Replication assessment ForeGatherer Model v1.0:

Jan-Olaf Reschke^{1,2,3}, Christine Hertler^{1,2}, Susanne Krüger^{1,2}, Mika Puspaningrum⁴

¹ROCEEH Research Center, Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany

²ROCEEH Research, Heidelberg Academy of Sciences and Humanities, Heidelberg, Germany

³Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt, Germany

⁴Bandung Institute of Technology, Faculty of Earth Sciences and Technology, Bandung, Indonesia

The ForeGatherer ABM contains several sources of stochasticity, e.g. resource distribution, the movement of the agents during foraging trips and the movement of the group during residential moves. Therefore, consecutive model runs will not yield identical results. In order to produce statistically robust values for the output variables a certain number of model runs is required. Because the impact of the factors varies with the output selected, several output variables need to be monitored.

We performed a replication assessment to identify the number of runs required (Hoad et al. 2010, Lorig 2018). We consider the values of each output variable as normally distributed and calculate the cumulative standard deviation from the cumulative statistical mean. We choose a 95 % confidence interval for the output variables displayed in the model.

Experimental setup:

For our factors the chosen values correspond to average values of the expected range of each factor.

	Factor	In-model name	Factor level
Agent	Number of foragers	number-of-foragers	30
Agent	Hours per day	hours-per-day	12
Agent	Energy demand per day	energy-demand-per-day	2500
Agent	Maximum load	maximum-load	1500
Agent	Ability to Storage?	storage?	off
Environment	Scenario	scenario	random-map
Environment	Net-primary productivity	net-primary-productivity	1500
Environment	NPP-Multiplicator	npp-multiplicator	15
Environment	Length of dry season	length-dry-season	6
Environment	Productivity reduction in dry season	productivity-reduction-dry-season	50%
Environment	Occurrence of seasonal resource	map-seasonal-resource	70%
Environment	Occurrence of aseasonal resource	map-aseasonal-resource	30%
Environment	Seasonal resource value	seasonal-resource-value	120 kcal/100g
Environment	Aseasonal resource value	aseasonal-resource-value	100 kcal/100g
Environment	Run duration	run-duration	1 Year

Tab. 1: Factor specifications applied in the replication assessment

Output responses:

We monitor a wide array of responses describing the movement and the foraging success of the group.

Residential Mobility:				
Name	In-Model variable	Description		
Number of residential	number-res-moves-year	Every change of the base location per year		
moves per year		is counted as a residential move.		
Average distance per	distance-res-move-year	The distance of every residential move is		
residential move		calculated cumulatively and divided by the		
		number of residential moves.		
Total distance covered	covered-distance-year	The average distance per residential move		
through residential		is multiplied by the number of residential		
mobility per year		moves per year.		
Total area covered per year	covered-area-year	Area covered by the group over the whole		
		year. In the model every cell that was		
		visited is counted, independent if the cell		
		was visited during a residential or logistical		
		movement.		
Length of occupation of a	longest-base-year	Measured in days.		
winter				
(0) Tallity season) site				
One way distance	Average distance moved during per			
One-way distance	aisiance-iog-moves-year	logistical movement, determined by		
		calculating the mean distance of all		
		logistical movements		
Forgaing success		iogistical movements.		
A vorage vield	manage wield win	Average viold non foreging this and non		
Average yield	average-yield-trip	Average yield per foraging trip and per		
Diat composition	average-yield-nour	Bereantage the two resources contribute to		
Diet composition	percentage-seasonal resource	the energy overall consumed during the		
	percentage seasonal resource	veer or during the dry period		
	percentage aseasonal resource dry	year or during the dry period		
Energy lost from storage	daily storage decay	Energy lost per day from the storage due to		
Energy lost from storage	uuny-siorage-aecay	the decay in energy-units/day		
		the accay in chergy-ullits/uay		

Tab. 2: Model Responses

Results and discussion:

For most responses the desired precision of 0.05 is reached after c. 5 runs. For the shortest duration a residential camp was established ("shortest base") the desired precision is reached after 23 runs.

Fig. 1: Precision for a selection of the tested responses; the confidence interval with the desired precision of 0.05 is displayed as a red line.

With respect to all the tested responses of the ForeGatherer ABM, we recommend performing 25 repetitions, which is rather low for simulation-based models.