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Abstract
Hawkes process are very popular mathematical tools for modeling phenomena
exhibiting a self-exciting or self-correcting behavior. Typical examples are earth-
quakes occurrence, wild-fires, drought, capture-recapture, crime violence, trade
exchange, and social network activity. The widespread use of Hawkes process
in different fields calls for fast, reproducible, reliable, easy-to-code techniques to
implement such models. We offer a technique to perform approximate Bayesian
inference of Hawkes process parameters based on the use of the R-package
inlabru . The inlabruR-package, in turn, relies on the INLA methodology
to approximate the posterior of the parameters. Our Hawkes process approxi-
mation is based on a decomposition of the log-likelihood in three parts, which
are linearly approximated separately. The linear approximation is performed
with respect to the mode of the parameters’ posterior distribution, which is
determined with an iterative gradient-based method. The approximation of the
posterior parameters is therefore deterministic, ensuring full reproducibility of
the results. The proposed technique only requires the user to provide the func-
tions to calculate the different parts of the decomposed likelihood, which are
internally linearly approximated by the R-package inlabru . We provide a
comparison with the bayesianETAS R-package which is based on an MCMC
method. The two techniques provide similar results but our approach requires
two to ten times less computational time to converge, depending on the amount
of data.
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1 INTRODUCTION

Hawkes processes or self-exciting processes, first introduced by Hawkes (1971a, 1971b), are counting processes
often used to model the “arrivals” of some events over time, when each arrival increases the probability of
subsequent arrivals in its proximity. Typical applications can be found in seismology (Ogata, 1988, 2011; Ogata &
Zhuang, 2006; Schoenberg, 2022), capture-recapture (Altieri et al., 2022; Weller et al., 2018), invasive species (Balderama
et al., 2012), droughts (Li et al., 2021), crime (Mohler, 2013; Mohler et al., 2011, 2018), finance (Azizpour et al., 2018;
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Filimonov & Sornette, 2012; Hawkes, 2018), disease mapping (Chiang et al., 2022; Garetto et al., 2021), wildfires (Peng
et al., 2005), and social network analysis (Kobayashi & Lambiotte, 2016; Zhou et al., 2013).

Hawkes process, and more in general point processes, are counting processes assuming a value equal to the cumula-
tive number of points recorded in a bounded spatio-temporal region. The main characteristic of a Hawkes process is its
ability to model the effect of a point on the probability of observing additional points in its surroundings. For example,
in seismology, it is often assumed that each earthquake has the ability to induce other earthquakes, and therefore observ-
ing an earthquake at a space-time location increases the probability of observing additional earthquakes in its proximity.
Therefore, each observed point can be classified as induced, if it was induced by another point in the history of the pro-
cess, or as background if it arose spontaneously. In this framework, a Hawkes process can be seen as the superposition of
a background process, describing the occurrence of background events, and a sub-process for each observation in the his-
tory, describing the occurrence of events induced by that observation. This implies that the rate at which points occur at
each space-time location is potentially influenced by the whole history of the process. This makes Hawkes process mod-
els non-Markovian. More formal definitions of the Hawkes process, its history, and its conditional intensity are given in
Section 2.

The application of the Bayesian approach has become increasingly popular also in the Hawkes process field (Don-
net et al., 2020; Holbrook et al., 2021; Rasmussen, 2013). In fact, Hawkes process models are often used in hazard or risk
analyses, in which the ability to quantify the uncertainty around quantities of interest (e.g., number of events, probabil-
ity of events of a certain class, inter-event time distribution) is of paramount importance (Marzocchi et al., 2015; Smit
et al., 2019). However, applying the Bayesian framework, in these cases, is difficult, given the complex form of the pos-
terior distribution and the high degree of correlation between Hawkes process parameters, and researchers had to resort
to frequentist-like estimation techniques (Ebrahimian et al., 2014; Omi et al., 2015). Also, an easy-to-use, extendible,
Bayesian technique to handle Hawkes process models is still missing, one of the few examples to the authors’ knowledge is
represented by Ross (2021). Furthermore, the techniques habitually used in the literature are based on the Markov-chain
Monte Carlo (MCMC, Robert et al., 1999) method which limits the reproducibility of the results and resent from the
presence of highly correlated parameters.

In this article, we propose a novel approximation technique for Hawkes process models based on the use of the
Integrated Nested Laplace Approximation (INLA, Rue et al., 2017) method. The INLA method is a well-known alter-
native to MCMC methods to perform Bayesian inference. It has been successfully applied in a variety of fields such
as seismology (Bayliss et al., 2020), air pollution (Forlani et al., 2020), disease mapping (Riebler et al., 2016; Santer-
mans et al., 2016; Schrödle & Held, 2011a, 2011b), genetics (Opitz et al., 2016), public health (Halonen et al., 2015),
ecology (Roos et al., 2015; Teng et al., 2022), more examples can be found in Bakka et al. (2018); Blangiardo
et al. (2013), Gómez-Rubio (2020). Our approach aims to bring the INLA’s advantages to the Hawkes process com-
munity and is implemented through the R-package inlabru . Specifically, the novelty of our approach resides in
the likelihood approximation, indeed, the log-likelihood is decomposed in the sum of many small pieces, and each
piece is linearly approximated with respect to the posterior mode. This means that the log-likelihood is exact at the
posterior mode and the accuracy of the approximation decreases as we move away from that point. Furthermore,
the linear approximation and the optimization routine to determine the posterior mode are internally performed
by the inlabru package. The user only has to provide the functions to be approximated, the data, and the priors.
The advantages of our approach are both in terms of computational time and simplicity to be extended to include
covariates and/or to introduce structure in the parameters (e.g., considering one of them as temporally, or spatially,
varying).

The article is structured as follows: Section 2 introduces the basic definition of a counting process, a Hawkes process,
and defines its history and conditional intensity; Section 3 describes how Hawkes processes are used in practice and pro-
vides some examples on possible choices of the conditional intensity; Section 4 describes our novel approximation method
for the log-likelihood; Section 5 provides a real data example on the Amatrice seismic sequence and compares the results
obtained with our approach with the ones from the bayesianETAS R-package. For the Amatrice seismic sequence, we
also provide a retrospective forecasting experiment in which we predict the daily number of earthquakes; Section 6 shows
the results of a simulation experiment in which we simulate the data from a known model and compare theinlabru and
bayesianETAS implementations. This is done to illustrate how the computational time scales increasing the amount
of data. The three appendices at the end of the article (Appendices A–C) provide the posterior distributions of the param-
eters for the two implementations considered and perform a sensitivity analysis of the inlabru results with respect to
the binning strategy and the prior choice.
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2 NOTATION AND DEFINITIONS

In this section, we give the basic definitions of a counting process, its history, and conditional intensity. Some definitions
are only given with respect to time, but they can be easily extended to include space and marking variables. We start with
the definition of a counting process. A counting process is a stochastic process assuming integer values changing over
time. The value of a counting process at time t ≥ 0 is equal to the number of observations with time less or equal than t.
More formally,

Definition 1. A counting process {N(t), t ≥ 0} is a stochastic process assuming values in the set of
non-negative integers N ∪ {0}, such that: (i) N(0) = 0; (ii) N(t) is a right-continuous step function with unit
increments; (iii) N(T) < ∞ almost surely if T < ∞. Also, given a time interval [0,T) with T < ∞, we define
the complete set of observations up to time T asT = {th ∶ th ∈ [0,T) ∀h = 1, … .,N(T−)}. Given a random
t ∈ [0,T) we define the history of the process up to time t as the subset of elements of T recorded strictly
before t and we call itt = {th ∈ T ∶ th < t}.

Definition 1 can be extended to the marked spatio-temporal case. In this case, a generic observed point is
x = (t, s,m) and is composed of a time t, a spatial location s, and a marking variable m. The domain is given by
 = [0,T) ×W ×M, where T > 0, W ⊂ R2 and M ⊆ R. The value of the counting process at time t is the number of
events recorded before t (included), with spatial location in W and marking variable in M. Assuming that the spatial
region of interest (W) and the marking variable’s domain (M) are constant over time, we can use the same notation
for the complete set of observations and the history of the process. In this case, the complete set of observations is
T = {xh = (th, sh,mh) ∶ xh ∈  ∀h = 1, … ,N(T−)}, and the history of the process becomes t = {xh = (th, sh,mh) ∈
T ∶ th < t}.

Any counting process can be defined by specifying its conditional intensity. The conditional intensity of a counting
process at time t is the expected infinitesimal rate at which events occur around time t given the history of the processt.
More formally,

Definition 2. For a counting process {N(t), t ≥ 0} with history t, the conditional intensity function of the
process N(t) is:

𝜆(t|t) = lim
Δt↓0

E[N(t + Δt) − N(t−)|t]
Δt

.

For Δt, t ≥ 0. Assuming that the limit exists, the conditional intensity is left-continuous and 𝜆(t|t) ≥ 0,
∀t ≥ 0.

Definition 2 can also be extended to include a space location and a marking variable. The conditional intensity 𝜆(x|t)
is the expected infinitesimal rate at which points occur in (t, t + Δt),Δt > 0, around space location s, with marking variable
around m.

The first characteristic for a Hawkes process as defined in Hawkes (1971b) Equation (4) is that the probability of the
number of events in (t, t + Δt) being equal to n = 0, 1, … is given by:

Pr(N(t + Δt) − N(t) = n|t) =
⎧
⎪
⎨
⎪
⎩

1 − 𝜆(t)Δt − o(Δt) if n = 0
𝜆(t)Δt + o(Δt) if n = 1
o(Δt) if n > 1.

(1)

Equation (1) has two major implications. The first one is that the probability of having more than one event in an
infinitesimal interval around t goes to zero faster than the length of the interval. This implies that the probability of
observing two events at the same time is zero and that the number of events in T is equal to N(T) with probability
one. However, recorded data does not have to obey that (due to time discretization). The second is that the probability
of having an event in (t, t + Δt) conditional on the historyt, for small Δt > 0, is completely specified by the conditional
intensity.

Now, we can define a Hawkes process model through its conditional intensity:

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2798 by T

est, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 29 SERAFINI et al.

Definition 3. A Hawkes process is a counting process with conditional intensity given by:

𝜆(x|t) = 𝜇(x) +
∑

xh∈t

g(x, xh), (2)

where 𝜇 ∶  → [0,∞), and g ∶  ×  → [0,∞)

The conditional intensity is composed of a part 𝜇(x) usually called the background rate, which does not depend on
the history; and a second part representing the contribution to the intensity from the points in the history. The function
g ∶  ×  → R+ is known as excitation or triggering function and measures the influence of observation xh on the point x.

Definition 3 implies that the whole history of the process is important to determine the current level of intensity. In
this view, Hawkes processes can be seen as a non-Markovian extension of inhomogeneous Poisson processes. Both the
background rate and the triggering function depends on a set of parameters 𝜽 ∈ Θ ⊂ Rm which determines the properties
of the Hawkes process under study (e.g., number of events per time interval, probability of a certain type of events, average
number of induced events, type of clustering). Our technique provides a way to have a fully-Bayesian analysis of the
parameters 𝜽.

3 HAWKES PROCESS MODELING

The Hawkes process intensity in Equation (2) is composed by two part, a background rate 𝜇(x) and an excitation or
triggering function g(x, xh). The background rate and the triggering function depend upon a number of parameters 𝜽.
Our objective is to provide a technique to determine the posterior distribution of 𝜽 having observed points in = [0,T] ×
W ×M. Equation (2) also shows that a Hawkes process can be thought of as the sum of n + 1 Poisson processes, where
n = N(T) is the number of observations in the history of the process up to time T < ∞. One Poisson process represents the
background rate and has intensity 𝜇(x), the others n Poisson processes are each one generated by an observation xh and
have intensity g(x, xh). Many algorithms for fitting Hawkes process models are based on this decomposition and make use
of a latent variable assigning the points to one of those n + 1 Poisson processes (Ross, 2021; Veen & Schoenberg, 2008).
Our approach is different because there is no explicit or implicit classification of the points into background and induced
events.

Regarding marked spatio-temporal Hawkes process models, we only report the case where the marking variable dis-
tribution is independent of space and time, we refer to this distribution with 𝜋(m). For the case where this assumption
does not hold, and we have 𝜋(x = (t, s,m)), we just need to substitute 𝜇(x), and g(x, xh)with 𝜇(x)𝜋(x), and g(x, xh)𝜋(x) in
all the following expressions without loss of generality. This is valid for both discrete and continuous distribution of the
marking variable. Assuming an independent marking variable distribution the Hawkes process conditional intensity is
given by:

𝜆(x = (t, s,m)|t) =

(

𝜇(x) +
∑

xh∈t

g(x, xh)

)

𝜋(m). (3)

Given the assumption of independence between the process representing the space-time locations and the mark-
ing variable’s distribution, we only focus on the distribution of the space-time locations. The parameters of the marking
variable distribution will be estimated independently and based on the observed marks solely. This is the usual situa-
tion in seismology, where the marking variable is the magnitude of the event, and its distribution is usually assumed
to be independent of the space-time location of the events. If the assumption does not hold, applying the substitution
described above allows us to estimate the marking variable distribution’s parameters along with the Hawkes process
parameters.

In this article, we consider a spatially varying background rate that remains constant over time. This is done mainly
to limit the number of modes in the likelihood and the correlation between parameters. Furthermore, we are going to
consider a background rate parameterized as

𝜇(x) = 𝜇u(s) (4)
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SERAFINI et al. 5 of 29

with 𝜇 ≥ 0 representing the number of expected background events in the area for a unit time interval, and u(s) represents
the spatial variation of the background rate and we assume it is normalized to integrate to one over the spatial domain.
Different techniques have been employed to estimate u(s). For example, in seismology, it is common practice to estimate it
independently from the parameters of the triggering function smoothing a declustered set of observations (Ogata, 2011).

The common approach to model the triggering function is to factorize it in different components representing the
effect of the observations xh on the evaluation point x on the different dimensions (i.e., time, space, marking variable).
More formally,

g(x, xh) = gm(mh)gt(t − th)gs(s − sh)I(t > th), (5)

where, I(t > th) is an indicator function assuming value one when the condition holds, and zero otherwise. The function
gm(mh) is the marking variable triggering function representing the effect of different values of the marking variable (e.g., if
m is the magnitude of an earthquake, large earthquakes have a stronger influence); gt(t − th) is the time triggering function
determining the time decay of the observed point’s effect, and it is usually a decreasing function of t − th; gs(s − sh) is the
space triggering function which has the same role of the time triggering function but in space and is usually a function
of the distance between points (different distances may be employed).

Following this decomposition, also the parameter vector 𝜽 can be decomposed in 𝜽 = (𝜽(𝜇),𝜽(m),𝜽(t),𝜽(s)), where 𝜽(𝜇)

represents the parameters of the background rate, and 𝜽(m), 𝜽(t), 𝜽(s) represent, respectively, the parameters of the magni-
tude, time and space triggering functions. We call J

𝜇
, Jm, Jt, Js the set of indexes indicating, respectively, the position of the

background rate, marking variable triggering function, time triggering function, and space triggering function parameters
inside 𝜽, so we can write 𝜽

𝜇
= {𝜃j ∈ 𝜽 ∶ j ∈ J

𝜇
}. This notation will be particularly useful in Section 4.

Table 1 reports some of the typical choices for the space-time triggering function. Many modifications of these func-
tions are used in real-data applications. For example, we can imagine a different time or space effect for different values
of the marking variable. In seismology, it is common to consider a magnitude-dependent space triggering function rep-
resenting the fact that earthquakes with large magnitudes affect wider areas. Another modification usually found in
applications is to consider the normalized version of the reported functions to ensure they integrate to one over the
(respective) domain.

As explained in Laub et al. (2021), the choice of the triggering function is crucial to the reliability and stability of any
estimation procedure for Hawkes process parameters. For example, many techniques use triggering functions normalized
to integrate to 1 over an infinite domain. For the approximation illustrated in this article, we recommend using functions
as close to linearity as possible with respect to the parameters, and for the author’s experience, the unnormalized version
works best. The motivations behind this requirement will be illustrated in the next section.

In the real data example provided in Section 5, we apply our technique to earthquake data. The data is supposed to
come from a spatio-temporal marked Hawkes process model, where the marking variable is the magnitude, however, we
will consider it as a temporal marked point process, ignoring the information on the spatial location. The effect of that is
to replace the full space-time intensity with a spatially integrated intensity. Indeed, assuming that the region of interest
is constant over time, any temporal model, with intensity 𝜆′ can be seen as a spatio-temporal model (with intensity 𝜆)
integrated over space,

𝜆

′(t,m|t) =
∫W

𝜆(t, s,m|t)ds, (6)

T A B L E 1 Typical choices of time and space triggering functions.

Name Function Parameters

Time triggering

Exponential 𝛽e−𝛼(t−th)
𝛼, 𝛽 ≥ 0

Power law k
(

1 + t−th
c

)−p
k ≥ 0, c > 0, p > 1

Space triggering

Gaussian det (2𝜋Σ)−1∕2e−
1
2
(s−sh)TΣ−1(s−sh) Σ positive semi-definite

Power law (1 + d(s,sh)
𝛾

)−q
𝛾 > 0, q > 1
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6 of 29 SERAFINI et al.

where W ⊂ R2. For the spatio-temporal model, if the background rate is given by Equation (4) and the triggering function
by Equation (5), the temporal background rate (𝜇′) and triggering function (g′t) are given by

𝜇

′ = 𝜇
∫W

u(s)ds, (7)

g′t(t − th) = gt(t − th)
∫W

g(s − sh)ds. (8)

Regarding the background rate, if u(s) is normalized to integrate to 1 over the domain, the background rate is the same
as in the spatio-temporal. For the triggering function, if there were no boundary effects, the integral would be independent
of sh, so it would just be a common amplitude scaling. This seems a reasonable simplification to be able to treat space-time
data as temporal only.

4 HAWKES PROCESS LOG-LIKELIHOOD APPROXIMATION

In this section, we illustrate our Hawkes process log-likelihood approximation technique. This approximation technique
is new and allows us to express the Hawkes process log-likelihood as a sum of linear functions of the parameters𝜽. Suppose
to have observed n eventsT1,T2 = {x1, … , xn ∶ xi ∈  ∀i = 1, … ,n}, where = [T1,T2] ×W ×M, with 0 ≤ T1 < T2 <

∞, W ⊂ R2, and M ⊆ R. To ease the notation in the next steps we are using  = T1,T2 to indicate the complete set of
observations. The general point process model log-likelihood given the observations is:

(𝜽|) = −Λ(|) +
n∑

h=1
log 𝜆(xh|th), (9)

whereth is the subset ofT1,T2 of events recorded strictly before th and,

Λ(|) =
∫


𝜆(x|)dx, (10)

is the integrated conditional intensity corresponding to the expected number of points in  . The integrated conditional
intensity can be decomposed using the branching structure of Hawkes processes, indeed, we can think of the expected
number of points in an area as the expected number of background points plus the expected number of points induced
by each observation in the history. Formally, having observed n = |T1,T2 | events,

Λ(|) = Λ0() +
n∑

h=1
Λh(), (11)

where,

Λ0() =
∫


𝜇(x)dx = (T2 − T1)𝜇, (12)

is the integrated background rate, and is interpreted as the number of expected background events. The last equation only
holds if the background rate follows the definition in Equation (4). The other quantity is given by

Λh() =
∫


g(x, xh)dx = gm(mh)
∫

T2

max(T1,th)
∫W

gt(t − th)gs(s − sh)dtds, (13)

and is interpreted as the number of expected points generated by the observation xh. The last equation only holds if we
use Equation (5) to define the triggering function.
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The log-likelihood can be decomposed into three main components:

(𝜽) = −Λ0() −
n∑

h=1
Λh() + SL(). (14)

The expected number of background eventsΛ0(), the expected number of induced events
∑

h Λh(), and the sum of
the log-intensities SL() =

∑
h log 𝜆(xh|th).

Our technique is based on approximating these three components separately. The approximation is such that the
value of the log-likelihood is exact at the posterior mode 𝜽∗, and the degree of accuracy decays as we move from there.
The level of accuracy for values of the parameters far from the posterior mode strongly depends on the choice of the
triggering functions. Specifically, we separately perform a linear approximation of logΛ0(), logΛh(), and log 𝜆(xh), for
h = 1, … ,n, and therefore, these functions should be as close to being linear as possible.

The next subsections illustrate the approximation of the different log-likelihood components. The last subsection
reports some details on the iterative algorithm used to determine the mode of the posterior distribution around which
the approximation is performed. For all of them, we will make explicit the dependence of the log-likelihood components
from 𝜽 and omit dependence from the domain  , formally, Λ() = Λ( ,𝜽) = Λ(𝜽). Also, if a quantity is approximated
we use the Tilde symbol, such that ̃f (x) is the approximation of f (x), while over-lined quantities stand for linearised, such
that f (x, x0) is the linear version of f (x) with respect to x0.

4.1 Part I: Expected number of background events

We approximate the integrated background rate using a linear approximation of its logarithm. Namely,

̃Λ0(𝜽) = exp{logΛ0(𝜽,𝜽
∗)}, (15)

where,

logΛ0(𝜽,𝜽
∗) = logΛ0(𝜽∗) +

1
Λ0(𝜽∗)

m∑

j=1
(𝜃j − 𝜃∗j )

𝜕

𝜕𝜃j
Λ0(𝜽)

|
|
|𝜽=𝜽∗

. (16)

This approach is particularly convenient if the background rate has the form reported by Equation (4). The only
parameter to estimate using this approximation is𝜇 ≥ 0. Changing parameter to 𝜃

𝜇
= log𝜇, we have two huge advantages.

First, 𝜃
𝜇
∈ (−∞,∞) is a free-constraint parameter, and second, the logarithm of the expected number of background

events is linear in 𝜃
𝜇

, which means that there will be no approximation at this step and this component will be exact for
any value of 𝜃

𝜇
.

4.2 Part II: Expected number of triggered events

We start the approximation of the expected number of triggered events by considering the expected number of events
triggered by a single observation xh. This is given by Equation (13). Considering a partition of the space  , namely
b1,h, … , bBh,h such that

⋃
i bi,h =  and bj,h

⋂
bi,h = ∅, ∀i ≠ j, we can write:

Λh(𝜽) =
Bh∑

i=1
∫bi,h

g(x, xh)dx =
Bh∑

i=1
Λh(bi,h,𝜽). (17)

We approximate the above quantity linearly approximating the logarithm of the elements of the summation. This
increase the computational time and memory required by the algorithm but it provides a much better approximation than
considering one bin only. More formally,

̃Λh(𝜽) =
Bh∑

i=1
exp{logΛh(bi,h,𝜽,𝜽

∗)}, (18)

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2798 by T

est, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 29 SERAFINI et al.

where logΛh(bi,h,𝜽,𝜽
∗) is the linear approximation with respect to the posterior mode of the expected number of generated

events by the observation xh in the area bi,h and has the same form of Equation (16).
Assuming that we are dealing with a spatio-temporal marked Hawkes process model with triggering function given

by Equation (5) and bins partitioning the time domain only, such that bi,h = [ti−1,h, ti,h) ×W for i = 1, … ,Bh and ti,h <

tj,h∀i < j and t0 = max(T1, th) and tB = T2, we have that:

Λh(bi,h,𝜽) = gm(xth ,𝜽
(m))

(

∫

ti,h

ti−1,h

gt(t − th,𝜽
(t))dt

)(

∫W
gs(s − sh,𝜽

(s))ds
)

= gm(mh,𝜽
(m))It(bi,h,𝜽

(t))Is(𝜽(s)), (19)

where It(bi,h,𝜽
(t)) and Is(𝜽(s)) are, respectively, the integral of the time and space triggering function. The derivative of the

logarithm of Λh(bi,h,𝜽) with respect to 𝜃j ∈ 𝜽 is given by

𝜕

𝜕𝜃j
logΛh(bi,h) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕

𝜕𝜃j
log gm(mh), if j ∈ Jm

𝜕

𝜕𝜃j
log It, if j ∈ Jt

𝜕

𝜕𝜃j
log Is, if j ∈ Js,

(20)

where Jm, Jt, Js are defined in Section 3.
Therefore, the accuracy of the approximation depends on how close to be linear the functions log gm(⋅), log It(⋅), log Is(⋅)

are with respect the parameters 𝜽. In the case of normalized triggering functions, we have Λh() = gm(mh). This means
that, on one hand, we don’t need to split the integral in different bins saving computational time and memory; on the other
hand, the information on the parameters 𝜃j ∈ 𝜽(t)

⋃
𝜽
(s) provided by this likelihood component is lost. Also, normalized

triggering functions tend to be farther from linearity than the corresponding unnormalized versions and this is crucial
for the approximation of the sum of log-intensities.

We remark that the division in bins is essential for the accuracy of the approximation and the ability to converge of
the algorithm. Different binning strategies can be employed, and their performance depends on the form of the triggering
function. For example, in the case in which the time triggering function represents the time-decay of the influence of an
observation on the intensity, we expect it to be a monotonic decreasing function of the time difference and, therefore, a
convenient strategy would be to consider a denser partition around zero and larger bins far from it where the function
flattens. In Appendix B, we illustrate the binning strategy used in the real data and simulation examples which has the
characteristics described above. In there, we perform a sensitivity analysis fitting the same Hawkes process model using
different binning strategies, and Table 6 compares the different binning strategies in terms of computational time and
ability to converge.

4.3 Part III: Sum of log-intensities

For the sum of log-intensities calculated at the observed points, we simply consider the linear approximation of the
elements of the summation, namely

̃SL() =
n∑

h=1
log 𝜆(xh,𝜽,𝜽

∗), (21)

where, omitting the dependence from xh,

log 𝜆(xh,𝜽,𝜽
∗) = log 𝜆(𝜽∗) + 1

𝜆(𝜽∗)

m∑

j=1
(𝜃j − 𝜃∗j )

𝜕

𝜕𝜃j
𝜆(𝜽)||

|𝜽=𝜽∗
, (22)

which is the same as Equation (16).
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SERAFINI et al. 9 of 29

Assuming to be interested in a spatio-temporal marked Hawkes process model, with background rate specified by
Equation (4), considering u(s) known for any s ∈ W , and triggering function specified by Equation (5), the conditional
intensity is given by:

𝜆(xh|th) = 𝜇u(sh) +
∑

k∶xk∈th

gm(mk)gt(th − tk)gs(sh − sk) (23)

with derivative with respect to 𝜽 equal to

𝜕

𝜕𝜃j
𝜆(xh) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

u(sh), if 𝜃j = 𝜇
∑

k gt(th − tk)gs(sh − sk) 𝜕
𝜕𝜃j

gm(mk), if j ∈ Jm
∑

k gm(mk)gs(sh − sk) 𝜕
𝜕𝜃j

gt(th − tk), if j ∈ Jt
∑

k gm(mk)gt(t − tk) 𝜕
𝜕𝜃j

gs(sh − sk), if j ∈ Js,

(24)

The above expression indicates that the accuracy of the approximation depends on how close to linearity the different
triggering function components are.

4.4 Full approximation and inlabru implementation

Putting all together, the Hawkes process log-likelihood approximation used by our technique is:

̃(𝜽,𝜽∗) = − ̃Λ0(𝜽,𝜽∗) −
n∑

h=1

Bh∑

i=1

̃Λh(bi,h,𝜽,𝜽
∗) +̃SL(,𝜽,𝜽∗)

= − exp{logΛ0(𝜽,𝜽
∗)} −

n∑

h=1

B,h∑

i=1
exp{logΛh(bi,h,𝜽,𝜽

∗)} +
n∑

h=1
log 𝜆(xh,𝜽,𝜽

∗). (25)

The approximation is performed with respect to the mode of the posterior distribution 𝜽∗, which is determined by
an iterative algorithm. The algorithm starts from a linearization point 𝜽∗0 (provided by the user), finds the mode of the
linearized (with respect to 𝜽∗0) posterior using the INLA method, namely 𝜽

∗
1, the value of the linearization point is updated

to 𝜽∗1 = 𝛼𝜽
∗
0𝛼 + (1 − 𝛼)𝜽

∗
1, where the scaling 𝛼 is determined by the line search method described here https://inlabru-

org.github.io/inlabru/articles/method.html. This process is repeated until, for each parameter, the difference between
two consecutive linearization points is less than 1% of the marginal posterior standard deviation. The value 1% is the
default value used by the R-package inlabru and can be changed by the user. Regarding 𝜽∗0 provided by the user, we
suggest setting the parameters to a value which do not lead to extreme cases. In our experience, using 𝜽∗0 such that all the
parameters are equal to 1 is a safe choice. Another option may be to set it equal to the maximum likelihood estimators.
We recommend avoiding cases where parameters are equal, or very close, to zero (e.g., <10−10), as well as far from it (e.g.,
>1000), which may prevent the algorithm from converging.

The proposed method is implemented in inlabru combining three Poisson models on different datasets. The refer-
ence to a Poisson model is merely artificial and used for computational purposes, it does not have any specific meaning.
Specifically, we leverage the internal log-likelihood used for Poisson models by INLA (and inlabru) to obtain the
approximate Hawkes process log-likelihood. This is the only reason why we chose to implement our Hawkes process
approximation using different Poisson models.

More formally, INLA has the special feature of allowing the user to work with Poisson counts models with exposures
equal to zero (which should be improper). A generic Poisson model for counts ci, i = 1, … ,n observed at locations xi, i =
1, … ,n with exposure E1, … ,En with log-intensity log 𝜆P(x) = f (x,𝜽), in inlabruhas log-likelihood given by:

P(𝜽) ∝ −
n∑

i=1
exp{f (xi,𝜽,𝜽

∗)} ∗ Ei +
n∑

i=1
f (xi,𝜽,𝜽

∗) ∗ ci. (26)
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T A B L E 2 Hawkes process log-likelihood components approximation.

Name Objective Approximation Surrogate log𝝀P

Number of
data points

Counts and
exposures

Part I Λ0() exp logΛ0() logΛ0() 1 ci = 0, ei = 1

Part II
∑n

h=1
∑Bh

i=1Λh(bi,h)
∑n

h=1
∑Bh

i=1 exp logΛh(bi,h) logΛh(bi,h)
∑

h Bh ci = 0, ei = 1

Part III
∑n

h=1 log 𝜆(xh)
∑n

h=1 exp log 𝜆(xh) log 𝜆(x) n ci = 1, ei = 0

Each Hawkes process log-likelihood component is approximated using one surrogate Poisson model with
log-likelihood given by Equation (26) and appropriate choice of counts and exposures data. Table 2 reports the approxi-
mation for each log-likelihood component with details on the surrogate Poisson model used to represent it. For example,
the first part (integrated background rate) is represented by a Poisson model with log-intensity logΛ0(), this will be
automatically linearized by inlabru . Given that, the integrated background rate is just a scalar and not a summation,
and therefore we only need one observation to represent it assuming counts equal 0 and exposures equal 1. Table 2 shows
that to represent a Hawkes process model having observed n events, we need 1 +

∑
h(Bh) + n events with Bh number of

bins in the approximation of the expected number of induced events by observation h.
Furthermore, Table 2 lists the components that has to be provided by the user, namely the surrogate Poisson

models log-intensities. More specifically, the user only needs to create the datasets with counts ci, exposures ei, and
the information on the events xi representing the different log-likelihood components; and, to provide the functions
logΛ0(), logΛh(bi,h), and, log 𝜆(x). The linearization is automatically performed by inlabru as well as the retrieving
of the parameters’ posterior distribution. Regarding the functions representing integrals, they do not need to be exact, a
function performing numerical integration is also fine.

We provide a step-by-step tutorial on how to implement the approximation method described above. The tutorial gives
more details on which functions has to be provided by the user, how to construct the binning strategy, how to set different
priors for the parameters, and how to pass everything to inlabru to retrieve the posterior distribution of the parameters.
The tutorial can be found at https://github.com/Serra314/Hawkes_process_tutorials/tree/main/how_to_build_Hawkes.

5 REAL DATA EXAMPLE

We provide a practical example of a temporal marked Hawkes process to illustrate the capabilities of our technique. We
implement the temporal version of the Epidemic-Type-Aftershock-Sequence model (ETAS, Ogata, 1988), the most popular
model to describe the evolution of seismicity in time, and we apply it to the 2016 Amatrice seismic sequence (Marzocchi
et al., 2017). Specifically, we have considered 1137 events with a magnitude greater or equal to 3 from August 24, 2016 to
August 15, 2017, with longitude in (42.45, 43.08) and latitude in (12.93, 13.54). The temporal evolution of the number of
events is illustrated in Figure 1. The data is taken from the Italian Seismological Instrumental and Parametric Database
(ISIDe Working Group, 2007) downloaded from https://doi.org/10.13127/ISIDE.

The example consists of mainly two parts. In the first one, we compare the results of our implementation with the
results obtained with thebayesianETAS R-package (Ross, 2021), which provides an automatic MCMC implementation
of the temporal ETAS model. The implementations are compared in terms of goodness-of-fit, expected number of events,
and expected number of induced events. This is because we use different parameterizations preventing us from directly
comparing the posterior of the parameters. We do this to show that our technique provides similar results to the MCMC
implementations but in less time. This is relevant because we are working with an approximation method, while the
MCMC implementation is exact, and the fact that both implementations provide similar results shows the accuracy of
our approximation method.

In the second part of this example, we provide a retrospective daily forecasting experiment in which we compare daily
forecasts of seismicity against observed seismicity in terms of number of events per day, for 120 days starting from August
24, 2016, just after the first large earthquake in the sequence. This is done using the inlabru implementation only given
the similarity of the results of the MCMC implementation. We use catalog-based forecasts (Savran et al., 2020) for which
the forecast for each day is composed of 10,000 simulated catalogs. Each simulated catalog is based on a different set of
parameters extracted from the posterior distribution.
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F I G U R E 1 Amatrice sequence comprising 1137 events from August 24, 2016 to August 15, 2017, with longitude in (42.45, 43.08) and
latitude in (12.93, 13.54). The first event in the catalogue is the magnitude 6.01 which started the sequence. Red stars indicate events with
magnitude greater than 5. Panel (a): Histogram reporting the number of events per week; Panel (b): Scatter plot of time versus magnitude; (c)
Cumulative number of events as function of the number of days from the first event in the sequence, for events with magnitude greater than
3 (solid black) and for events with magnitude greater than 5 (dashed red).

5.1 ETAS model

The ETAS model is the most used Hawkes process to model the evolution of seismicity over time and space (Ogata, 1988,
2011; Ogata & Zhuang, 2006). We are going to implement the first version of the model which is a temporal marked
Hawkes process model with the event’s magnitude as marking variable. The conditional intensity of the ETAS model is
given by:

𝜆E(t,m|t) =

(

𝜇 + K
∑

h∶th<t
exp{𝛼(mh −M0)}(t − th + c)−p

)

𝜋(m), (27)

where, M0 ∈ R is the minimum recorded magnitude, and 𝜋(m) is the magnitude distribution which is estimated indepen-
dently from the Hawkes process parameters and assumed to follow a form of Gutemberg-Richter (GR) law (Gutenberg
& Richter, 1956). The temporal evolution of the number of points is regulated by five parameters 𝜇,K, 𝛼, c,≥ 0 and
p ≥ 1. The parameters 𝜇,K, and 𝛼 are productivity parameters regulating: the number of background events (𝜇), the
number of induced events or aftershocks (K), and how the aftershock productivity scales with magnitude (𝛼, the
higher the magnitude the more events are generated). The parameters c and p are the parameters of the Omori’s law
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12 of 29 SERAFINI et al.

(Omori, 1894) and regulate the temporal decay of the aftershock activity. The quantity M0 is a cut-off magnitude such that
mh ≥ M0, ∀h.

The bayesianETAS package implements the ETAS model with a normalized time triggering function to integrate
to 1 over (0,∞). The conditional intensity is given by:

𝜆bE(t,m|t) =

(

𝜇 + K
∑

h∶th<t
exp{𝛼(mh −M0)}cp−1(p − 1)(t − th + c)−p

)

𝜋(m). (28)

With our technique, it is best to work with a different parametrization than the one used in the bayesianETAS
package. Specifically, we choose the following conditional intensity

𝜆bru(t,m|t) =

(

𝜇b + Kb
∑

h∶th<t
exp{𝛼b(mh −M0)}

(
t − th

cb
+ 1

)−pb
)

𝜋(m). (29)

The parameters of the inlabru implementation have the same constraints, and the same interpretation, as in the
bayesianETAS implementation. The two implementations are equivalent considering

Kb =
K(p − 1)

c
, cb = c, pb = p. (30)

However, we are not going to use the above constraint in the example. The only constraints that we impose are
𝜇,K, 𝛼, c ≥ 0, and p > 1.

5.2 Priors

Priors are an essential part of the Bayesian approach. The bayesianETAS package has fixed priors that cannot be
changed. Specifically, they consider,

𝜇 ∼ Gamma(0.1, 0.1)
K, 𝛼, c ∼ Unif(0, 10)

p ∼ Unif(1, 10). (31)

This set of priors induces a prior on the parameter Kb, using Equation (30), with very light tails, highlighting how
informative uniform priors may be (Zhu & Lu, 2004). We use the same set of priors except for Kb for which we choose
a log-normal distribution matching the 1% and 99% quantiles of the empirical distribution of Kb obtained simulating
1,000,000 independent samples of K, c, p from the priors in Equation (31). We chose a log-normal distribution with mean
and standard deviation of the logarithm equal to −1 and 2.03. Table 3 reports summary statistics of the bayesianETAS
prior for Kb and the log-normal prior we chose to replicate it. The full set of priors used to replicate the bayesianETAS
priors are

𝜇b ∼ Gamma(0.1, 0.1)
Kb ∼ LogN(−1, 2.03)

𝛼b, cb ∼ Unif(0, 10)
pb ∼ Unif(1, 10). (32)

We use this replicate set of priors to minimize the differences between the implementations which do not depend on
the methodology used to find the posterior distribution of the parameters. We refer to this case as inlabru replicate case.

We also consider a different set of priors that better reflects the scale of each parameter. For example, for the
inlabru implementation the parameters, 𝜇 and c are on a very different scale than K, 𝛼, and p. To reflect this piece of
information through the prior, we use gamma priors for all parameters with different parameters reflecting the different
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SERAFINI et al. 13 of 29

T A B L E 3 Prior distribution summary statistics of parameters Kb in the bayesianETAS and inlabru implementation.

Implementation Mean St. dev 0.01q 0.25q Median 0.75q 0.99q

bayesianETAS 11.854 3583.873 0.004 0.111 0.262 0.758 41.914

inlabru 2.887 22.482 0.003 0.094 0.368 1.447 41.367

Note: The distribution in the bayesianETAS case is obtained sampling independently 1,000,000 times from K, c ∼ Unif(0, 10), p ∼ Unif(1, 10), and setting
Kb = K(p − 1)∕c. The distribution in the inlabru case is a log-normal distribution with mean and standard deviation of the logarithm equal to −1 and 2.03 in
order to match the extreme quantiles of the bayesianETAS case.

T A B L E 4 Prior distribution summary statistics of ETAS parameters for the bayesianETAS implementation and the
inlabru gamma case which considers 𝜇, c ∼ Gamma(0.1, 1), K, 𝛼 ∼ Gamma(1, 0.5), and p − 1 ∼ Gamma(0.1, 0.5).

Name Mean St. dev 0.01q 0.25q Median 0.75q 0.99q Implementation

𝜇 1 3.162 0.000 0.000 0.006 0.353 15.884 bayesianETAS

𝜇 0.1 0.316 0.000 0.000 0.001 0.035 1.588 inlabru - Gamma

Kb 11.854 3583.873 0.004 0.111 0.262 0.758 41.914 bayesianETAS

Kb 2 2 0.020 0.575 1.386 2.773 9.210 inlabru - Gamma

𝛼 5 2.88 0.1 2.5 5 7.5 9.9 bayesianETAS

𝛼 2 2 0.020 0.575 1.386 2.773 9.210 inlabru - Gamma

c 5 2.888 0.1 2.5 5 7.5 9.9 bayesianETAS

c 0.1 0.316 0.000 0.000 0.001 0.035 1.588 inlabru - Gamma

p 5.5 2.598 1.09 3.25 5.5 7.75 9.91 bayesianETAS

p 1.2 0.632 1.000 1.000 1.001 1.071 4.177 inlabru - Gamma

scales. This information is usually available from previous studies of the same model. We use

𝜇b ∼ Gamma(0.1, 1)
Kb ∼ Gamma(1, 0.5)
𝛼b ∼ Gamma(1, 0.5)
cb ∼ Gamma(0.1, 1)

pb − 1 ∼ Gamma(0.1, 0.5). (33)

Table 4 reports a comparison between summary statistics of bayesianETAS priors and the gamma priors.
In the remainder of the article, we refer to the inlabru implementation considering the priors in Equation (32) as

inlabru replicate and to the inlabru implementation with the priors in Equation (33) as inlabru gamma. Appendix
A compares the prior and the posterior distributions for each model and shows the robustness ofinlabru ’s results under
change of priors. Furthermore, Appendix C provides a more complete prior sensitivity analysis. In there, we consider
all the parameters as having the same log-normal prior, with the logarithmic mean equal 0 and different values of the
logarithmic standard deviation.

5.3 Copula transformation

The INLA method is designed for Latent Gaussian models and, therefore, all the parameters should have a normal dis-
tribution. This is not the case for the ETAS parameters and the priors illustrated in the previous section. In order to
overcome this problem we are going to use a copula transformation. Using this method allows us to represent internally
the parameter as free-constraints and normally distributed. The constraints are implemented through the transformation
itself.
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14 of 29 SERAFINI et al.

More formally, we use a transformation method based on the probability integral transform. The probability integral
transform can be stated as follows:

Theorem 1. Given a continuous random variable X with cumulative distribution function (CDF) FX (⋅), then
the variable

Y = FX (X),

has a uniform distribution in (0,1).

The theorem implies also that given Y ∼ Unif(0, 1) then, X = F−1
X (Y ).

We apply this theorem by considering each parameter as having a standard normal distribution and then, transforming
it to have the target distribution. More formally, assume 𝜃 has a starting distribution with CDF F

𝜃
(⋅), and that we want to

transform it in 𝜂(𝜃) having a target CDF FY (⋅). Applying the transformation

𝜂(𝜃) = F−1
Y (F

𝜃
(𝜃)) , (34)

the quantity 𝜂(𝜃) is distributed according to FY .
This allows us to consider a set of internal free-constraint parameters 𝜃

𝜇
, 𝜃K , 𝜃𝛼, 𝜃c, 𝜃p, representing (respectively)

𝜇,K, 𝛼, c, p, with a standard normal prior distribution and then transforming them to have the desired prior distribution.
We can incorporate the constraint on the parameter values using appropriate prior distributions. For example, using any
distribution with positive support ensures that the transformed parameter is greater or equal to zero.

5.4 Goodness-of-fit

We compare the inlabru and the bayesianETAS implementation in terms of goodness-of-fit, this is due to the use
of different parametrizations. Indeed, different parametrizations and different priors make a direct comparison of the
posterior of the parameters elusive, because it is hard to determine if the differences in the posterior distributions come
from the different parameterizations, the different priors, or the different methodologies. With this section, we want to
convince the reader that our approximation provides results similar in terms of goodness-of-fit to MCMC implemen-
tations but in less time. This is relevant considering that MCMC is an exact method, with the ability to sample from
the true marginal posteriors of the model, while our method is based on a series of approximations. Showing that the
inlabru implementation provides similar results shows the goodness of the approximation.

We compare the goodness-of-fit of the models using the random time change theorem (Meyer, 1971). This is a standard
technique to measure the goodness-of-fit for Hawkes process models as described in Laub et al. (2021). Below we report
the random time change theorem as stated in Laub et al. (2021) (Theorem 9.1):

Theorem 2. Say  = {t1, … , tk} is a realization over time [0,T] from a point process with conditional
intensity 𝜆(t|). If 𝜆(t|) is positive over [0,T] and Λ(T) < ∞ almost surely, then the transformed points
{Λ(t1), … ,Λ(tk)} form a Poisson process with unit rate.

Where in our case,

Λ(ti|) =
∫

∞

M0
∫

ti

0
𝜆(t,m|)dtdm. (35)

In other words, if we calculate the sequence of values Λ(t1), … ,Λ(tn), for observed t1, … , tn, using the respective
expressions of Λ(ti) for the bayesianETAS and inlabru implementation, we have to obtain a sequence of points uni-
formly distributed over the interval [0,n], where n is the number of observed points. For the MCMC method, we consider
estimates based on 10,000 posterior samples with a burn-in of 5000 samples. The bayesianETAS package requires
around 9 min to generate a total of 15,000 posterior samples, while the inlabrumethod only requires around 3 min to
converge. Section 6 shows how these times scales increasing the number of observations, while Appendix B illustrates
the variation of the inlabru computational time for different binning strategies.
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F I G U R E 2 Application of the random time change theorem. Top row (a, b) Compares the inlabru replicate and gamma (solid blue)
implementations. Panel (a–c) Observed cumulative number of events as a function of time (black dots) with the prediction provided by the
model; Bottom row (c, d) Compares the bayesianETAS (solid green) and inlabru replicate (dotted red) implementations; Panel (a–c)
Cumulative number of events as a function of time. Panel (b, c) Cumulative number of events as a function of Λ(th), the black dashed line
represents the uniform case. The shaded region represents the 95% predictive interval for each quantity obtained by sampling 10,000 times
the posterior of the parameters.

Figure 2a–c compares the sequences ΛbE(t1), … ΛbE(tn), and Λbru(t1), … Λbru(tn) with observed cumulative counts
N(t1), … ,N(tn). Figure 2b–d shows the cumulative counts as a function of Λ(th) and should look like a straight line if
the values are uniformly distributed as expected by the theorem. For both plots, we report 95% posterior intervals for the
quantity of interest based on 10,000 samples from the posterior of the parameters.

There are small differences between the two inlabru implementations, which was expected from the similarity of
the posterior distributions provided by the model and reported in Figure A3. The differences in the results are greater if
we compare the bayesianETAS and the inlabru implementations. In fact, the inlabru implementation estimates
a slightly lower background rate and a greater capability of each event of generating aftershocks, which allows the pre-
diction to match the observations in the last part of the sequence. In fact, in Figure 2d the dashed line representing the
theoretical uniform distribution is outside the bayesianETAS boundaries while it is inside the inlabru ones. Apart
from these small differences, the three implementations provide consistent results.

The main difference between the bayesianETAS and inlabru implementations is the computational time. The
bayesianETAS R-package requires around 4, 6, 9 min to generate, respectively, 1000, 5000, 10,000 posterior samples
considering 5000 burn-in samples. Our inlabru implementations require around 3 min to converge for different
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binning strategy. The minimum convergence time is 2.93 min obtained, while the maximum is 3.7. Table 6 reports the
computational time and iterations needed for convergence for different binning strategy parameters.

5.5 Expected number of events and branching ratio

We also compare the inlabru and bayesianETAS implementations in terms of the expected number of events and
branching ratio. This is done because these two quantities are usually relevant in applications. Given a Hawkes process
model with conditional intensity 𝜆(t|t), the expected number of events in a time interval (T1,T2), 0 ≤ T1 < T2 < ∞ given
the history of the process is given by the integral of the conditional intensity

Λ(T1,T2) =
∫

T2

T1

𝜆(t|t)dt. (36)

The number of points has a Poisson distribution with rate Λ(T1,T2).
Figure 3 (right) shows the posterior distributions of Λ(T1,T2) for the inlabru and bayesianETAS implementa-

tions. We show only the inlabru replicate case given that the inlabru gamma case provides the same results. For
the two implementations, the posterior distribution of Λ(T1,T2) is estimated by calculating the analytical expression of
Λ(T1,T2) for the two approaches using 10,000 samples from the posterior distribution of the parameters. The approaches
provide coherent results between each other, although the mode of the posterior distribution of Λ(T1,T2) is closer to the
observed number of points (vertical dashed line) in the inlabru case.

Another important quantity in analyzing Hawkes process models is the branching ratio BR. The branching ratio is the
expected total number of events induced by another event. The branching ratio can be calculated as the integral of the
excitation (triggering) function for time differences going from 0 to ∞. In the ETAS case, we have an excitation function
that depends also on the magnitude, namely g ∶ (0,∞) × (M0,∞) ∶→ (0,∞) such that

g(t − th,mh) = gt(t − th,mh)𝜋(mh), (37)

where 𝜋(mh) is the magnitude distribution.
In this case, the branching ratio is given by

BR =
∫

∞

M0

(

∫

∞

0
gt(s,m)ds

)

𝜋(m)dm. (38)

Therefore, the branching ratio can be seen as the expected value under the magnitude distribution of the expected
number of events induced by another. Assuming to have a point in 0, then the number of points induced by that event
has a Poisson distribution with rate

∑∞
i=1BRi. As explained by Laub et al. (2021) in Section 3 the branching ratio should

be between 0 and 1 for the process to be stationary and for asymptotic results to be valid (Hawkes, 1971b). We did not set
any constraint to ensure this property in the present implementation.

To calculate the branching ratio for a given set of parameters, we calculate analytically the inner integral 10,000 times,
using samples from the magnitude distribution and we take the mean. This is repeated for 10,000 times, using as ETAS
parameters samples from the parameters’ posterior distribution. In this way, we obtain 10,000 samples from the poste-
rior distribution of the branching ratio which can be used to approximate the posterior distribution empirically. Figure 3
(left) compares the posterior distributions of the branching ratio for the inlabru and bayesianETAS implementa-
tions. Both posterior distributions only assign a positive probability to value between 0 and 1. The one obtained with
inlabruhas a slightly smaller posterior variance and a larger mode. This is due to the smaller background rate estimated
by the inlabru implementation which in turns imply a higher number of induced events.

5.6 Retrospective forecasting experiment

We perform a retrospective daily forecasting experiment using the same data used to fit the data on the Amatrice seismic
sequence. Specifically, for each forecasting period defined by (tj, tj+1), we simulate 10,000 synthetic catalogs assuming
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F I G U R E 3 Right Panel: Expected number of events Λ(T1,T2) posterior distribution comparison for the inlabru replicate
implementation (blue dashed) and the bayesianETAS implementation (red solid). The vertical dotted line represents the observed number
of points. Left Panel: Branching ratio BR posterior distribution comparison for the inlabru replicate implementation (blue dashed) and the
bayesianETAS implementation (red solid).

known all the events happened strictly before the forecasting period, namelytj . If, in the forecasting period (tj, tj+1) there
is an earthquake with magnitude greater than 5.5 with recorded time tm ∶ tj < tm < tj+1, then, we consider the forecast for
the period tj, tm and we start a new daily forecast from tm + dt, for dt > 0 (we use dt = 10−6 days). This is done to resemble
a true forecasting experiment, like the ones performed by the Collaboratory for the Study of Earthquake Predictability
(CSEP, Savran et al., 2020 and reference therein), in which the forecasts are updated in presence of large earthquakes.

The results of the retrospective experiment are shown in Figure 4. The shaded region represents the 95% forecasting
interval of the number of events for each period. The extremes of each interval are the 2.5% and the 97.5% quantiles of the
number of events of the synthetic catalogs composing the forecast for each day. Almost all observed numbers of events
are comprises in the forecasting interval, particularly, all the periods with more than 50 events are correctly predicted.
This is particularly relevant for applications on hazard/risk analyses in which the focus are on the periods just after large
earthquakes where damages occur.

6 SIMULATION EXPERIMENT

We performed a simulation example to compare the robustness of theinlabru andbayesianETAS approach if applied
to different catalogs coming from the same model, and to give an idea on how the computational time scales increasing
the amount of data. As data generating model, we use the inlabru replicate implementation presented in Section 5.2.
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(a)

(b)

F I G U R E 4 Retrospective forecasting experiment results. Black dots represent the observed number of events per forecasting period;
the red solid line represents the median of the number of events of the synthetic catalogs per forecasting period; the shaded region represents
the 95% forecasting intervals for the number of events of the synthetic catalogs per forecasting period. Panel (a) shows the number of events
in the natural scale. Panel (b) shows the logarithm of the number of events, periods with zero events have been omitted.

T A B L E 5 Comparison of computational times for the bayesianETAS and inlabru implementations in minutes.

N events bayesianETAS inlabru Time ratio

900 3.90 (min) 2.96 (min) 1.31

1500 9.75 (min) 1.56 (min) 6.21

2002 16.80 (min) 2.69 (min) 6.24

2500 30.73 (min) 2.75 (min) 11.15

3500 56.09 (min) 5.22 (min) 10.72

Note: Last column report the ratio between the number of minutes needed by bayesianETAS and inlabru .

We generate 10,000 synthetic catalogs for the period going from August 24, 2016 to August 15, 2017 (same period used for
the Amatrice sequence) using as parameters the posterior median. In simulating the catalogs, we assume as known the 3
events with the greatest magnitude in the Amatrice catalogue recorded, respectively, on the August 24, 2016, October 26,
2016, and October 30, 2016, with magnitudes 5.7, 5.6, and 6.2. This is done to have a high probability of having, at least, 800
events per catalog. From the set of synthetic catalogs we select five catalogs corresponding to 900, 1500, 2000, 2500, 3500
number of events. We use these catalogs to fit five different models with the inlabru and bayesianETAS implementa-
tions. For the inlabru implementation, we use the same priors and starting points as in the inlabru replicate case and
binning strategy parameters given in Appendix B. For the bayesianETAS implementation, we consider 5000 posterior
samples with 5000 burn-in samples.

Table 5 shows how the computational time scales increasing the number of events in the data for the two imple-
mentations. The advantages of the inlabru approach are clear, especially for catalogs with more than 2500 events for
which inlabru is 10 times faster than bayesianETAS . Figures 5 (bayesianETAS ) and 6 (inlabru) show the
posterior of the parameters for the different simulated catalogs. The differences between the posteriors obtained by each
approach on different catalogs are expected. For example, the case with 3500 (as well as 900) events can be considered
an extreme case and, thus, the posterior distribution would be different from more common catalogs. Indeed, the param-
eters 𝜇,K, 𝛼, regulating the number of events, are the ones with more differences in the posteriors for different catalogs,
while the parameters p and c regulating the temporal decay of the induced events are more similar. In this regard, the
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F I G U R E 5 ETAS parameters’ posterior distribution using the bayesianETAS R-package on 5 synthetic earthquake catalogs. The
color and the linetype represents the number of events in each synthetic catalog. The synthetic catalogs are simulated using as parameters
the median of the posterior distribution of the inlabru replicate implementation obtained on the Amatrice seismic sequence.

inlabru implementation is more stable than the bayesianETAS implementation providing posteriors distributions
more similar between each other. This is particularly true for parameters 𝜇, c, and p. In addition, the two implementations
provide coherent results between each other, for example, analyzing parameter 𝛼, for both approaches the parameter’s
posterior distribution moves to the right as we increase the amount of data, and the opposite happens for parameter K.

The coherence of the results for the two implementations considered illustrates the reliability of our approximation,
and, the gain in computational time shows the advantage of our approach. Furthermore, the gain in computational time
would be even greater if more complex models are considered. For example, we foresee that the computational gain will
increase considering a spatio-temporal model, or, alternatively, considering one of the parameters as temporally varying.
This has not to be underrated, in fact, in seismology, many researchers are discouraged to update their models (in an
online fashion) or using large catalogs (>100,000 events) by the price to pay in terms of computational time.
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F I G U R E 6 ETAS parameters’ posterior distribution using the inlabruR-package on three synthetic earthquake catalogs. The color
and the linetype represents the number of events in each synthetic catalog. The synthetic catalogs are simulated using as parameters the
median of the posterior distribution of the inlabru replicate implementation obtained on the Amatrice seismic sequence.

7 DISCUSSION AND CONCLUSIONS

In this article, we presented a technique to implement Bayesian Hawkes process models based on the INLA algorithm
and carried out with the R-package inlabru . The proposed technique is new and differs substantially from other
Hawkes process implementations. Specifically, we rely on a new Hawkes process log-likelihood approximation technique
which allows us to apply the INLA method to Hawkes process models. Our technique provides similar results, in terms
of goodness-of-fit, expected number of events, and branching ratio, as an MCMC technique (Ross, 2021) implemented
through the bayesianETAS package, but requiring less time. Regarding the time, the bayesianETAS approach
requires around double the time required by our technique for catalogs composed of circa 1000 events, and 10 times more
for catalogs with more than 2500 events. We believe that in more complex cases (e.g., spatio-temporal case, inclusion of
covariates, parameters with structured variations) the gain in computational time provided by the inlabru approach
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would be even larger. We have also shown that our technique provides reasonable results in a retrospective forecasting
experiment, correctly predicting the number of events per day for most of the considered days. Furthermore, our algorithm
is deterministic ensuring the same numerical results if the analysis is repeated on different machines with the same
specifics. Moreover, the user does not have to program explicitly the algorithm itself, they only have to provide the func-
tions to be approximated, and the approximation is performed automatically by the inlabruR-package. Also, we do not
rely on any declustering algorithm assigning the observations to the background rate or the triggered part of the intensity.

An important difference from other algorithms for Hawkes process models is that we offer a general extendible frame-
work to perform Bayesian analyses of Hawkes process parameters. Indeed, INLA was designed for models comprising
covariates and random effects, and to compare them. This allows us to bring the advantages of the Latent Gaussian model
world into the Hawkes process world. For example, we can consider the parameters as linear functions of available covari-
ates. Another extension consists of considering the parameters as structured random effects: a parameter assumed to be
a Gaussian Markov Random Field (GMRF) varying over space, or time, or both. For example, considering a parameter as
an SPDE effect (Lindgren et al., 2011) we can have spatially (or temporally) varying parameters where the absolute value
of the correlation between the parameter’s values at different locations (times) is a decreasing function of the distance
between locations (times). Given the correlation between the parameter’s values and the correlation between different
parameters, these models would be difficult to implement using an MCMC technique, which, in case, should be tailored
to the specific problem. On the other hand, INLA was designed specifically to efficiently handle large GMRF and corre-
lated parameters. Using our method, all the models undergo the same optimization routine making them homogeneous
under these aspects. When comparing two models optimized with different routines, it is hard to distinguish if the differ-
ences come from the different models or the different algorithms. Using our technique, researchers may compare models
incorporating different hypotheses being sure of no differences, at least, on the optimization part, and thus, any difference
in performance comes from the model formulation itself.

The limitations of our approach reside in the functional form of the triggering (or excitation) function and the binning
strategy. Specifically, we want the triggering function so that the quantities to be approximated are as close as possible to
linearity. In our experience, the unnormalized version works best. Also, care has to be taken on the numerical stability
of the provided functions which may be eased by linearly approximating them for values of the argument above/below a
certain threshold. The binning strategy to further decompose Part II of the log-likelihood is essential to reach convergence.
In our experience, a number of bins greater than 3 per observation is required. Also, the width of the bins is essential,
considering too large bins prevents the algorithm to converge as shown in Table 6. We suggest to regulates the width and
number of bins based on the problem at hand. For example, a triggering function decaying slowly with time would need
larger bins than a function with a faster decay. With the same rationale, the function decaying slower needs fewer bins to
be accurately approximated than one decaying faster.

Future developments will regard the inclusion of covariates and random effects in the model. We think that provid-
ing researchers with the freedom of focusing on the hypotheses incorporated in the model, and not on the optimization
routine, is essential, especially in applied contexts. To facilitate the use of our technique, we are working on a R-package
to automatically fit a Hawkes process model, retrieve information on the parameters’ posterior distribution, and pro-
duce forecasts. We are planning to start with a R-package focused on the ETAS model and extend it to include different
Hawkes process models. Indeed, we have already provided these functions in a tutorial1. Specifically, we provided the
user with one-line functions to fit the ETAS model used in the real data example on user-specified datasets, retrieve the
posterior distributions of the parameters and the number of points, and produce forecasts for a user-specified number of
periods and period’s length. We have also made publicly available another tutorial2 illustrating in detail how to build the
functions used in the first tutorial. The second tutorial explains which functions have to be provided by the user, how
to construct the binning strategy, and how to make them interact with inlabru and provides details on the possible
difficulties that may be encountered in each step. This can be used as a template to implement Hawkes process models
different from the ETAS model.

To conclude, we have shown that the inlabru approach is a valuable alternative to MCMC techniques for Hawkes
process models, it provides comparable results in terms of quality but in a fraction of the time needed by MCMC. This is
particularly relevant in applied contexts, such as seismology, where researchers are discouraged to use Hawkes process
models on large datasets (>100,000 observations) by long computational times. On the same line, models used to pro-
duce daily forecasts are not updated daily, for the same reasons. The inlabru approach softens this burden and allows

1The tutorial is available at https://github.com/Serra314/Hawkes_process_tutorials/tree/main/how_to_use_Hawkes
2The tutorial is available at https://github.com/Serra314/Hawkes_process_tutorials/tree/main/how_to_build_Hawkes
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T A B L E 6 Number of iterations needed by inlabru to converge (n iter) considering 100 maximum possible iterations, computational
time needed to reach convergence in minutes, and a true/false column reporting if the model converged or not, for different values of
parameters of the binning strategy 𝛿,Δ, and nmax.

𝜹 nmax 𝚫 n iter time (min) Converged

2 3 0.2 63 2.93 True

2 10 0.2 63 2.98 True

2 10 0.1 63 2.99 True

2 3 0.1 63 3.03 True

2 10 0.5 63 3.03 True

5 10 0.1 65 3.06 True

2 3 0.5 63 3.06 True

5 10 0.5 65 3.07 True

3 10 0.1 65 3.08 True

1 10 0.1 63 3.15 True

1 10 0.2 63 3.17 True

1 10 0.5 63 3.19 True

1 3 0.5 63 3.23 True

5 3 0.5 65 3.24 True

1 3 0.2 63 3.26 True

3 3 0.1 64 3.30 True

3 10 0.2 65 3.36 True

5 10 0.2 65 3.37 True

3 3 0.2 65 3.40 True

3 10 0.5 65 3.40 True

1 3 0.1 63 3.41 True

3 3 0.5 64 3.47 True

5 3 0.2 71 3.70 True

10 3 0.2 100 5.41 False

10 10 0.2 100 5.47 False

10 3 0.5 100 5.60 False

5 3 0.1 100 5.72 False

7 10 0.2 100 5.87 False

10 10 0.5 100 5.88 False

10 10 0.1 100 5.94 False

7 3 0.2 100 6.00 False

7 10 0.1 100 6.01 False

10 3 0.1 100 6.20 False

7 3 0.1 100 6.25 False

7 10 0.5 100 6.26 False

7 3 0.5 100 6.35 False
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researchers to fit models on larger datasets in less time. Also, our approach can be extended to consider more complex
models which would have needed an ad-hoc implementation if an MCMC technique had to be used. We believe that the
inlabru approach could make Hawkes models more accessible for a greater number of users, which would have the free-
dom to make inference on models incorporating different hypotheses without the burden of adapting the methodology.
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APPENDIX A. PARAMETERS POSTERIOR DISTRIBUTION

Here, we show the marginal posterior distribution of the ETAS parameters calibrated on the Amatrice sequence
comprising 1137 events from August 24, 2016 to August 15, 2017 with latitude in (42.456, 43.084), and longitude in
(12.936, 13.523). Below are reported the posterior distribution of the ETAS parameters for the implementations considered
in the article. Figure A1 shows the posterior distributions obtained using the MCMC implementation provided by
the R-package bayesianETAS considering 10,000 posterior samples and 5000 burn-in samples. Figure A2 shoes the
posterior distribution of the ETAS parameters for the inlabru replicate case, while Figure A3 compares the distribu-
tion of the inlabru replicate and gamma implementations. For the latter, we chose to use a logarithmic scale for the
comparison to highlight the differences in the prior.
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F I G U R E A1 Posterior and prior distributions of ETAS parameter using the bayesianETAS package considering 1000 posterior
samples and 5000 burn-in samples. The results are based on the Amatrice seismic sequence.

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2798 by T

est, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



26 of 29 SERAFINI et al.
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F I G U R E A2 Posterior and prior distributions of ETAS parameter for inlabru replicate case. The results are based on the Amatrice
seismic sequence.
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F I G U R E A3 Posterior and prior distributions of ETAS parameter for the two inlabru implementations considered, namely gamma
and replicate. The value of the density is on a logarithmic (base 10) scale to highlight the differences in the prior.

APPENDIX B. SENSITIVITY TO BINNING STRATEGY

In our three factors decomposition of the point process log-likelihood, to approximate the second part (the expected
number of triggered events Section 4.2), we split the time domain into bins and we approximate the integral in each bin
separately. In this article, we use a different set of bins for each observed point. Specifically, for each arrival time th, the
bins are defined by the sequence:

th, th + Δ, th + Δ(1 + 𝛿), th + Δ(1 + 𝛿)2, … ., th + Δ(1 + 𝛿)nh
,T2,

where nh is such that th + Δ(1 + 𝛿)nh
< T2 or nh < nmax. This binning strategy is defined by three parameters:Δ regulating

the length of the first bin, 𝛿 regulating the increase in length of each subsequent bin, and nmax which regulates the
maximum number of bins per observed points (nmax + 2).
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In this section, we take the inlabru replicate implementation and we try different parameters of the binning strat-
egy. Specifically, we consider 𝛿 = 1, 2, 3, 4, 5, 7, Δ = 0.1, 0.2, 0.5 and nmax = 3, 10. The binning strategy affects mostly the
ability to converge and the computational time required to reach convergence. Table 6 reports the number of iterations
needed for convergence (n iter), the computational time (in minutes), and the convergence state for each combination of
binning strategy parameters. We set a maximum number of iterations equal to 100 so that if the number of iterations for
convergence is equal to 100 it means that the algorithm has not converged. We checked that the models are not able to
converge looking at the posterior modes for each iteration of the algorithm, more detail on how to retrieve these quan-
tities are reported in the tutorial on how to implement Hawkes process models with inlabru . The fact that different
binning strategies converge in a similar number of iterations highlights the robustness of our approach. The time needed
for each iteration changes with different binning strategies.

Examining Table 6, models with 𝛿 = 7, 10 tend to not converge. This is due to the fact that these binning strategies
induce too wide bins (especially close to the observations, where we need a finer partition) which in turn provide an
approximation that is not accurate enough. Instead, strategies with 𝛿 = 2 behave well and are the fastest to converge. In
this article, we use a binning strategy defined by 𝛿 = 2,Δ = 0.1 and nmax = 3 because it is the fastest to reach convergence.

The binning strategy only affects the distribution of the parameters K, c, and p: the only parameters of the time trig-
gering function, and therefore, we compare the posterior distributions of these parameters only. We show the posteriors
distributions for the case 𝛿 = 2 which is the one with the lowest computational time. Figure B1 shows that there are small
differences between the models. Only the implementation withΔ = 0.1 and nmax = 3 has lighter tails, this is due to having
too small/not enough bins.
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F I G U R E B1 Posterior distribution of ETAS parameters for the inlabru replicate implementation for different binning strategies. The
binning strategies have the same parameter 𝛿 = 2, while the others are varying Δ = 0.1, 0.2, 0.5 (color), and nmax = 3, 10 (line type).
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APPENDIX C. SENSITIVITY TO PRIOR CHOICE

In this section, we explore the sensitivity of our methodology to change of priors mean and standard deviation. For this
task, we chose to use the same prior for all the parameters. We use a Log Gaussian prior with logarithm mean equal to 0
and varying the logarithm standard deviation 𝜎log = 1, 1.5, 2, 2.5. Table C1 reports summary statistics of the Log Gaussian
distribution for the values of 𝜎log considered in this analysis.

Figure C1 shows that the posterior distributions are robust under the considered changes in prior. Specifically, they
appear to converge for increasing values of the prior variance which is what we expect to happen.

T A B L E C1 Table reporting summary statistics of Log Gaussian distribution with logarithm mean equal to 0 and logarithm standard
deviation 𝜎log = 1, 1.5, 2, 2.5.

𝝈log Mean SD q0.025 q0.5 q0.975

1.0 1.625 2.197 0.141 1 7.099

1.5 3.137 8.642 0.053 1 18.915

2.0 6.907 43.587 0.019 1 50.397

2.5 28.476 144.870 0.007 1 134.278
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F I G U R E C1 Posterior distribution of ETAS parameters changing the prior mean and standard deviation regulated by the parameter
𝜎log, the larger the parameter the higher the prior mean and standard deviation. Specifically, we considered 𝜇,K, 𝛼, c, p − 1 ∼ LogN(0, 𝜎log).
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