, and PB+

t and PB−
t represent the dispatch of the

battery, with similar notation to the inverter. The efficiency of the
inverter is ηI .

PD
t + P I+

t − P I−
t = PL

t − PLC
t (6)

PR
t + PB+

t − PB−
t −

P I+
t

ηI + P I−
t ηI

= 0 (7)

The maximum power limits of the generator (D), the battery
onverter (B), the inverter (I) and the renewable production unit
R) are modeled with constraints from (8) to (11). The capacity of
ach asset a is denoted with xa and is optimized by the algorithm.
t is worth noticing that the power PD

t dispatched to the generator
s guaranteed to be above the technical minimum (αD,min) when
t is committed, otherwise the diesel production is strictly zero,
s modeled in (8) where zDt denotes the status of the generator.
urthermore, the specific photovoltaic production, for each unit
f installed capacity, is denoted with pRt in (11). xD, xC , xI and xR
enote the installed capacity of the diesel generator, the battery
onverter, the inverter and the renewable assets, respectively.
D,minxDzDt ≤ PD

t ≤ xDzDt (8)
B+
t + PB−

t ≤ xC (9)
I+
t + P I−

t ≤ xI (10)
R
t ≤ pRt x

R (11)

The energy EB
t stored in the battery is modeled using Eq. (12),

s a function of the dispatch of the battery converter and the
ound-trip efficiency ηB of the battery and converter system.
onstraint (13) guarantees that the battery is not charged nor
ischarged beyond specific thresholds, to guarantee an adequate
ifetime of the storage system. Lastly, the modeling of the fuel V T

t
vailable is expressed by (14), where FRefill

t denotes the quantity
f fuel the tank is refilled with in each time step, occurred after
hat a refilling is requested. In particular, when the available fuel
oes below the 20% of the nominal capacity of the tank, a new
hipping is requested and the delay between the request and the
rrival is modeled by using a Weibull probability density function.

B
t = EB

t−1 −
PB+
t√
ηB

+ PB−
t

√
ηB (12)

αB,minxB ≤ EB
t ≤ αB,maxxB (13)

V T
t = V T

t−1 − FD
t + FRefill

t (14)

The specific dispatch of the resources is then managed by
the EMS according to the two main strategies that best repre-
sent the current state-of-the-art in rural microgrids [14,35]: LFS
and RHS. When LFS is used, the fuel-fired generator is typically
kept shut down and the batteries are used as a buffer to keep
the system stable and operating. When the other production
units (renewable sources and batteries) cannot entirely meet the
demand, then the generator is dispatched, if it is economically
5

profitable. The generator, however, does not focus on charging
the batteries. Yet, when RHS is used, the generator is usually
dispatched as scheduled and the battery still balances possible
power mismatches; the dispatching is modified only to avoid RES
or load curtailment [14]. In RHS, the objective of the predictive
dispatch is minimizing OPEXy for the given time horizon (24 h)
and the model of the system is equivalent to the formulation
described in this section. More details can be found in [14].

4.2. The optimization algorithm

In order to minimize NPC and select MDOs, a modified version
of the Particle Swarm Optimization, denoted as MDO-PSO, is
proposed in this paper and discussed, building upon previous
works [3,33]. Conversely to the standard PSO that only aims to
calculate the design the minimizes the objective function [14],
MDO-PSO stores all the intermediate solutions during the opti-
mization procedure, in order to use them in the post-processing
phase, as depicted in the left-hand side of Fig. 2. In each iteration,
MDO-PSO draws P (80) different size configurations of the mi-
crogrid, or particles, simulates the corresponding yearly system
operation according to the selected operating strategy (LFS or
RHS), and calculate the objective function. With no loss of gener-
ality and to keep down the resource requirements, the quantities
to be stored along the iterative procedure are pre-defined, such
as the size of the components, the production share and main
economic parameters (NPC, OPEX, CAPEX). Also according to the
standard PSO, the convergence is reached when no improvements
in the objective function occur along a number (15) of consecutive
iterations with a given tolerance (0.1%).

Algorithm 1 depicts the pseudocode of the proposed optimiza-
tion algorithm.

Algorithm 1 Modified Particle Swarm Optimization

Require: Objective function, variable bounds, parameters
Create N random particles within bounds
Set particles speed using an uniform random distribution
Evaluate objective function for every particle location
while Convergence not met do

for Every particle i do
Update speed based on current and past best particles
Update location of particles
Evaluate objective function
Store optimization results of the iteration

end for
Update stopping criteria: iteration count and iter. within

tolerance
end while

4.3. The post-processing phase

The main novelty of the proposed approach relies on the post-
processing of the information stored along all iterations of the
MDO-PSO optimization, as shown in Fig. 2. In order to focus the
analyses only on the area of the size configurations that are closer
to the optimal solution, a first screening collects only the points
within a given NPC tolerance with respect to the optimal solution,
which are MDOs by definition. Secondly, all outliers, such as
configurations where batteries are installed without converters or
vice versa, are disregarded. Thirdly, detailed pictures are drawn
to qualitatively show the desired results, so to provide the devel-
opers with preliminary information on the MDOs, for instance to
evaluate the variability of the results or to understand the shape
of the objective function. Subsequently, in order to provide the
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developers with a handful number of options that can be man-
ageable, extreme system configurations, which correspond, for
instance, to higher photovoltaic or diesel production, are selected
among the MDOs within-tolerance [9]. Finally, the Pareto-like
frontier, denoted MDO-Pareto, is calculated to highlight the re-
lationship between NPC and CAPEX; this curve is also compared
to the traditional Pareto frontier calculated with Dynamic Multi
Search (DMS) algorithm [36], which is typically used for multi-
objective optimization and is also included in MATLAB [37]. More
in detail, the following steps are taken:

1. Collect all size configurations among the MDO-PSO search
history within a given NPC tolerance with respect to the
minimum NPC obtained with MDO-PSO.

2. Remove outliers, for instance size configurations where
batteries are installed without their converter or vice versa.

3. Perform a cubic interpolation method to properly draw se-
lected quantities representing the developers’ interest: size
of the assets, energy shares and economic performances.

4. Select the extreme MDOs: size configurations that cor-
respond to the maximum or minimum value of selected
quantities, such as photovoltaic production, diesel share,
ENS, battery capacity, or CAPEX. Note that, with respect
to (2), this means that the functions γi (·) correspond to
expressions discussed in Section 4.1, such as γCAPEX (·) =

CAPEX0, in the case of CAPEX, or γPV (·) = −
∑8760

t=1 PR
t , in

the case of the photovoltaic production, for example.
5. Identify the trade-off between selected indicators (NPC and

CAPEX), by applying a Pareto-like approach on the entire
search history.

6. Display the results.

It is worth noticing that, given the strong interest both on
APEX and the life-cycle cost of the project (NPC), the trade-
ff between these two indicators is highlighted with a specific
raph. As traditionally done in multi-objective optimization, the
o-called ‘‘non-dominated’’ solutions among the search history
re identified and plotted [36]: a configuration A is called ‘‘dom-
nated’’ when all the indicators (CAPEX and NPC) of A are worse
han at least another configuration B; when the above does not
pply, then A is called ‘‘non-dominated’’. This procedure per-
ormed on the MDOs is referred to MDO-Pareto, as the optimiza-
ion procedure is not a multi-objective optimization, hence the
orresponding frontier may differ from the optimal curve. In the
ase study, this trade-off is then compared with a traditional
ulti-objective approach to highlight benefits and drawbacks.
Algorithm 2 depicts the pseudocode of the proposed method.

Algorithm 2 Postprocessing

Require: Search history stored by Algorithm 1
Select solutions in the search history within tolerance
Remove outliers
Perform interpolation to improve readability of results
Select extreme MDOs
Identify trade-offs between indicators
Display results

5. Case study

5.1. Description

The MDO-PSO methodology is tested for the optimal sizing of
typical off-grid system to be deployed in Soroti, Uganda. Being
onventionally installed in a microgrid for developing countries,
he assets to be sized are the photovoltaic plant, the lithium
6

Table 1
Cost parameters of the main components.
Asset (i) xa0 Ca

0 βa Mainten. Efficiency Lifetime
UM $/UM – $/UM/y %

PV 1 kW 800 1 16 – 25 y
Battery 1 kWh 350 1 3 96a 3000 eq.cyc.
Bat. conv. 1 kW 1258 0.5 2 98 15 y
Inverter 1 kW 1887 0.5 2 96 15 y
Fuel gen. 1 kW 1013 0.8 0.05 $/kW/h ≤33% 30000 h
Fuel tank 1 liter 52.2 0.45 0.15 – 25 y

aRoundtrip efficiency.

battery, the converters, the fuel-fired generator and the diesel
tank, according to the topology shown in Fig. 1.

The community is composed of around 100 households and
some commercial entities. The procedure described in [3] is used
to assess the demand and its typical daily power profile, and a
Gaussian noise is introduced to stress the power yearly fluctua-
tions, reaching a peak power of about 80–86 kW. The standard
deviation equals on average the 13% the hourly demand. The
methods presented in [38–40] have been implemented to assess
the hourly photovoltaic power production of the proposed case
study. When no adequate historic dataset was available for Soroti,
measures collected at the close weather station in Kitale, Kenya,
were used.

5.2. Cost and technical parameters

Table 1 reports the main economic and technical parameters
of the proposed case study. It is worth noticing that our model
correctly takes into account that, when fuel generator operates
below the rated power, the efficiency decreases. Furthermore, it is
considered that the generator cannot operate below its technical
minimum of 10% its rated power [3]. Finally, the fuel price is
0.9$/l and the equivalent cost of the ENS is 1$/kWh [9]. The
Weibull function used to model the arrival time of the fuel track
is characterized by its 50% and 90% percentiles that equal 4 and
7 days, respectively. The request for a new refueling is triggered
when the available fuel falls below 20% the nominal tank capacity.
The project lifetime is 15 years and the discounted rate equals 8%.

5.3. Testing procedure

The new MDO-PSO approach discussed in Section 4 is tested
for the microgrid in Soroti, including a sensitivity on the operating
strategy (LFS and RHS) and on the optimality NPC tolerance (2%
and 5%). In order to validate the ability of MDO-PSO technique to
provide a good approximation of the traditional Pareto frontier
nearby the solution that minimizes the objective function (NPC),
the MDO-PSO approach is compared with the Dynamic Multi-
Search (DMS) algorithm [36,37], which is typically used in multi-
objective optimization. In that case, given the strong interests of
developers on NPC and CAPEX, the multi-objective analysis was
focused on the trade-off between these two economic indicators.

6. Results

The results of the MDO-PSO method are depicted in Figs. 3
and 4, corresponding to LFS and RHS operating strategies, re-
spectively. The pictures depict the main economics and main
technical parameters of interest for a private developer; the red
dots denote all the MDOs collected by the MDO-PSO procedure,
that were stored since within tolerance from the optimal solution,
and then screened according to the post-processing phase; the
background colors represent their cubic interpolation to ease the
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Fig. 3. Results of MDO-PSO with Load Following Strategy (LFS); the red dots
denote the design configurations within 2% NPC tolerance.

visualization. The effects of the NPC tolerance and of the operat-
ing strategy on the size of the components are shown in Table 6.
The optimal size of the components and the corresponding main
economic quantities obtained with MDO-PSO are reported in Ta-
ble 2, for both LFS and RHS. Fig. 5 shows the MDO-Pareto frontier
obtained with the proposed MDO approach and compared with
the traditional frontier calculated with a solid multi-objective
methodology (DMS). Finally, the computational requirements of
all methodologies are shown in Table 5.

Figs. 3(a) and 4(a) depict the NPC of all size configurations
ithin 2%-optimality, respectively for LFS and RHS operating
trategies, in relationship to the size of the battery system and
7

Fig. 4. Results of MDO-PSO with Rolling Horizon Strategy (RHS); the red dots
denote the design configurations within 2% NPC tolerance.

Table 2
Economics and design characteristics of the optimal solution calculated by
MDO-PSO.
Strategy NPC CAPEX OPEX PV Batt DCDC Inv Diesel Tank

k$ k$ k$/y kW kWh kW kW kW l

LFS 456 376 8.5 177 559 89 69 17 283
RHS 449 358 9.7 168 540 87 68 10 635

of the PV plant. Be the operating strategy LFS or RHS, it turns out
that the color map is quite uniform, as a large number of points
lead to similar values of the objective function, which means that
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Fig. 5. Pareto frontiers calculated with MDO (in blue) and the traditional DMS approach (in red); black dots represent the PSO search history and the light blue
nes represent the in-tolerance MDOs within 2% NPC optimality. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
he objective function is quite flat nearby the optimum. Although
ll the points shown in the pictures are only within 2% tolerance
ith respect to the lowest NPC (456k$ and 449k$ for LFS and
HS), the corresponding sizing of the PV and battery span over a
ide range, up to ±10%–26%. Using RHS, the variability, though
till considerable, is lower than with LFS. These results confirm
hat almost the same economic performances can be obtained
ith many different designs for both LFS and RHS; therefore, the
roposed approach can provide private developers with many
ifferent, but similarly profitable, design options.
When looking at the effect on the diesel generator (Figs. 3(b)

nd 4(b)) and on the inverter (Figs. 3(c) and 4(c)), it is worth
oticing that the variability is generally lower, with both LFS
nd RHS, than for the battery or the PV system: the color map
s typically the same in a large area. The nominal size of the
iesel generator may tend to slightly increase as the sizes of the
V plant and of the battery decrease, but the difference is very
imited, also according the proposed realistic cost parameters. As
remark, the design of the two assets (generator and inverter) is
ignificantly correlated, as together they shall meet the load and
n particular its peak power, as described in (6). Thus, the total
nstalled capacity at the AC busbar is generally around the value
f the peak demand. Moreover, when the renewable penetration
s significant, as in this case, the generator produces for a minimal
raction of the time and the inverter meets the entire energy
emand most of the time. Therefore, the inverter capacity tends
o be correlated to the peak demand and this partially supports
hy Figs. 3(c) and 4(c) are relatively flat. Similar considerations
an be drawn for the tank.
Unlike the size of the diesel generator, its fuel consumption is

reatly affected by the size of the renewable and storage assets,
s highlighted in Figs. 3(d) and 4(d). Similarly, ENS is affected
s well (Figs. 3(e) and 4(e)). When the capacity of the PV plant
nd batteries is reduced, the diesel generator intervenes more
ften to supply the load, but sometimes its production is not
nough, thus the risk of generation shortage increases, and ENS as
ell. However, for this case study, ENS of MDOs within tolerance
8

is always below 1% for LFS and even below 0.2–0.5% for RHS.
Nonetheless, the energy produced by the diesel generator can
reach 5% of the total demand in LFS and 8%–9% in RHS.

The larger the PV plant and the lithium batteries, the lower the
operating costs related to ENS and the diesel generator, however
CAPEX significantly increases (Figs. 3(f) and 4(f)). The optimal
solution obtained by MDO-PSO lays in the equilibrium point
between this tradeoff. However, depending on the local circum-
stances of the specific project, a developer may be interested to
select a different solution, slightly less profitable than the optimal
one, according to the MDO rational.

As private developers usually look for a reasonable number of
options, the procedure described in Section 4.3 narrows down the
desired solutions (Figs. 3 and 4) to a reduced number of designs
that maximize or minimize predefined indicators. These results
are shown in Tables 3 and 4, reporting each selected configu-
ration, combined with the corresponding selection criterion and
operating strategy (LFS or RHS). All the solutions are within 2%
with respect to the NPC of the optimal solution shown in Table 2;
however, significant differences among the optimal design and
economic structure are highlighted. The solutions minimizing
NPC generally require about 20–24k$ more investment than the
ones with the lowest CAPEX, at the cost of increasing OPEX by
about 30%, which in terms of NPC is roughly 2%–3%, both for
LFS and RHS. The solutions minimizing ENS enable significantly
reducing the curtailed energy with respect to the ones that min-
imize NPC: with LFS the reduction is 75%, while with RHS it
is beyond 90%. Furthermore, the solution minimizing the diesel
production share, or maximizing the renewable source, enables
to identify solutions that are 28%–40% less reliant on fuel than the
traditional solution at minimum NPC. These results can support
the decision making of developers, which can better match the
circumstances of their project with the proposed multiple design
options.

The search history of the MDO-PSO algorithm is used in the
post-processing phase to plot the MDO-Pareto frontier among
two indicators, NPC and CAPEX in this activity, as shown in
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Table 3
Economics and energy share of extreme MDOs.
Criterion Strategy NPC CAPEX OPEX PV Diesel ENS

k$ k$ k$/y % % %

min NPC LFS 456 376 8.5 96.7 2.9 0.33
min CAPEX LFS 465 352 11.5 93.9 5.5 0.66
max PV/min Diesel LFS 464 397 7.2 98.2 1.7 0.13
min ENS LFS 465 387 8.3 97.1 2.8 0.08
min Batt LFS 464 398 8.0 97.4 2.3 0.27
min NPC RHS 449 358 9.7 94.3 5.7 0.03
min CAPEX RHS 456 336 12.2 91.2 8.7 0.08
max PV/min Diesel RHS 457 379 8.5 95.9 4.1 0.00
min ENS RHS 454 374 8.6 95.7 4.3 0.00
min Batt RHS 455 375 9.6 94.5 5.5 0.01

Table 4
Optimal sizing of extreme MDOs.
Criterion Strategy PV Batt Inv DCDC Diesel Tank

kW kWh kW kW kW l

min NPC LFS 177 559 89 69 17 283
min CAPEX LFS 177 492 77 75 15 1082
max PV/min Diesel LFS 190 580 108 78 21 544
min ENS LFS 179 571 95 73 29 619
min Batt LFS 176 617 107 77 18 1323
min NPC RHS 168 540 87 68 10 635
min CAPEX RHS 162 485 102 71 10 932
max PV/min Diesel RHS 183 564 91 72 10 501
min ENS RHS 183 547 86 77 10 618
min Batt RHS 167 589 92 67 10 700

Fig. 5: the blue dots represent the frontier obtained by post-
processing the MDO-PSO search history, while the red front is the
one calculated with the standard multi-objective DMS method;
the black dots denote the MDO-PSO search history and the light
blue ones correspond to the designs within 2% optimality. For
both LFS and RHS, especially in proximity to the single-objective
solutions, the methodology based on post-processing the MDO-
PSO search history identifies an area that is very close to the
traditional Pareto frontier. This can be useful because multi-
objective approaches can be computationally expensive, as shown
in right side of Table 5, especially when predictive approaches are
used: the computational times (14.2 h) with the latter are about
three times the single-objective formulation (4.8 h). Thus, at least
in the nearby of the single-objective optimal solution, MDO can
provide developers with multiple design options accounting for
several factors, as done in multi-objective methodologies but
without their computational complexity. In other terms, when
the developer’s interest is focused on a specific indicator, MDO
can be very precise in identifying the optimal solutions and high-
lighting MDOs in the nearby. Instead, when the developer, being
equally interested in several indicators, desires a solution far from
the single-objective optimal solution, traditional multi-objective
approaches like DMS are more suitable.

Finally, Table 6 highlights the effects of the NPC tolerance
n the range of the size configurations selected by the MDO
pproach. Clearly, the higher the tolerance, the larger the set of
n-tolerance MDOs for both LFS and RHS, as shown in [3]; the
bove considerations hold.

. Conclusions

This paper proposes the concept of Multiple Design Options
MDO) for single-objective optimization and the MDO-PSO op-
imization technique to enrich the design options of microgrid
rojects. The main novelties stand in a post-processing activity
n the search history of the MDO-PSO algorithm that analyzes
ll the partial solutions tested by the algorithm within a given

PC tolerance from the final optimal solution, and selects size

9

Table 5
Computational requirements of the PSO and DMS methodologies.

PSO DMS

LFS RHS LFS RHS

1.8 min 4.8 h 0.8 min 14.2 h

Table 6
Size configuration ranges, by NPC tolerance.
Tol. Strategy PV Batt DCDC Inv Diesel Tank

kW kWh kW kW kW kl

2% LFS 160–200 492–617 70–164 57–80 9–29 0.1–3.7
2% RHS 155–190 475–589 66–185 57–80 5–16 0.2–2.9
5% LFS 149–225 461–697 59–225 55–80 0–38 0–6
5% RHS 143–205 432–647 60–225 50–80 4–20 0.1–6

configurations that have nearly the same economic profitability.
Trade-offs between multiple economic criteria (NPC and CAPEX)
are also discussed and compared to a standard multi-objective
methodology. A numerical case study relevant to a rural micro-
grid in Uganda is discussed, including a sensitivity analysis on the
operating strategy and the NPC tolerance.

This study confirms that the objective function of microgrid
sizing problems is flat nearby the optimal solution, since a large
number of size scenarios of the assets of the microgrid achieve
similar values of NPC, even spanning ±20 − 34% the value of
the traditional optimal size of the system, despite a tolerance no
greater than 5%. This suggests that the proposed approach can
provide developers with microgrid size scenarios that can better
meet the specific requirements and circumstances of the project,
which cannot be included in traditional mathematical modeling.

The proposed technique also successfully captures the trade-
off between CAPEX and NPC in the nearby of the optimal design,
since the MDO-Pareto frontier estimated by MDO was similar to
the one obtained with a traditional multi-objective approach. This
suggests that operators mainly interested in a single objective
function could be provided with additional design configurations,
without repeating any optimization process.

The methodology presented in this study is able to support
developers in meeting the variegated and diverse circumstances
of the business environment, whereas traditional single-objective
problems cannot successfully capture the multi-faceted charac-
teristics of microgrid projects. Even if this study was focused
on microgrids, MDO-PSO can be easily applied to different en-
ergy problems and power systems, thus supporting the decision-
making process in a variety of different applications.
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Appendix. Source code

The MDO-PSO optimization algorithm is freely accessible at
34].
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