
28-03-2022

D4.2 – Report on algorithms for exascale
robustness (fault tolerance and large-scale
communications) in QMC flagship codes

Version 1.0

GA no 952165

Dissemination Level

⊠ PU: Public
□ PP: Restricted to other programme participants (including the Commission)
□ RE: Restricted to a group specified by the consortium (including the Commission)
□ CO: Confidential, only for members of the consortium (including the Commission)

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

Document Information

Project Title Targeting Real Chemical accuracy at the EXascale

Project Acronym TREX

Grant Agreement No 952165

Instrument Call: H2020-INFRAEDI-2019-1

Topic INFRAEDI-05-2020 Centres of Excellence in EXascale computing

Start Date of Project 01-10-2020

Duration of Project 36 Months

Project Website https://trex-coe.eu/

Deliverable Number D4.2

Deliverable title D4.2 – Report on algorithms for exascale robustness (fault tolerance
and large-scale communications) in QMC flagship codes, as seen in GA

Due Date M18 – 31-03-2022 (from GA)(from GA)

Actual Submission Date 28-03-2022

Work Package WP4 – Workflows for HTC and HPDA solutions, algorithms, and toolk-
its

Lead Author (Org) Ali Alavi (MPI)

Contributing Author(s) (Org) Anthony Scemama (CNRS), Vijay Gopal Chilkuri (CNRS), Abdallah
Ammar (CNRS)

Reviewers (Org) Ivan Stich (IPSAS), Pablo de Oliveira Castro (UVSQ)

Version 1.0

Dissemination level PU

Nature Report

Draft / final Final

No. of pages including cover vii (front matter), 17 (main text), II (back matter)

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

i of vii

https://trex-coe.eu/

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

Disclaimer

TREX: Targeting Real Chemical Accuracy at the Exascale project has received
funding from the European Union Horizon 2020 research and innovation program
under Grant Agreement No. 952165.

The content of this document does not represent the opinion of the European Union, and the European
Union is not responsible for any use that might be made of such content.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

ii of vii

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

Versioning

Version Date Authors Notes

1.0 28-03-2022 Ali Alavi (MPI) First Official Release

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

iii of vii

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

Abbreviations

API Application Programming Interface

CPU Central processing unit

GPU Graphical processing unit

CI Configuration Interaction

DMC Diffusion Monte Carlo

HPC High Performance Computing

MO Molecular Orbital

MPI Message passing interface

PDMC Pure Diffusion Monte Carlo

QMC Quantum Monte Carlo

TCP Transmission Control Protocol

TC Transcorrelated

VMC Variational Monte Carlo

WP Work Package

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

iv of vii

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

Table of Contents

Document Information . i

Disclaimer . ii

Versioning. iii

Abbreviations . iv

Table of Contents . v

List of Figures . vi

List of Tables . vii

1 Introduction . 1

2 Fault-tolerance . 2
Implementation in existing codes . 2
Exascale applications . 4

3 Asynchronous Diffusion Monte Carlo algorithm . 5
Real space QMC .. 5
Determinant-space QMC .. 10

Bosonic wavefunctions . 10
Fermionic wavefunctions . 11

4 Low-memory algorithm for wavefunction optimization . 13

5 Summary . 17

References . I

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

v of vii

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

List of Figures

1 Design of the QMC=Chem application. A data server collects the results computed
by the compute processes (qmc). One forwarder process per node aggregates the data
to reduce the communications. 2

2 Distributed Quantum Monte Carlo (QMC) simulation among the LAL cloud, the IPHC
cloud and the CALMIP supercomputer. The plot represents the number of computed
blocks, proportional to the number of Monte Carlo samples, as a function of time.
A network failure was simulated by stopping the tunnelling process between CALMIP
and the internet. 3

3 Design of the sparse matrix-vector multiplication in the Davidson algorithm imple-
mented in Quantum Package. A master OpenMP simulation runs on a single node.
Multiple slave MPI/OpenMP simulations can be connected using ZeroMQ to the
master simulation to increase the computational power. 4

4 Communication pattern of the asynchronous DMC algorithm. A compute node re-
quests walker coordinates (dashed line), the server fulfills the request (dashed line).
Then, when branching occurs the compute node sends coordinates to the server (plain
line). The request of the next batch of coordinates is made in advance, and the walker
coordinates are transferred while the compute node is computing the trajectories of
the previous batch.. 9

5 Statistical errors of
〈

DI e
−J

Ψ
EL

〉
and

〈
DIe

−J

Ψ
(EL − E0)

〉
in a simulation of the water

molecule with 400 000 Slater determinants. 16

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

vi of vii

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

List of Tables

1 Convergence of the energy (a.u.) for the water molecule and the fluorine dimer. 16

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

vii of vii

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

1 Introduction

We expect exascale machines to enable QMC applications on larger systems than those that can
be treated today. This implies that systems will have larger numbers of electrons, and/or larger
Configuration Interaction (CI) expansions. In this Work Package (WP), we investigate ways to
overcome new difficulties that will arise when running exascale simulations.

Exascale machines will often be used to run simulations that can’t run on smaller systems. So the
computed data will be particularly valuable to users, and it should not be lost by accident during the
simulation. In addition, an exascale machine will be such a complex piece of hardware and software
that it is not reasonable to neglect system failures in the design of dedicated software. The first
section of this document discusses different strategies used to make simulations robust to system
failures.

QMC methods can be trivially parallelized by running independent random walks to reduce the
statistical noise, and with the present supercomputers, the statistical error bars can already be reduced
below the chemical accuracy by taking advantage of embarrassing parallelism. However, before
including the statistical samples in the computation of the averages, the trajectories need to have
reached the ergodic regime in which the sampled density has converged to the target stationary density.
The time required to reach the ergodic regime is proportional to the length of each independent
trajectory, so using more trajectories in parallel is not a solution to this issue. One should instead
aim at reducing the number of walkers per node as much as possible when the size of the system
increases, and possibly to use single-node parallelism within a single trajectory.

Exascale systems will be hybrid architectures, and exascale simulations will need to take advantage
both of the Central processing units (CPUs) and Graphical processing units (GPUs). The main
difficulty in using efficiently such machines is data transfer between the main memory to the memory
of the GPUs. If some transfer is required at each Monte Carlo step, the time required for data
transfer is likely to be comparable to the time required for the computation of the step, leading
to poor performance. Two solutions are envisioned in the high-performance implementation of the
QMCkl library (in WP 3). The first solution is the use of asynchronous task-based parallelism using
the StarPU[1] library, handling dynamically the scheduling of tasks on CPUs and GPUs. This solution
will be adopted when the system under study is so large that very few trajectories can be run on
each compute node. The second solution, which will be adopted for most common simulations,
is to consider the GPUs as autonomous computing entities that will be able to run a complete
QMC simulation without any communication with the host’s memory. In this scheme, a distributed
simulation will be composed of pure CPU workers, and pure GPU workers. As these computing
units are different hardware, the trajectories will not evolve at the same speed, and we will need to
introduce the possibility to handle de-synchronized trajectories.

Another problem that will arise is the saturation of the memory. Indeed, when the number of
parameters in the wavefunction grows (number of Molecular Orbitals (MOs), number of CI coeffi-
cients), the memory required to sample the derivatives required for wavefunction optimization will
grow accordingly. In addition, the memory on GPU accelerators is relatively small compared to the
memory that is available on a CPU host. If one aims at avoiding transfer from the host memory
to the accelerator, one needs to design algorithms with reduced memory requirements. In the last
section, we present such an algorithm.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

1 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

2 Fault-tolerance

Implementation in existing codes

Most of the algorithms in QMC simulations can be expressed as completely independent Monte
Carlo simulations, which can take advantage of embarrassing parallelism. If all the simulations are
different realizations of the same process, the stochastic averages are computed as averages over
all the independent simulations. Hence, if some arbitrary processes crash during the simulation the
number of Monte Carlo samples will be reduced but the statistical averages will not be biased. In
theory, such algorithms are expected to be very robust to technical failures, making them excellent
candidates for extreme scale simulations.

The communication standard for High Performance Computing (HPC) is the Message passing in-
terface (MPI) Application Programming Interface (API) which was initially designed for more tightly
coupled algorithms. As a consequence, some choices in the design of MPI justified by performance
considerations prevent the natural exploitation of fault tolerance which is possible with Monte Carlo al-
gorithms. For example, if a single MPI process is killed the whole simulation dies. In the second version
of MPI, some primitives have been added to enable client-server communications (MPI Open port,
MPI Connect, . . .), allowing to couple multiple independent MPI jobs to communicate together.
However, this feature has not been used extensively and offers very limited possibilities compared to
what can be achieved with the conventional Transmission Control Protocol (TCP) socket API.

Figure 1: Design of the QMC=Chem application. A data server collects the results computed by
the compute processes (qmc). One forwarder process per node aggregates the data to reduce the
communications.

In 2011, when the QMC=Chem code was being designed,[2] a client/server model was chosen
(Figure 1) using usual TCP socket communications to enable fault tolerance and to take advantage
of grid computing facilities. Although the latency of TCP communications is more than an order of
magnitude higher than with MPI, this has not proven to be a severe problem since all the critical
communications can be made non-blocking. A few years later, the TCP sockets were replaced by
using the more advanced ZeroMQ library.[3] The use of ZeroMQ is quite unusual in the domain

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

2 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

of HPC, but in other communities it is a widely adopted standard for building scalable distributed
applications.

Figure 2: Distributed QMC simulation among the LAL cloud, the IPHC cloud and the CALMIP
supercomputer. The plot represents the number of computed blocks, proportional to the number
of Monte Carlo samples, as a function of time. A network failure was simulated by stopping the
tunnelling process between CALMIP and the internet.

In 2015, a demonstrator QMC calculation was distributed between a supercomputing center and
two cloud providers in three different cities in France.[4] We have shown that the calculation ran
successfully, that the amount of resources could be adjusted dynamically on demand, and that the
simulation could also survive failures, albeit at the expense of the loss of some Monte Carlo samples
(Figure 2).

A few years later, we have experimented the same technique in the Quantum Package code.[5]
Quantum Package is not a QMC code, but a code used for deterministic wave function calculations.
The two hot spots are i) the application of second-order perturbation theory to select relevant Slater
determinants and ii) the diagonalization of the Hamiltonian with Davidson’s algorithm.[6]

For the perturbative selection, we have designed a stochastic algorithm to enable massive paral-
lelism and fault tolerance,[7] and used a client/server approach similar to the one used in QMC=Chem.
For the Davidson diagonalization, the memory is replicated on the compute nodes and the large sparse
matrix-vector product at the heart of the Davidson method is split into tasks. The data server holds
the list of tasks, provides them to the compute processes and collects the pieces of the resulting
vector computed by the compute processes. In this context, the amount of data to be exchanged is

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

3 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

Figure 3: Design of the sparse matrix-vector multiplication in the Davidson algorithm imple-
mented in Quantum Package. A master OpenMP simulation runs on a single node. Multiple slave
MPI/OpenMP simulations can be connected using ZeroMQ to the master simulation to increase the
computational power.

large, and a client is an autonomous multi-node simulation interconnected with MPI for fast broad-
casting of the replicated data (Figure 3). Fault-tolerance is not yet implemented for the Davidson
diagonalization, but we are working on a mechanism to re-queue the tasks that have not returned a
result after some time.

Recently, we have performed a calculation with Quantum Package distributed on two supercom-
puters, one in Rouen (north of France) and one in Toulouse (South of France).[8] The results have
demonstrated that our 3-layer OpenMP/MPI/ZeroMQ implementation of task-based parallelism en-
ables the use of Quantum Package on distributed cloud infrastructures, and completely solves the
problem of the latency of data transfer.

Exascale applications

Our recommendation for designing exascale applications is to use asynchronous task-based parallelism.
At the level of the compute node, task-based parallelism provides automatic load balancing between
the CPU cores and GPUs, which run at different speeds. Moreover, it addresses the problem of the
expensive data transfers from the memory of the host to the memory of the GPU, which can be
identified as a high latency issue. There exists many possibilities to implement task-based parallelism
within a compute node. OpenMP is a good choice as it is a widely adopted standard, and version
5 allows to offload asynchronously computations to accelerators with the nowait clause. Another
interesting candidate is the StarPU library[1] as it proposes smart schedulers that can take advantage
of multiple CPUs and GPUs, and can run multiple kernels on a single GPU. Moreover, StarPU can
distribute tasks among compute nodes with MPI, making it a single framework for the expression
of the parallelism in applications. For applications such as Monte Carlo simulations where fault

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

4 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

tolerance can be implemented, we don’t recommend to use MPI for the distribution of tasks on
the whole supercomputer, since a single process failure will crash the whole simulation. Instead,
we propose to design the application such that it can aggregate multiple smaller MPI simulations
using an open-source high-performance asynchronous message passing library which implements fault
tolerance. If a low-latency network is the target hardware, we recommend using GPI/GASPI[9] to
interconnect the MPI simulations. If the application is also meant to be run on cloud infrastructures,
we recommend to interconnect the MPI simulations with ZeroMQ.

3 Asynchronous Diffusion Monte Carlo algorithm

Real space QMC

In real-space quantum Monte Carlo algorithms, trajectories are built by moving random walkers
with a drifted diffusion random process. In the family of Diffusion Monte Carlo (DMC) algorithms, a
birth/death process is introduced. In this context, we don’t consider any more independent trajectories
but we consider instead a population of walkers with a fluctuating number of walkers. The DMC
algorithm is usually expressed as:

E = 0.

for kStep in range(nSteps):

newCoordinates = []

for iWalker in range(nWalkers):

x_old = coordinates[iWalker]

x = DiffusionDrift(x_old)

eWalk[iWalker] = Energy(x)

E += eWalk[iWalker]

w = exp(-timeStep * (Energy(x) - E_ref))

if w < 1.: # Random death of the walker

if random.uniform(0.,1.) < w:

newCoordinates.append(x)

else: # Random duplication

newCoordinates.append(x)

if random.uniform(0.,1.) < w-1.:

newCoordinates.append(x)

end for iWalker

coordinates = newCoordinates

E_ref = f(eWalk)

end for kStep

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

5 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

return E / nSteps

In this algorithm, the loop over the Monte Carlo steps is the outer loop and the loop over the walkers
is the inner loop. Hence, all the walkers of the population are synchronized in time. This choice is
motivated by the fact that the variable E ref is adjusted dynamically so that the number of walkers
in the population stays roughly constant. As the number of walkers is variable, distributing the
population on the cluster leads to load balancing problems since the number of walkers per compute
node varies as the algorithm evolves. Moreover, it implies a synchronization barrier to ensure that all
the walkers are synchronized and that E ref is computed and broadcast. There has been multiple
works in the literature to reduce the impact of the load balancing problem in DMC.[10, 11, 12]

An alternative algorithm is Pure Diffusion Monte Carlo (PDMC), where the branching step is
replaced by carrying a weight:

E = 0.

sumWeight = 0.

for kStep in range(nSteps):

w[iWalker] = 1.

for iWalker in range(nWalkers):

x_old = coordinates[iWalker]

x = DiffusionDrift(x_old)

coordinates[iWalker] = x

E += w[iWalker] * Energy(x)

sumWeight += w[iWalker]

w[iWalker] *= exp(-timeStep * (Energy(x) - E_ref))

end for iWalker

end for kStep

return E / sumWeight

This algorithm is unstable because at some point the multiplicative weight will asymptotically go to
either infinity or to zero. For this reason, the DMC algorithm with a branching process is the standard
implementation in the QMC codes. With the PDMC scheme, E ref can be kept fixed and the two
loops can be interchanged, leading to a de-synchronization of the walkers:

E = 0.

sumWeight = 0.

for iWalker in range(nWalkers):

w = 1.

x = coordinates[iWalker]

for kStep in range(nSteps):

x = DiffusionDrift(x)

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

6 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

E += w * Energy(x)

sumWeight += w

w *= exp(-timeStep * (Energy(x) - E_ref))

end for kStep

coordinates[iWalker] = x

end for iWalker

return E / sumWeight

Therefore, PDMC can be run with a single walker per compute node, and more statistics can
be obtained by running independent PDMC simulations, making this algorithm well suited to the
fault-tolerant model presented in the previous section. In addition, as the walkers don’t need to be
synchronized, some trajectories can run independently on CPUs and others ones on GPUs. But this
algorithm still needs to be stabilized to be usable.

We propose to add a branching step to PDMC to make it as efficient in practice as DMC:

E = 0.

sumWeight = 0.

while (continueRun):

newCoordinates = []

for iWalker in range(nWalkers):

w = 1.

x = coordinates[iWalker]

for kStep in range(nSteps): # <- Maximum number of steps

x = DiffusionDrift(x)

E += w * Energy(x)

sumWeight += w

w *= exp(-timeStep * (Energy(x) - E_ref))

if w < 0.5: # <- Death threshold

if random.uniform(0.,1.) < w:

newCoordinates.append(x)

break

if w > 2.0: # <- Birth threshold

newCoordinates.append(x)

w -= 1.

end for kStep

if w > 1.:

newCoordinates.append(x)

w -= 1.

if random.uniform(0.,1.) < w: # <- Handle remaining part of the weight

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

7 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

newCoordinates.append(x)

end for iWalker

coordinates = newCoordinates

end while

return E / sumWeight

When the weight of a walker becomes greater than 2, we create a new walker with a weight of 1, and
we remove 1 to the current weight. When the weight is lower than 0.5, we draw a random number to
decide whether to kill the walker or not. If the walker is not killed, its weight goes back to 1. To avoid
having a too large discrepancy between the number of steps performed by all the walkers, we impose
a maximum length of the trajectory, and a branching step is realized at the end of the trajectory to
discretize the weight. This algorithms converges to the DMC energy, and one can remark that all the
walkers are not any more at the the same point in time because of the branching steps. Hence, it is
possible to combine different lists of walkers coming from different compute nodes running at different
speeds without introducing any bias. If the branching events occur rarely enough, the complete list
of walker coordinates can be stored on a distant server, and transferred asynchronously leading to
a perfect load balancing with only a few walkers per node. The rate of branching can be tuned by
adjusting the birth and death thresholds (here 0.5 and 2.0), and also by increasing the quality of
the wave function: better wave functions branch less because the weight fluctuates less. The final
asynchronous DMC algorithm is then:

E = 0.

sumWeight = 0.

promise = asyncFetchWalkers(server, nWalkers) # -> Non-blocking coordinates request

coordinates = asyncWait(promise) # -> Wait for coordinates to arrive

while (continueRun):

promise = asyncFetchSomeWalkers(server, nWalkers) # -> Request next coordinates

for iWalker in range(nWalkers):

w = 1.

x = coordinates[iWalker]

for kStep in range(nSteps):

x = DiffusionDrift(x)

sumWeight += w

E += w * Energy(x)

w *= exp(-timeStep * (Energy(x) - E_ref))

if w < 0.5:

if random.uniform(0.,1.) < w:

asyncSendCoordinates(server, x) # <- Send coordinates

break

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

8 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

if w > 2.0:

asyncSendCoordinates(server, x) # <- Send coordinates

w -= 1.

end for kStep

if w > 1.:

asyncSendCoordinates(server, x) # <- Send coordinates

w -= 1.

if random.uniform(0.,1.) < w: # <- Handle remaining part of the weight

asyncSendCoordinates(server, x) # <- Send coordinates

end for iWalker

coordinates = asyncWait(promise) # -> Wait for new coordinates to come

end while

return E / sumWeight

Compute

Walkers server

Compute Compute

Figure 4: Communication pattern of the asynchronous DMC algorithm. A compute node requests
walker coordinates (dashed line), the server fulfills the request (dashed line). Then, when branching
occurs the compute node sends coordinates to the server (plain line). The request of the next batch
of coordinates is made in advance, and the walker coordinates are transferred while the compute node
is computing the trajectories of the previous batch.

A prototype of this algorithm was implemented in QMC=Chem, and we confirmed numerically that
it converges to the same energy as the DMC algorithm. We plan to write a small proof of concept
in Python or Julia using the QMCkl library developed in WPs 1 and 3. This mini-application will
be a nice illustration of the usefulness of having a library containing all the required functions for
performing QMC trajectories, and it will also demonstrate the experimental scaling of the algorithm
with the number of compute nodes, and the possible recovery from crashes.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

9 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

Determinant-space QMC

Similar to the case of real-space QMC, in determinant-space QMC trajectories are built of random
occupations on Slater determinants in the Hilbert space. However, in contrast to real-space QMC, the
total possible space is finite and denoted as the full Hilbert space of determinants. The objective of
the QMC algorithm is then to estimate the Energy and optionally the coefficients of the determinants
corresponding to the ground state wavefunction. Here one can distinguish between two types of
wavefunctions, first, bosonic wavefuntions that constitute only non-negative coefficients which can
be interpreted as weights. Second, ground states that exhibit a fermionic character with both positive
and negative coefficients. The former can be treated with either PDMC or DMC algorithms, however,
the latter needs special consideration and will be treated separately.

Bosonic wavefunctions

The algorithm for strictly non-negative wavefunction determinant QMC is similar to that of real space
i.e the Pure Diffusion Monte Carlo method. The main difference is the projection operator

G(H) ≡ 1− τ (H − ET) . (1)

Similar to the real-space QMC, the target wavefunction can be obtained by a repeated application
of the projection on a trial wavefunction ΨT ,[13]

lim
n→∞

G(H)nΨT = Ψ0. (2)

The main steps in the Determinant-space QMC algorithm are shown below:

E = 0.

for kStep in range(nSteps):

newDeterminant = []

for iWalker in range(nWalkers):

jDet = determinants[iWalker]

Spawning Step

iDet = SpawnDeterminant(jDet)

eWalk[iWalker] = Energy(iDet)

E += eWalk[iWalker]

if iDet == jDet: # Copy current determinant

w = (1 - timeStep*(H(iDet,iDet) - E_ref)) \

/ (1 - timeStep*(H(iDet,iDet) - Energy(iDet)))

else: # Spawn a new determinant

w = 1.

if w < 1.: # Random death of the walker

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

10 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

if random.uniform(0.,1.) < w:

newDeterminant.append(iDet)

else: # Random duplication

newDeterminant.append(iDet)

if random.uniform(0.,1.) < w-1.:

newDeterminant.append(iDet)

end for iWalker

determinants = newDeterminants

E_ref = f(eWalk)

end for kStep

return E / nSteps

The two main steps in the algorithm are spawning and branching. During the spawning step,
walkers on new determinants are born. In the birth/death step, walkers can be copied/deleted. The
main difference compared to the real-space QMC is in the calculation of the weight wij.

Fermionic wavefunctions

In the case of fermionic wavefunctions, the spawning probability ps(j|i) given by

ps(j|i) =
τ Hij

pgen(j|i)
, (3)

where pgen(j|i) is a positive value and relates to the total probability of spawning on an new deter-
minant j ̸= i.[14] Thus, ps(j|i) can become either positive or negative and hence cannot be used as
a probability distribution. This is due to the fact that the off-diagonal Hamiltonian matrix-elements
Hij can be either positive or negative in sign. Consequently, one has to separate the population of
walkers into two families of determinants, one with positive sign (i.e. positive walkers) and another
with negative sign (i.e. negative walkers). In order to accumulate fermionic statistics, an annihilation
step has to be introduced in order to correlate the two populations of walkers. The annihilation step
removes pairs of walkers of opposite signs on the same determinant. Hence, the walkers become
correlated and completely independent QMC simulations with independent sets of walkers can no
longer be carried out. This is in stark contrast to the case for bosonic wavefunctions.

In the NECI code, the walkers are stored in a distributed hash table where the keys are the
determinants and the values are their occupation.This design is motivated by the fact that the
number of occupied determinants can become too large to be stored on a single compute node. The
key point to realize is that in this context the annihilation step involves a global communication, and
this could become a bottleneck for exascale applications.

Here we propose a different algorithm which involves non-blocking asynchronous communications
of the local walker populations in order to hide the latency of the communications. The idea originates
from the realization that in order to accumulate fermionic statistics, it is sufficient to perform the
annihilation step regularly enough. Crucially, it can be shown that the different walkers do not need
to be synchronized for the annihilation to be effective.[15, 16, 17]

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

11 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

The main steps of the algorithm follow that of the asynchronous DMC algorithms described
in the previous section, in which the storage of the complete list of walkers is separated from the
computational code (see figure 4). If the list of walkers is too large to fit on a single node, a distributed
hash tables may be used. We will call here walkers server the process which is the entry point for
interacting with the distributed storage of walkers. The complete algorithm for a computing process
is described as follows:

1. The computing process obtains a batch of walkers from the walkers server, in the form of pairs
(determinant, signed occupation). It receives also the Eref constant required to adjust the
growth of the population.

2. Every walker of the batch spawns new walkers, stored in a temporary list of signed walkers,

3. Every walker of the batch performs the birth/death step,

4. The walkers of the temporary list are added to the batch, including an annihilation process.

5. The wall-clock time is measured from step 1 to now.

(a) If the wall-clock time is long enough or if the local number of walkers has become critically
large, the local signed list of pairs (determinant, signed occupation) is sent to the walkers
server, together with a contribution to the energy:

Nwalkers∑
i=1

ni

Nwalkers
⟨0|H|i⟩

We then go back to step 1.

(b) Otherwise, we go back to step 2.

The role of the walkers server is to provide batches of pairs (determinant, signed occupation) to the
computing processes, and to receive new batches from them. During the storage of the new data,
an annihilation step is performed in the global population. The walkers server also computes the
value of Eref which has to be common to all compute processes, and estimates the total energy by
combining contributions coming from all the compute processes.

The non-blocking algorithm for the fermionic determinant-space QMC is then similar to the real-
space asynchronous QMC. A simple implementation of the above algorithm is given below:

promise = asyncFetchWalkers(server, nWalkers) # -> Non-blocking determinants request

determinants = asyncWait(promise) # -> Wait for determinants to arrive

wallTime0 = getWallTime() # -> Initial wall-clock time

while (continueRun):

promise = asyncFetchNewWalkers(server, nWalkers) # -> Request next batch

while getWallTime() - wallTime0 < MaxTime:

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

12 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

newDeterminants = []

for (jDet, jN) in determinants:

if jN < 0: jSign = -1

else : jSign = 1

for k in range(jSign * jN):

Spawning Step

(iDet, iSign) = SpawnDeterminant(jDet)

newDeterminants.append((iDet, -iSign*jSign))

Birth/Death Step

w = getBirthDeathProb(jDet)

if w < 1.: # Random death of the walker

if random.uniform(0.,1.) < w:

newDeterminants.append((jDet, jSign))

else: # Random duplication

newDeterminants.append((jDet, jSign))

if random.uniform(0.,1.) < w-1.:

newDeterminants.append((jDet, jSign))

end for

end for

determinants = mergeWalkers(newDeterminants)

end while

E = Energy(determinants)

asyncSendDeterminants(server, determinants, E) # <- Send walkers (non-blocking)

determinants = asyncWait(promise) # Block until new batch has arrived

wallTime0 = getWallTime()

end while

A proof-of-principle algorithm has been implemented and has been tested with the conventional
FCIQMC[14] algorithm in order to verify that there is no bias in the energy estimates. The next step
will be to test the algorithm in a large scale simulation.

4 Low-memory algorithm for wavefunction optimization

Some exascale QMC applications will contain both a large number of correlated electrons and a large
number of Slater determinants. CI coefficient optimization is one of the most memory consuming
approach in QMC, and we propose here a method which both reduces the memory requirements and

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

13 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

takes advantage of zero-variance estimators which exhibit smaller statistical errors than the usual
ones, thus requiring shorter simulation times.

Consider a ground-state wavefunction Φ(R) expressed in a basis of Ndet Slater determinants
{DI(R)}:

Φ(R) =

Ndet∑
I=1

cI DI(R) (4)

The linear coefficients are initially obtained by solving the standard CI problem. In the QMC frame-
work, a relatively cheap and efficient way of increasing the amount of electron correlation described
by the wave function is to introduce a Jastrow factor eJ(R), capturing particularly well short-range
correlation effects that can’t be described by the finite determinant basis set.

Ψ(R) = Φ(R) eJ(R) =

(
Ndet∑
I=1

cIDI(R)

)
eJ(R). (5)

The most natural way of re-optimizing the coefficients cI under the presence of the Jastrow factor
is to express the CI problem in the basis {DI(R) ≡ DI(R) eJ(R)}. This basis is not orthonormal,
so in addition to the Hamiltonian matrix elements HIK = ⟨DI |Ĥ|DK⟩ the overlap matrix elements
SIK = ⟨DI |DK⟩ need to be computed and the CI problem can be solved as

HC = ESC. (6)

As the forms commonly used for the Jastrow factor are too complicated to integrate analytically,
these 3N -dimensional integrals are sampled using a Variational Monte Carlo (VMC) sampling:

HIK =

〈
DI

Ψ

Ĥ DK

Ψ

〉
Ψ2

and SIK =

〈
DI

Ψ

DK

Ψ

〉
Ψ2

(7)

where ⟨. . .⟩Ψ2 denotes the stochastic average over the Monte Carlo samples drawn with the 3N -
dimensional density Ψ2.

Such an approach requires the sampling of twoNdet×Ndet matrices, and is therefore only applicable
to a few thousand parameters. State-of-the art algorithms employ Krylov methods,[18] such that
the sampling can be reduced to a small number m of vectors, with a memory requirement scaling
as O(m × Ndet). This memory reduction enables the optmization of hundreds of thousands of
parameters, but is obtained at the cost of multiple matrix-vector multiplications during the sampling.

The algorithm we propose here requires exactly Ndet random variables, with no additional com-
putational cost. First, we eliminate the need for the overlap matrix by expressing the optimization in
the Transcorrelated (TC) formalism, where the correlation is incorporated in the Hamiltonian through
a similarity transformation[19]

ĤJ ≡ e−Ĵ Ĥ eĴ . (8)

Therefore, solving exactly the Schrödinger equation with an ansatz wavefunction Ψ(R) = Φ(R) eJ(R)

Ĥ Ψ = EΨ, (9)

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

14 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

is equivalent to solve the TC differential equation

ĤJ Φ = E Φ (10)

which is expressed in the orthonormal basis of Slater determinants, suppressing the need for sampling
the overlap matrix.

By projecting Eq. (10) in the basis of Slater determinants, we obtain

Ndet∑
K=1

⟨DI |ĤJ |DK⟩ cK = E cI (11)

We define the operator ∆̂ = ĤJ − Ĥ, and the projected equations can be rewritten as

Ndet∑
K=1

⟨DI |Ĥ|DK⟩ cK +
⟨DI |∆̂J |Φ⟩

cI
cI = E cI (12)

such that the effect of the Jastrow factor is expressed as a diagonal dressing of the the Hamiltonian.
As the dressed Hamiltonian is now parameterized by the wave function, the equations will be solved
iteratively,

Φ(i) =

Ndet∑
I=1

c
(i)
I DI , (13)

using the solution of the standard CI problem as an initial guess. The dressing term is approximated
using the coefficients of the previous iteration:〈

DI

∣∣∆̂J

∣∣Φ(i)
〉

c
(i)
I

≈
〈
DI

∣∣∆̂J

∣∣Φ(i−1)
〉

c
(i−1)
I

. (14)

Note that the division by cI generates numerical instabilities when cI is small, so we reformulated
the problem using a column dressing such that the denominator is always the largest of all |cI | as
proposed in [20].

At each iteration, Davidson’s method[6] can be used to extract the ground state of the dressed
Hamiltonian. This method requires to apply the dressed Hamiltonian to the trial vector at each step
of Davidson’s algorithm, 〈

DI

∣∣ĤJ

∣∣Φ(i)
〉
=
〈
DI

∣∣Ĥ∣∣Φ(i)
〉
+
〈
DI

∣∣∆̂J

∣∣Φ(i)
〉
. (15)

One can remark that the first term can be computed exactly with a standard quantum chemistry
code, such as Quantum Package. Only the second term needs to be sampled in VMC, and this term
is implemented in QMC=Chem as

1∫
[Ψ(i)(R)]

2
e−2J(R)dR

×
∫ [

Ψ(i)(R)
]2DI(R)e−J(R)

Ψ(i)(R)

(
ĤΨ(i)(R)

Ψ(i)(R)
− ĤΦ(i)(R)

Φ(i)(R)

)
dR (16)

=
1

⟨e−2J⟩
Ψ(i)2

〈
DI e

−J

Ψ(i)
(EL − E0)

〉
Ψ(i)2

. (17)

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

15 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

This term has low statistical fluctuations, since most of the fluctuations of EL = ĤΨ(i)(R)

Ψ(i)(R)
and

E0 =
ĤΦ(i)(R)

Φ(i)(R)
cancel out, as shown on figure 5, and as a consequence shorter simulation times can

be used for the VMC sampling.
We have also proposed an alternative estimator with even smaller fluctuations using as a reference

the transcorrelated Hamiltonian of Giner[21] instead of the standard Hamiltonian. We have observed
a reduction of a factor of two in the error bars, but this transcorrelated Hamiltonian requires the
computation of three-electron integrals which will not be technically applicable to large systems. To
cure this problem, we take as a reference the transcorrelated Hamiltonian where the three-body terms
are neglected, leading to the same reduction in fluctuations but with a deterministic computation of
the reference which is tractable for larger systems.

Wave function Water Fluorine dimer

Hartree-Fock -16.94804 -198.76828

Full CI -17.16467 -199.361

Selected CI -17.16452 -199.32215

Ndet 400 478 91 988

CI/Jastrow -17.2053(7) -199.4455(5)

CI/Jastrow iteration 1 -17.2376(1) -199.4669(4)

CI/Jastrow iteration 2 -17.2376(1) -199.4672(5)

Table 1: Convergence of the energy (a.u.) for the water molecule and the fluorine dimer.

Figure 5: Statistical errors of
〈

DI e
−J

Ψ
EL

〉
and

〈
DIe

−J

Ψ
(EL − E0)

〉
in a simulation of the water

molecule with 400 000 Slater determinants.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

16 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

As a proof of concept, we have applied the proposed method to the water molecule using effective
core potentials with more than 400 000 Slater determinants, and to the fluorine dimer using all-
electron calculations with around 100 000 determinants. Table 1 shows that after a single iteration
the energy minimization has converged to a sub-milliHartree precision, demonstrating the efficiency
of our method. An article is under preparation.

5 Summary

Using efficiently exascale machines will require to take advantage of parallelism first at the level of
a single compute node, and then at the level of a large cluster of nodes. Single-node efficiency is
a problem taken care of in WP3, and the present WP focuses on distributing the work on multiple
nodes, keeping the efficiency high.

Monte Carlo algorithms have the particularity that they are able to return an unbiased result
when some parts of the computation have been removed, if the removed parts are random samples.
We can exploit this advantage to design fault-tolerant applications, since there is no need for book
keeping the computed tasks or handling a complex recovery procedure. The only condition is that the
simulation survives upon failure of some processes, which is not the standard behavior of applications
relying on the MPI library. Hence, we propose to use alternative libraries to limit the impact of failures
of MPI processes.

The heterogeneity of the hardware imposes the usage of asynchronous algorithms to keep a good
balance of the work load, and to hide the latency of communications. This requires algorithmic
changes in the most common QMC methods. We have proposed some developments which combine
PDMC with DMC to benefit both from the asynchronous character of PDMC and the stable character
of DMC thanks to the branching process.

Finally we address the problem that the available memory will not grow as much as the computing
power, and low-memory implementations of the algorithms will be required for applications requiring a
computational power at the exascale. We have proposed a new method for wave function optimization
of hundreds of thousands of parameters with a minimal memory footprint.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

17 of 17

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

References

[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures,” Concurrency Computat.: Pract. Exper.,
vol. 23, no. 2, pp. 187–198, Feb 2011.

[2] A. Scemama, M. Caffarel, E. Oseret, and W. Jalby, “Quantum Monte Carlo for large chemical
systems: Implementing efficient strategies for petascale platforms and beyond,” J. Comput.
Chem., vol. 34, no. 11, pp. 938–951, Apr 2013.

[3] “ZeroMQ,” Feb 2022, [Online; accessed 4. Feb. 2022]. [Online]. Available: https://zeromq.org

[4] Dec 2015, [Online; accessed 4. Feb. 2022]. [Online]. Available: http://irpf90.ups-tlse.fr/files/
succes2015.pdf

[5] Y. Garniron, T. Applencourt, K. Gasperich, A. Benali, A. Ferté, J. Paquier, B. Pradines, R. As-
saraf, P. Reinhardt, J. Toulouse, P. Barbaresco, N. Renon, G. David, J.-P. Malrieu, M. Véril,
M. Caffarel, P.-F. Loos, E. Giner, and A. Scemama, “Quantum Package 2.0: An Open-Source
Determinant-Driven Suite of Programs,” J. Chem. Theory Comput., vol. 15, no. 6, pp. 3591–
3609, Jun 2019.

[6] E. R. Davidson, “The iterative calculation of a few of the lowest eigenvalues and corresponding
eigenvectors of large real-symmetric matrices,” J. Comput. Phys., vol. 17, no. 1, pp. 87–94, Jan
1975.

[7] Y. Garniron, A. Scemama, P.-F. Loos, and M. Caffarel, “Hybrid stochastic-deterministic calcu-
lation of the second-order perturbative contribution of multireference perturbation theory,” J.
Chem. Phys., vol. 147, no. 3, p. 034101, Jul 2017.

[8] A. Scemama, “A quantum chemistry calculation distributed among computing facilities with
Quantum Package,” Zenodo, Oct 2019.

[9] C. Simmendinger, M. Rahn, and D. Gruenewald, “The GASPI API: A Failure Tolerant PGAS
API for Asynchronous Dataflow on Heterogeneous Architectures,” in Sustained Simulation Per-
formance 2014. Cham, Switzerland: Springer, Nov 2014, pp. 17–32.

[10] C. D. Sudheer, S. Krishnan, A. Srinivasan, and P. R. C. Kent, “Dynamic load balancing for
petascale quantum Monte Carlo applications: The Alias method,” Comput. Phys. Commun.,
vol. 184, no. 2, pp. 284–292, Feb 2013.

[11] K. P. Esler, J. Kim, D. M. Ceperley, W. Purwanto, E. J. Walter, H. Krakauer, S. Zhang,
P. R. C. Kent, R. G. Hennig, C. Umrigar, M. Bajdich, J. Kolorenč, L. Mitas, and A. Srinivasan,
“Quantum Monte Carlo algorithms for electronic structure at the petascale; the Endstation
project,” J. Phys. Conf. Ser., vol. 125, no. 1, p. 012057, Jul 2008.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

I of II

https://zeromq.org
http://irpf90.ups-tlse.fr/files/succes2015.pdf
http://irpf90.ups-tlse.fr/files/succes2015.pdf

D4.2– Report on algorithms for exascale robustness (fault tolerance and large-scale
communications) in QMC flagship codes

[12] M. T. Feldmann, J. C. Cummings, D. R. Kent, R. P. Muller, and W. A. Goddard, “Manager-
worker-based model for the parallelization of quantum Monte Carlo on heterogeneous and ho-
mogeneous networks,” J. Comput. Chem., vol. 29, no. 1, pp. 8–16, Jan 2008.

[13] R. Assaraf, P. Azaria, M. Caffarel, and P. Lecheminant, “Metal-insulator transition in the one-
dimensional su (n) hubbard model,” Physical Review B, vol. 60, no. 4, p. 2299, 1999.

[14] G. H. Booth, A. J. Thom, and A. Alavi, “Fermion monte carlo without fixed nodes: A game of
life, death, and annihilation in slater determinant space,” The Journal of chemical physics, vol.
131, no. 5, p. 054106, 2009.

[15] D. Arnow, M. Kalos, M. A. Lee, and K. Schmidt, “Green’s function monte carlo for few fermion
problems,” The Journal of Chemical Physics, vol. 77, no. 11, pp. 5562–5572, 1982.

[16] M. Kalos and F. Pederiva, “Exact monte carlo method for continuum fermion systems,” Physical
review letters, vol. 85, no. 17, p. 3547, 2000.

[17] R. Assaraf, M. Caffarel, and A. Khelif, “The fermion monte carlo revisited,” Journal of Physics
A: Mathematical and Theoretical, vol. 40, no. 6, p. 1181, 2007.

[18] E. Neuscamman, C. Umrigar, and G. K.-L. Chan, “Optimizing large parameter sets in variational
quantum monte carlo,” Physical Review B, vol. 85, no. 4, p. 045103, 2012.

[19] N. Handy, “The transcorrelated method for accurate correlation energies using gaussian-type
functions: examples on he, h2, lih and h2o,” Molecular Physics, vol. 23, no. 1, pp. 1–27, 1972.

[20] Y. Garniron, A. Scemama, E. Giner, M. Caffarel, and P.-F. Loos, “Selected configuration inter-
action dressed by perturbation,” J. Chem. Phys., vol. 149, no. 6, p. 064103, Aug 2018.

[21] E. Giner, “A new form of transcorrelated Hamiltonian inspired by range-separated DFT,” J.
Chem. Phys., vol. 154, no. 8, p. 084119, Feb 2021.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

II of II

	Document Information
	Disclaimer
	Versioning
	Abbreviations
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Fault-tolerance
	Implementation in existing codes
	Exascale applications

	3 Asynchronous Diffusion Monte Carlo algorithm
	Real space QMC
	Determinant-space QMC
	Bosonic wavefunctions
	Fermionic wavefunctions

	4 Low-memory algorithm for wavefunction optimization
	5 Summary
	References

