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1 Introduction

Besides development of the TREX falgship codes, Quantum Monte Carlo kernel library (QMCkl)
development is a major effort in the TREX project, spanning the whole project duration. Four
deliverables are devoted to cover this development. First delivered at Month.6,, D1.1 “Software
Design and implementation of QMCkl” described the definition of the API and the “pedagogical”
presentation of the algorithm heavily based on Literate Programming. Then at Month 9, D1.2
“Report on pre release of open source readable implementation of QMCkl” presented some very
general guidelines for QMCkl, essentially focusing on the library usage. Also in D1.2, the major
kernels were presented from an algorithmic point of view and how such kernels could be used in TREX
applications. Finally, D1.2 introduced the idea of Control of Numerical Accuracy and the correspond-
ing implementation Verificarlo CI. Then D3.2 (delivered at Month 18) and D3.4 (to be delivered at
Month 36) are focused on the HPC side of the library. This current deliverable D3.2 will present the
main rationale behind the development of the HPC components as well as some first implementation
results while D3.4 will detail the final status of the library together with an extensive performance test.

In this first document, after a brief Introduction (Section 1), we are describing the rationale
for QMCkl design guidelines (Section 2). In particular, objectives and general methodology will
be highlighted. Then, more precise details on the methodology will be given by walking through
a detailed DGEMM example (Section 3). Finally, some preliminary performance results on a key
QMCkl routine (JASTROW computation will be given).

This first document essentially covers work in progress. As such, first, many implementation
choices presented in this first document are still preliminary and might evolve. Second, we first
focused on multicore CPU: although we kept in mind GPU constraints and issues, most of the
implementation efforts targeted multicore CPU (X86 and ARM) and the first performance results
have been obtained on X86. More performance tests on X86 are under way, tests on ARM will be
carried out in the coming months as well as fitst QMCkl extensions to cover GPU. All of these topics
will be covered in detail in the second deliverable.

QMCKL is publicly available (source code and documentation): the source code is available on
the Github repository at https://github.com/TREX-CoE/qmckl and the documentation can be
found at https://trex-coe.github.io/qmckl.

2 QMCkl rationale

2.1 The stage/context

The hardware and software for high performance computing (HPC) systems is still evolving but
some main trends are emerging as stable for the next ten years: increased importance of parallelism
(intra-node, inter-node, accelerator) and data access (complex memory hierarchies, communication
between nodes/accelerators). For materials science simulations quantum Monte Carlo (QMC)
methods offer very high level accuracy at the expense of very high computational costs. Fortunately,

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
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QMC methods are embarrassingly parallel (due to their Monte Carlo nature) with limited memory
requirements making such methods very attractive and competitive on modern high performance
systems.

The primary goal of QMCkl library is to provide QMC code developers with a set of routines
fulfilling a “triple objective”:

1. Portability: the library must be available across different hardware and software environments

2. Performance: the library must provide a very good (not necessary optimal) level of performance
on different hardware/software

3. Productivity: the library must be easy to use and to integrate for QMC developers (i.e. physi-
cists/chemists with a limited background in Computer Science)

This triple “objective” is very challenging but classical and very often claimed. It has been set
forward in much a larger setting for whole applications. Supercomputing Conference has started
a series of workshops on this broad topic: Performance, Portability and Productivity in HPC.1

Beyond this triple objective, we will try to address important issues such as energy consumption and
numerical accuracy. In our case (library design), we advocate that such an ambitious goal can be
reached by an appropriate methodology design and a goal reformulation. Additionally, using QMCkl
should allow the scientific development to focus on the scientific part of the code, the HPC being
taken care of by QMCkl.

First, we decouple portability from performance: for QMCkl the first goal is to provide correct
results and therefore QMCkl will be provided in an easy to port/integrate version which will allow the
code developer to test QMCkl use. Along this line, QMCkl will provide tools for checking numerical
stability (Verificarlo).

Second for performance, we will not go after a universal goal of high performance on any
arbitrary system. We will structure different hardware targets in a hierarchy privileging clearly a few
systems (called reference architectures). On such architectures, performance optimization efforts will
be carried out resulting in a specific code for each architecture and correspondingly a specific set of
tools for fine tuning. Additionally, it should be noted that not only hardware differences have to be
dealt with but also different software environments (in particular compilers) have to be supported.

Finally, for productivity our primary objective will be to ensure that for our reference TREX codes,
at least 50% of execution time is spent in QMCkl. This will require on one hand that the library
provides enough functionalities to cover a large part of application needs and on the other hand that
the code developer makes some effort to integrate QMCkl routines. It should be noted that our
simple metrics (50 % of execution time ) can be easily perverted or biased but in our case since
we are controlling TREX code, we can make sure that such a metric is sill meaningful. This simple
metric is also meant as an internal guide only. There are many more aspects to productivity, most of

1https://p3hpc.org/
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them difficult to quantify. It should be noted that the development of each routine in two flavors: a
pedagogical one and HPC variants is directly intended to favor productivity in making QMCkl easy
to use.

2.2 Key guidelines for QMCkl design

In this section we will detail the major guidelines which are driving QMCkl development.

2.2.1 Focus and specialization

The primary goal of QMCkl is to support QMC applications and therefore we will use key character-
istics of these applications. For example, the fact that most QMC applications contain a high degree
of parallelism (based on Monte Carlo computation principles) will drive most of the QMCkl effort
towards developing an efficient single node version, the multinode exploitation being taken care of by
running multiple copies of QMCkl.
Similarly, we will restrict in a first phase our optimization effort towards “reference CPUs”: Intel
Xeon line, AMD Zen line and ARM Neoverse (N and V lines). This choice is driven by the fact
that these CPUs represent the largest share in HPC market systems. It should be noted that we are
not selecting specific processors but rather processor lines with multiple implementations in the next
ten years. Our objective will be to make sure that we are able to follow CPU evolutions during the
upcoming decade.
As mentioned in the introduction, our major effort on GPU will come in a second phase. Having a
bit delayed our major effort on GPU will provide us two interesting side benefits. First although the
NVIDIA line dominates the market, upcoming GPU from Intel and AMD are interesting to consider
and we will wait until 3 types of GPUs are available. Second, the current GPU generation induces
numerous and costly memory transfers (offloading) between CPU memory and GPU memory. For
the moment, the cost of these exchanges strongly limits the GPU applicability scope.
Also we will focus on the specific needs of our target applications: for example, QMC codes heavily
use matrix multiplications; however, by analyzing further, it appears that most of the matrix multi-
plications are rank K updates: multiplying a tall matrix (N ×K) by a flat matrix (K ×N) with K
typically less than 32 and much smaller than N values (from 100 to a few thousands). Therefore,
instead of optimizing a general DGEMM routine, we will develop a rank K update specially tuned
for taking advantage of the peculiar matrix sizes and shapes.

2.2.2 Ease of interaction with software and hardware environment

Analyzing the current HPC implementation of basic linear algebra subprograms (BLAS) library such
as Intel’s math kernel library (MKL), we can clearly see that the binary MKL structure prevents opti-
mizations between a library subroutine and its environment: for example, if there are consecutive calls
to DAXPY routines sharing arrays, MKL and the compiler will miss that optimization opportunity.
The jitted version of DGEMM MKL for small matrices (see https://github.com/libxsmm/libxsmm)
allows some (limited) adaptation to the calling parameters. Essentially the jitting amounts to
generate on-the-fly specific library versions for small matrix sizes: however, there is a non-negligible
cost for generating the first version, this cost has to be amortized across several calls with exactly
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the same parameters. Therefore, there is a clear lack of flexibility. In QMCkl, flexibility will be
achieved by providing a source-level optimized version of the library, allowing the compiler to perform
optimizations across library boundaries. This feature will be essential for routines which are using
O(N) data and performing O(N) operations. This extra flexibility has to be exploited with some
care to avoid downsides such as code bloat. For controlling that aspect, we will use specific tools
such as CQA (Code Quality Analyzer) to monitor code quality

In developing optimized versions, specialized versions with respect to the different reference
architectures will be developed. Furthermore, specific auto-tuning tools will be used to get the ”last
mile” optimization providing typically 5 to 10% performance gain. For example, such optimizations
will be particularly useful to exploit different number of registers availalble.

One of the most important hardware parameters to be exploited for efficient optimization will be
memory hierarchy parameters (size, bandwidth and latency of each level). In order to address this
specific issue, QMCkl will restructure 2D (and 3D) arrays in tiled versions: this point is presented
in more details in Section 3. The address computations with such tiled arrays wil be more complex
(accessing 4/5D arrays) but by adjusting tile size, use of memory hierarchy can be finely tuned. Finally,
QMCkl will investigate further optimization goals than the classical “execution time”. Since QMC
kernels are extremely compute intensive, another optimization criterion will be energy consumption
and with respect to that goal, specific code versions will be developed. Last but not least, all of the
code will be Open Source allowing QMCkl users to customize routines to their precise needs.

2.2.3 Use of advanced tuning tools

Many modern libraries have directly embedded software tools (auto tuners) together with standard
library routines. In some cases, such as ATLAS [1] or FFTW [2], software tools are mainly used for
parameter tuning such as finding appropriate block size. In other cases, such as SPIRAL [3], software
tools are used to generate automatically new kernel variants to be used as building blocks later.

In QMCkl, we will use software tools with similar goals such as generating new kernel variants
and also fine tuning but we will also use tools to analyze library behavior and customize a few
routines for specific needs.

First, we will use advanced performance analysis tools such as Modular Assembly Quality
Analyzer and Optimizer (MAQAO)2 [4] to analyze performance bottlenecks and explicit relations
between algorithms and hardware.

Second, the importance of numerical accuracy should not be overlooked: for example, use of
Single Precision instead of Double Precision can provide substantial performance gain. However,
such gains should not be obtained at the cost of substantial accuracy loss. In fact, numerical
accuracy needs to be monitored in order to keep it within acceptable limits. For that task, we will

2https://www.maqao.org
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use Verificarlo3 [5] which will allow us to detect configurations where numerical accuracy can acco-
modate mixed precision. More details on the use of Verificarlo in QMCkl are given in deliverable D1.2.

Third we will use systematically auto tuning tools for generating the most optimized version of a
library routine for a given architecture. We will not use metaprogramming tools such as BOAST[6]
because ultimately they rely on compilers which are difficult to control. Instead we will use assembly
code templates with specific rules for unrolling and blocking and the auto tuner will modify directly
these templates. Using directly Assembly Code will allow to bypass compilers and to achieve some
insentivity to compiler quality.

2.3 Current hardware/software offering

There is a recent (December 2021) comparison of the latest offerings from Intel, AMD and ARM in
terms of HPC processors.4

The latest cores from these three manufacturers share a strong set of characteristics: out-of-order
execution, large number of functional units, vector units and multilevel memory hierarchies. Clearly,
there are differences in implementation and in some key characteristics (size) of the various
out-of-order buffers. Interestingly, most of these differences are well beyond current optimization
capabilities even for state-of-the-art compilers: for example, the compiler has a hard time to generate
a code which will be able to fully exploit the full size of the reservation stations and therefore offer a
substantial performance gain.

Therefore, such differences will be a priori not exploited in the first optimization step. Instead
we will focus on ”key” differences in instruction set architectures (ISAs). To simplify the analysis,
we will restrict our effort to instructions which are essential to QMCkl library (Vector and Scalar
load/store, Vector and Scalar FP operations). Below are listed some of the major differences that
will need specific optimization in QMCkl:

• Number of Scalar and Vector registers

• Width of Vector instructions

• Specific combined operations: x86 ISA allows to combine in a single instruction a Load and an
Integer/FP operation. All in all this allows to save the use of one register.

• In x86 ISA, Vector fused multiply-add (FMA) operates only between vector registers while ARM
scalable vector extensions (SVE) allows to use operand from a scalar register.

• In AVX512 there is no reduction instruction on a vector register

3https://github.com/verificarlo/verificarlo
4https://fuse.wikichip.org/news/4795/arm-launches-new-neoverse-n2-and-v1-server-cpus-1-4x

-1-5x-ipc-sve-and-armv9/
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All of these differences can be handled by specific tools which allow to generate an ARM version
from an x86 version. More details on our views on a generic ASM able to encompass both ARM and
X86 will be given in the subsequent sections.

2.4 Overall organization of QMCkl libraries

Each QMCkl routine will first consist of an easy to understand/manipulate code version (called ped-
agogical/reference code) and then several HPC code variants (typically one per target architecture).
Such a strategy of having one HPC code variant per architecture is usable for libraries (while it is
much more difficult for full applications). However, the generation of multiple variants should be as
much as possible automated to make sure that library maintenance costs remain reasonable.

All of these HPC code variants will remain in a high-level language format with a few inner
kernels using ASM (asm volatile mechanisms in C). In Section 3, detailed examples of such code
will be given. Using such ”low level” constructs will still allow the compiler to inline QMCkl calls
and perform global optimization (without being stopped by library “boundaries”). Using ASM will
be extremely useful to overcome compiler limitations and also to provide uniform code (and therefore
uniform performance) across several compilers.

2.4.1 Pedagogical/reference version

This version should be kept as simple and concise as possible: on one hand, no loop unrolling or
explicit transformations such as loop blocking should be present in this code version.

On the other hand, attention should be paid to favor vectorization at the innermost loop level.
In particular at this innermost level:

• As much as possible, no branches or subroutine calls (the latter ones should be removed by
using inlining)

• Loop nests should be restructured in such a way that the innermost loop has the largest number
of iterations

• Arrays should be restructured in such a way that innermost generate stride 0 or stride 1 access

If the loop is supposed to be vectorizable, OpenMP pragmas for vectorization should be inserted
(see https://www.openmp.org/spec-html/5.0/openmpsu42.html). Attention should be paid
to provide the compiler with additional information through the clause added to the directive.

2.4.2 HPC Variants

A typical QMCkl routine will conist between ten and a few hundreds of lines of source code. The
HPC optimizations (and the HPC variants) will focus on the most time consuming loop nests. The
HPC variants will be essentially generated at the loop nest level. It is very important to analyze
globally loop nests in order to exploit at best all optimization opportunities. For the HPC variants
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we will have several schemes with increased complexity depending upon the importance and the
nature of target loop nest.

Here, we will describe the most elaborate and complex one, which is structured in three levels.
Some simpler schemes can by obtained by reducing the number of levels. Moving from one level to
the next should be carried out automatically or at least semi-automatically:

• HIGH LEVEL (common to all target architectures). At the highest level, the algorithm should be
written in standard C with performance critical parts written in a specific language supporting
vector constructs. In our case, we are using an abstract ASM language encompassing both
ARM and x86 ISA but other choices could be made such as MyInstrinsics++ (MIPP)5 or Low
Level Virtual Machine (LLVM) intermediate representation (IR)6. At this level, optimization
beyond vectorization should remain minimal. Number of vector registers and register width
should remain generic. Similarly, the vectorized form should not contain any explicit unrolling
but provisions for performing unrolling such as unrolling templates should be provided.

• MID LEVEL (specific versions are generated for different architectures). There, different sets
of building blocks are generated, one set per architecture. Typically, a set will contain the
versions corresponding to different unrolling levels.

• LOW LEVEL: A final version combining the various building blocks will be generated through
auto tuning.

2.4.3 A few characteristics of this generic ASM/assembly language

Here we list the main characteristics of the instructions constituting this generic ASM. Here the term
generic means that we want to be able to generate from this ASM either x86 instructions or ARM
instructions. Next section will give detailed example of use.

• Vector instructions will be parametrized by their length VL (expressed in elements) so the code
should be generic and cover all possible Vector Lengths

• All instructions will be not differentiated with respect to Double Precision (DP) versus Single
Precision (SP). It will be the optimizer which will take care of that specialization.

• All arithmetic instructions will operate between registers (ARM-like): no operand coming from
memory can be used in an arithmetic instruction.

• All arithmetic instructions will use only Vector Registers as main operands no scalar registers
can be used. This will require the use of Broadcast instructions to promote a scalar to vector.

• We will use a Vector Reduction (denoted VRED) instruction capable of summing all of the
components of a vector register. Such an instruction is available in ARM ISA but currently it
requires a chain of between 4 and 6 instructions on x86

5https://github.com/aff3ct/MIPP
6https://llvm.org/docs/LangRef.html
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• The code to be duplicated will be enclosed between curly brackets {}. Right at the beginning,
the order of duplication is specified: D1 means duplicate first then proceed with D2 and so
on. The variable $ID1 (resp $ID2, etc. . . ) will refer to the duplication index and will take
consecutive integer values from 1 up to Duplication degree.

• Registers should be explicitly named to avoid any issue/limitations by compiler

COMMENT 1: This ASM could be based on an extension of Vector Coding tool such as MIPP.
MIPP is a portable wrapper for SIMD instructions written in C++11. It supports Neon, streaming
SIMD extensions (SSE), advanced vector extensions (AVX) and AVX-512.

COMMENT 2: For the moment, we are using a somewhat simpler ASM without the template for
unrolling. This will be added in future releases.

2.4.4 Routine categories

We will use two important classifiers for QMCkl routines:

1. the array structures used: 1D, 2D, 3D. This first criteria will associate with each routine the
various array structures used by the routine.

2. the amount of FP operation per data: we will be mostly interested in distinguishing the stream-
ing kernels, for which less than a single FP operation is performed per data accessed, from ker-
nels performing multiple operations per data, the latter ones being good candidates for locality
optimization

3 Demonstrative application

3.1 Hierarchical Data layout

The layout of the input data is organized into Blocks and Tiles as described in detail in the BLAS-like
library instantiation software framework (BLIS) papers [7, 8]. The blocking scheme takes care of
the cache hierarchy whereas the tiling scheme is adopted for the particular BLAS micro-kernel which
actually performs the algebraic manipulations. A matrix in our representation therefore becomes a
6-index tensor:

A(i, j) = A′(o, p,mtile, ntile, lblock, kblock) (1)

where the notation is in Fortran format, i.e., one-based column major notation with the largest
dimension indices at the end. Here, the blocks are denoted by the dimensions lblock, kblock and are
represented by the (MC,KC) blocks in Figure 1. The tiled dimensions are represented by the indices
mtile, ntile and correspond to the (MR,NR) tiles represented by the red/violet/green thick lines in
Figure 1. Linear algebra manipulations are done in the micro-kernels and only require data in the
tiles therefore ensuring perfect data locality for near zero cache misses. All micro-kernels therefore
are based on manipulation of data in local tiles only.
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Figure 1: The internal representation of matrix data. The matrices are stored as blocks of dimension
(MC,KC). The blocks are further split into tiles of dimension (MR,NR) along only one dimension.

Note that the dimensions of the matrices represented internally are always multiples of MR and
NR the choice of which will be explained below. Therefore, for input matrices whose dimensions are
not multiples of MR and NR, the internal buffers are initialized by dimensions MB and NB which are
the corresponding smallest multiples of MR and NR larger than or equal to M and N respectively. In
this manner, matrices of general sizes can be represented using the aforementioned hierarchical data
structure.

3.1.1 Optimized Cache Access

The data is accessed in a sequential and hierarchical manner as shown in Figure 2 so as to minimize
the latency. The dimensions of the blocks (MC,KC) are chosen according to the L2 and L1 memory
layout on the hardware. The L1 cache contains one tile of A, one tile of B, and one tile of C, whereas
the L2 cache contains two blocks corresponding to A and B and one tile of C.
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Figure 2: The hierarchical data layout adapted for the representation of matrices. The dimensions
of the blocks MC, KC, NC = N and those of the tiles (MR,NR) are chosen such that they are adapted
for the memory layout of the hardware.

3.2 Micro-kernel Design

3.2.1 Definitions

The kernel is defined in terms of fundamental operations involving vector registers (denoted as VR)
which are of length VL and/or scalar registers (denoted as SR). Such an abstraction allows for an
architecture independent description of the kernel and the key algorithms. An example of the VR for
the AVX2 architecture is YMM with a vector length VL= 256 bits/4 DP elements, i.e. four double
precision floating point values. The fundamental operations using these VRs are of two types:

• Load Store operations - These operations involve memory access and loading/storing of the
data to/from VRs. The data can be loaded from/to a VR or a SR.

• Arithmetic operations - Operations such as Op = ADD/MUL involving VRs or SRs. Note that in
some cases, such operations can also involve a memory address denoted by MEM.

Memory Operations

Most memory operations are of three types:

1. Loading data to a register - Denoted as LOAD(VR, MEM) or LOAD(SR, MEM)

2. Storing data to a memory address - Denoted as STORE(MEM, VR) or STORE(MEM, SR)

3. Broadcasting a scalar to a register - Denoted as BROADCAST(VR, MEM)

4. Prefetching instruction - Denoted as PREFETCH(MEM)

Here the operands follow Intel-based ordering, i.e. the result is always substituted to the left-most
variable.
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Arithmetic Operations

There are many arithmetic operations in the combined x86 and ARM instruction set, but here we
shall focus on a limited subset which can be separated into four types:

1. Vector operations involving two operands - Op(MEM, VR/SR)

2. Vector operations involving three/four operands - Op(VR1, VR2, VR3)

3. Operations involving mixed operands - Op(VR1, VR2, SR3)

4. Operations involving a memory operand - Op(VR1, VR2, MEM)

Here, we describe the four operations in details. The first type of operation Op(SR1, VR1) (such
as vector reduction ADDV(SR1, VR1)) applies an operator (addition) to all the elements of VR1 and
stores the result in a scalar register SR1. An example of this type of operator is the horizontal Vector
Reduce operation available in the RISC-based ARM instruction set. The second type of operation is
purely vectorial, i.e. performs the operation on two VRs and stores the result in VR1. An example of
this type of operation is the standard FMA VFMADD231PD(VR1, VR2, VR3) which multiplies the values
in VR2 and VR3 and adds the result to VR1. The third type of operation is also based on ARM
architecture and involves a mixed operation with a scalar value extracted from VR3 (determined by
the lane value l) and the vector register VR2 and storing the result in a vector register VR1. Such
an instruction can perform scaling of the elements of VR2. An example of such an operation is
the FMLA(VR1, VR2, VR3(l)) which multiplies the vector elements of VR2 by the specified element
from VR3(l) and adds the result to VR1. Finally, the last operation involves a combined LOAD and
artithmetic operation. VL double precision values are loaded directly from memory to perform the
vector operation with a VR2 and store the result in a VR1.

3.3 Example kernels

3.3.1 DGEMM

The basic DGEMM expression shown in Eq 2 is modified in our block-tiled representation. This new
algorithm is based on the Eq 2, which in our block-tiled format reads Eq 3.

C(i, j) =
∑
k

A(i, k)×B(k, j) (2)

C(i, j) = C ′(oc, pc, lc, kc,mc, nc)

A(i, k) = A′(oc, pc, lc, k,mc, nc)

B(k, j) = B′(oc, pc, k, kc, nc, nc)

C ′(oc, pc, lc, kc,mc, nc) =
∑
k

A′(oc, pc, lc, k,mc, nc) ∗B′(oc, pc, k, kc,mc, nc) (3)

The core of the computation show in Eq 3 involves the calculation of the outer product as shown in
Figure 2. This outer product is carried out via a custom kernel which is written with inline assembly
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Algorithm 1 Micro-kernel DGEMM algorithm
Require: KC ̸= 0

k← 1

for k← 1 to KC do
VR1 ← VLOAD(A(0, k))

VR2 ← VLOAD(A(0+VL, k))

VR3 ← VBROADCAST(B(1, k))

VR4 ← VBROADCAST(B(2, k)) ▷ FMA on first pair of Bs
VR5 ← VFMA(VR5, VR1, VR3)

VR6 ← VFMA(VR6, VR2, VR3)

VR7 ← VFMA(VR7, VR1, VR4)

VR8 ← VFMA(VR8, VR2, VR4)

VR3 ← VBROADCAST(B(1, k))

VR4 ← VBROADCAST(B(2, k)) ▷ FMA on second pair of Bs
VR9 ← VFMA(VR9 , VR1, VR3)

VR10← VFMA(VR10, VR2, VR3)

VR11← VFMA(VR11, VR1, VR4)

VR12← VFMA(VR12, VR2, VR4)

VR3 ← VBROADCAST(B(1, k))

VR4 ← VBROADCAST(B(2, k)) ▷ FMA on last pair of Bs
VR13← VFMA(VR13, VR1, VR3)

VR14← VFMA(VR14, VR2, VR3)

VR15← VFMA(VR15, VR1, VR4)

VR16← VFMA(VR16, VR2, VR4)

k← k+1

end for

statements (asm volatile) in order to achieve the best possible execution. Pseudo-code of the
micro-kernel is shown in Algorithm 1.

This kernel for DGEMM uses all 16 registers available on the AVX2 hardware. The VR represents
a vector register and VL the vector length.

The data required for the sequence of operations in Algorithm 1 is streamed through the custom
data structures A′, B′, and C ′ and ensures that subsequent tiles required for each step of the loop
in Algorithm 1 are accessed in stride 1, i.e. via automatic hardware prefetch. The above kernel is
called for all the tiles and blocks of the matrix C ′ and if required the subsequent result is unpacked
in LAPACK format.

Preliminary results

The above kernel has been implemented for the AVX2 and AVX512 architectures. Comparison of the
kernel for the AVX2 and AVX512 architecture with the corresponding optimal subroutines availble in the
Intel Math Kernel Library (MKL) has been carried out. Preliminary results are shown in Figure 3 and
Figure 4. A clear improvement is seen for all cases, especially for small matrices (M = N < 1000) on
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the AVX512machines. Further improvement involves preparing easy installation scripts and specialized
subroutines for easy use in all QMCkl applications.
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Figure 3: Comparison of the DGEMM performance for Rank-K updates vs Intel MKL on AVX2 (Intel
BROADWELL) architecture.
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Figure 4: Comparison of the DGEMM performance for Rank-K updates vs Intel MKL on AVX512
(Intel SKYLAKE) architecture.

3.3.2 Vector Reduction

The Vector reduction instruction is sometimes needed for special kernels. Native instructions are
available for some architectures such as ARM (RISC-V). The Intel x86 instruction set does not have
a vector reduce (ADDV) instruction for a VR. In such a case, the ADDV can still be performed albeit at
a higher cost with the following 5-set of instructions.

Algorithm 2 Micro-kernel VRED
XMM0← VCASTPD128(VR1)

XMM1← VEXTRACTF128PD(XMM0, 0x1)

XMM2← VADDPD(XMM0, XMM1)

XMM3← VUNPACKPD(XMM2, XMM2)

XMM0← VADDSD(XMM3, XMM2)

C(0)← VSTORESD(XMM0)

Second type using only YMM registers
Where the meaning of each instruction is as follows:

• VCASTPD128: Take the low 128 bits of the VR
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Algorithm 3 Micro-kernel VRED

VR2← VPERM2F128(VR1, VR1)
VR3← VADDPD(VR0, VR1)
VR4← VPERMILPD(VR0, 0x5)
VR5← VADDPD(VR3, VR4)
C(0)← BROADCASTPD(VR5)

• VEXTRACTF128PD: Extract the high 128 bits of the VR

• VUNPACKPD: Extract the high 64 bits of the VR

• VPERM2F128: Permute the low 128 and high 128 bits of VR

• VPERMILPD: Permute the two 64 bit numbers within each 128 bit lane in VR

4 Preliminary performance analysis

In this section, we show performance of one of the most important QMCkl kernels: the computation
of the Jastrow factor, for which the computation is fairly complex: over several hundreds of source
code line. This kernel has already been presented in the reports of the Work Package (WP) in which
the pedagogical version of the library is developed (WP1), but here we recall the equations and
present its performance in the optimized version of QMCkl.

The initial equation implemented in CHAMP is:

Jeen(r,R) =

Nnucl∑
α=1

Nelec∑
i=1

i−1∑
j=1

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

clkpα (rij)
k
[
(Riα)

l + (Rjα)
l
]
(Riα Rjα)

(p−k−l)/2

It was rewritten as

Jeen(r,R) =

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

Nnucl∑
α=1

clkpα

Nelec∑
i=1

R̄i,α,(p−k−l)/2 P̄i,α,k,(p−k+l)/2

with

P̄i,α,k,l =

Nelec∑
j=1

r̄i,j,k R̄j,α,l.
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The gradients and Laplacian of the Jastrow factor are also required:

∇imJeen(r,R) =

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

Nnucl∑
α=1

clkpα

Nelec∑
i=1

Ḡi,m,α,(p−k−l)/2 P̄i,α,k,(p−k+l)/2 +

Ḡi,m,α,(p−k+l)/2 P̄i,α,k,(p−k−l)/2 + R̄i,α,(p−k−l)/2 Q̄i,m,α,k,(p−k+l)/2 +

R̄i,α,(p−k+l)/2 Q̄i,m,α,k,(p−k−l)/2 + δm,4

(
Ḡi,1,α,(p−k+l)/2 Q̄i,1,α,k,(p−k−l)/2 + Ḡi,2,α,(p−k+l)/2 Q̄i,2,α,k,(p−k−l)/2 +

Ḡi,3,α,(p−k+l)/2 Q̄i,3,α,k,(p−k−l)/2 + Ḡi,1,α,(p−k−l)/2 Q̄i,1,α,k,(p−k+l)/2 +

Ḡi,2,α,(p−k−l)/2 Q̄i,2,α,k,(p−k+l)/2 + Ḡi,3,α,(p−k−l)/2 Q̄i,3,α,k,(p−k+l)/2

)
with

Ḡi,m,α,l =
∂ (Riα)

l

∂ri
, ḡi,m,j,k =

∂ (rij)
k

∂ri
, and Q̄i,m,α,k,l =

Nelec∑
j=1

ḡi,m,j,k R̄j,α,l.

We can remark that reshaping the tensors into matrices by grouping indices allows us to rely on the
DGEMM kernel for the most expensive pieces of the equations. Special attention was dedicated in
the data structures to allow this reshaping with zero-copy, and to ensure a stride-one access to array
in the computations that occur outside of the DGEMM kernels.

All of the measurements presented in this section have been carried out on a single core of an
Intel Skylake Intel(R) Xeon(R) Platinum 8170 CPU @ 2.10GHz, running Linux 5.16.-arch1. QMCkl
was compiled using the Intel Fortran compiler ifort 2021.5.0 with the -O3 option. All performance
analysis (measurements and data formatting) was done using MAQAO/ONEVIEW toolset.
Note that in the runs presented in this section, the kernels described in the previous section are not
yet linked with the QMCkl library, and MKL is used for matrix multiplications. In the short term, we
expect our kernels to improve performance.

Figure 6 shows that most (more precisely 76%) of the execution time is spent in math libraries.
Figure 7 indicates that most of this library time is spent in DGEMM (Dense Matrix Multiplication)
routines. For this initial run classic MKL BLAS was used but in subsequent runs, QMCkl DGEMM
will be used.

Figure 5 shows that beyond libraries, 25% of the execution time is spent in loops and most of
it in innermost loops. Still on Figure 5, the row “Perfect Flow Complexity” with a value of 1.00
demonstrates that all of these loops are branch free and call free. The row “Array Access Efficiency”
with a value of 95.9 indicates that 95.9 % of data access in innermost loops are stride 1 access
showing an excellent array organization and a very good use of spatial locality.

Finally, Figure 8 shows that many loops are very well vectorized: see green cells with 100 % in
the column “Vectorization Ratio”. However, the column “Vectorization Efficiency” with values under
50 clearly reveals that the compiler was not able to generate full 512 bits vector instructions. Most
of the time, instructions using 256 bits vectors have been generated. This weakness deserves further
investigation.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

16 of 20



D3.2– Initial public release of high-performance software components

Figure 5: Global MAQAO metrics showing the overall performance of the Jastrow submodule of the
QMCkl library.

Figure 6: The percentage of time spent in the various types of operations. The majority of the time
i.e. 68% is spent in the Math (i.e. MKL DGEMM) library.
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Figure 7: A breakdown of the total time spent in the various function of the Jastrow submodule. As
can be clearly seen, the majority of the time (>50%) is spent in the call to MKL DGEMM subroutine.

Figure 8: Analysis of the native functions of the library shows good vectorization ratio (close to
100%) for almost all functions.
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5 Conclusion and Future Work

In this document we presented the major guidelines and ingredients to generate the HPC versions of
QMCKL. We demonstrated the use of these principles on generating a few kernels and testing one
key QMCkl routine (Jastrow computation) on an x86 CPU.

We will pursue our work along 4 main directions:

• (FW1) Generate and test more QMCkl HPC routines

• (FW2) Integrate QMCkl DGEMM into QMCkl main repository

• (FW3) Extend our work towards testing a larger number of compilers and hardware architec-
tures (AMD, ARM and INTEL)

• (FW4) Integrate GPU support in QMCkl library

For sure, after going through all of the testing listed above, some of the concepts and implemen-
tations will have to be amended/corrected or perharps changed. As such, this work should be still
considered as in progress.
Also in the project final year, once enough experience will have been accumulated with QMCkl, we
will promote the library out side of TREX, potentially adding new kernels which could be essential to
other QMC applications.

TODAY

WEEK: 1 WEEK: 60

100% completeFuture Work on QMCkl

2% completeFW1

4% completeFW2

0% completeFW3

0% completeFW4
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A Appendix A

A.1 Unrolling and Register size - Kernel implementation
Algorithm 1 represents the high-level schematic of the kernel. The kernel itself is generated
via a code generator written in Python which has the following features:

• Automatic loop unrolling - asm volatile code can be generated unrolled K times, tak-
ing advantage of the pipelining feature of the CPU.

• Kernel register type - The algorithm Algo 1 requires the knowledge of the number of
physical registers and the register length (XMM, YMM, or ZMM). The number of reg-
isters and their type may vary between the different architectures, for example the IN-
TEL (AVX2) instruction set has 16 physical YMM registers whereas the Intel (AVX512)
instruction set has 32 physical ZMM type registers. The Python script is capable of
automatically generating kernels for each such type of instruction sets.

• Kernel register usage - Moreover, the asm volatile kernel for the algorithm shown in
Algo 1 can be written using a variable number of registers in order to optimize the data
streaming on blocks of matrix A′, B′, or C ′.

A.2 Code generator
The Python code given below is only 250 lines long. It shows the simplicity, versatility, and
ease of maintainability of the script for future/new architectures.

beginning =r"""

BEGIN_ASM()

"""

ending =r"""

VZEROUPPER()

END_ASM

(

: // output

: // input

[k] "m"(kl),

[a] "m"(A),

[b] "m"(B),

[c] "m"(C),

: // clobber

"rax", "rbx", "rcx", "rdx", "rdi", "rsi", "r8", "r9", "r10", "r11", "r12",
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"r13", "r14", "r15", reglist "memory"

)

"""

def initReg(numReg, sizeReg):

regdict = dict()

regdict[128] = 'XMM'

regdict[256] = 'YMM'

regdict[512] = 'ZMM'

outcode =r""

tmpcode =r""

setregzero = "VXORPD(regname( idreg), regname( idreg), regname( idreg))"

for i in range(numReg):

tmpcode = setregzero.replace("idreg",str(i))

outcode = outcode + tmpcode.replace("regname",regdict[sizeReg]) + "\n"

return(outcode)

def setupRegs():

outcode=r""

outcode = outcode + "MOV(RSI, VAR(k))" + "\n"

outcode = outcode + "MOV(RAX, VAR(a))" + "\n"

outcode = outcode + "MOV(RBX, VAR(b))" + "\n"

outcode = outcode + "MOV(RCX, VAR(c))" + "\n"

return(outcode)

beginning =r"""

BEGIN_ASM()

"""

ending =r"""

VZEROUPPER()

END_ASM

(

: // output

: // input

[k] "m"(kl),

[a] "m"(A),

[b] "m"(B),

[c] "m"(C),

: // clobber
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"rax", "rbx", "rcx", "rdx", "rdi", "rsi", "r8", "r9", "r10", "r11", "r12",

"r13", "r14", "r15", reglist "memory"

)

"""

def initReg(numReg, sizeReg):

regdict = dict()

regdict[128] = 'XMM'

regdict[256] = 'YMM'

regdict[512] = 'ZMM'

outcode =r""

tmpcode =r""

setregzero = "VXORPD(regname( idreg), regname( idreg), regname( idreg))"

for i in range(numReg):

tmpcode = setregzero.replace("idreg",str(i))

outcode = outcode + tmpcode.replace("regname",regdict[sizeReg]) + "\n"

return(outcode)

def setupRegs():

outcode=r""

outcode = outcode + "MOV(RSI, VAR(k))" + "\n"

outcode = outcode + "MOV(RAX, VAR(a))" + "\n"

outcode = outcode + "MOV(RBX, VAR(b))" + "\n"

outcode = outcode + "MOV(RCX, VAR(c))" + "\n"

return(outcode)

def mainLoop(numReg, sizeReg, unrollFactor):

regdict = dict()

regdict[128] = "XMM"

regdict[256] = "YMM"

regdict[512] = "ZMM"

regdictlc = dict()

regdictlc[128] = "xmm"

regdictlc[256] = "ymm"

regdictlc[512] = "zmm"

nelemInReg = sizeReg//64

prefetch = "PREFETCH(0, MEM(regname, idfac2*8))"

loadmtor = "VMOVUPD(REG( idreg1), MEM(regname, idfac2*8))"

loadrtom = "VMOVUPD(MEM(regname, idfac2*8), REG( idreg1))"

add = "VADDPD(REG( idreg1), REG( idreg2), MEM(regname, idfac2*8))"
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broadcast = "VBROADCASTSD(REG( idreg1), MEM(regname, idfac2*8))"

fma = "VFMADD231PD(REG( idreg1), REG( idreg2), REG( idreg3))"

lea = "LEA(regname, MEM(regname, jmpfac*8))"

outcode =r""

finalcode =r""

for ik in range(unrollFactor):

outcode =r""

# Main loop

NR = (numReg - 4)//2

MR = 2 * (sizeReg//64)

tmpload = loadmtor.replace("REG",regdict[sizeReg])

tmpload = tmpload.replace("regname","RAX")

tmpload = tmpload.replace("szereg",str(sizeReg))

tmpload = tmpload.replace("idreg1",str(0))

tmpload = tmpload.replace("idfac2",str(0))

outcode = "\n" + "\t" + outcode + tmpload + "\n"

tmpload = loadmtor.replace("REG",regdict[sizeReg])

tmpload = tmpload.replace("regname","RAX")

tmpload = tmpload.replace("szereg",str(sizeReg))

tmpload = tmpload.replace("idreg1",str(1))

tmpload = tmpload.replace("idfac2",str(MR//2))

outcode = outcode + "\t" + tmpload + "\n" + "\n"

regid = 3

facb = 0

for nrid in range(NR//2):

tmpmov = broadcast.replace("REG",regdict[sizeReg])

tmpmov = tmpmov.replace("regname","RBX")

tmpmov = tmpmov.replace("idreg1",str(2))

tmpmov = tmpmov.replace("idfac2",str(facb))

outcode = outcode + "\t" + tmpmov + "\n"

tmpmov = broadcast.replace("REG",regdict[sizeReg])

tmpmov = tmpmov.replace("regname","RBX")

tmpmov = tmpmov.replace("idreg1",str(3))

tmpmov = tmpmov.replace("idfac2",str(facb + 1))

outcode = outcode + "\t" + tmpmov + "\n"

facb = facb + 2

regid += 1

tmpfma = fma.replace("REG",regdict[sizeReg])

tmpfma = tmpfma.replace("idreg1",str(regid))

tmpfma = tmpfma.replace("idreg2",str(0))

tmpfma = tmpfma.replace("idreg3",str(2))
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outcode = outcode + "\t" + tmpfma + "\n"

regid += 1

tmpfma = fma.replace("REG",regdict[sizeReg])

tmpfma = tmpfma.replace("idreg1",str(regid))

tmpfma = tmpfma.replace("idreg2",str(1))

tmpfma = tmpfma.replace("idreg3",str(2))

outcode = outcode + "\t" + tmpfma + "\n"

regid += 1

tmpfma = fma.replace("REG",regdict[sizeReg])

tmpfma = tmpfma.replace("idreg1",str(regid))

tmpfma = tmpfma.replace("idreg2",str(0))

tmpfma = tmpfma.replace("idreg3",str(3))

outcode = outcode + "\t" + tmpfma + "\n"

regid += 1

tmpfma = fma.replace("REG",regdict[sizeReg])

tmpfma = tmpfma.replace("idreg1",str(regid))

tmpfma = tmpfma.replace("idreg2",str(1))

tmpfma = tmpfma.replace("idreg3",str(3))

outcode = outcode + "\t" + tmpfma + "\n"

tmplea = "\n\t" + lea.replace("regname","RAX")

tmplea = tmplea.replace("jmpfac",str(MR))

outcode = outcode + "\t" + tmplea + "\n"

tmplea = lea.replace("regname","RBX")

tmplea = tmplea.replace("jmpfac",str(NR))

outcode = outcode + "\t" + tmplea + "\n\n"

finalcode = finalcode + outcode

outcode =r""

idxreg = 4

for inr in range(NR):

tmppref = prefetch.replace("regname","RCX")

tmppref = tmppref.replace("idfac2",str(192))

outcode = outcode + tmppref + "\n"

tmpadd = add.replace("regname","RCX")

tmpadd = tmpadd.replace("REG",regdict[sizeReg])

tmpadd = tmpadd.replace("idreg1",str(1))
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tmpadd = tmpadd.replace("idreg2",str(idxreg))

tmpadd = tmpadd.replace("idfac2",str(0))

outcode = outcode + tmpadd + "\n"

idxreg = idxreg + 1

tmpload = loadrtom.replace("REG",regdict[sizeReg])

tmpload = tmpload.replace("regname","RCX")

tmpload = tmpload.replace("szereg",str(sizeReg))

tmpload = tmpload.replace("idreg1",str(1))

tmpload = tmpload.replace("idfac2",str(0))

outcode = outcode + tmpload + "\n"

#tmppref = prefetch.replace("regname","RCX")

#tmppref = tmppref.replace("idfac2",str(192))

#outcode = outcode + tmppref + "\n"

tmpadd = add.replace("regname","RCX")

tmpadd = tmpadd.replace("REG",regdict[sizeReg])

tmpadd = tmpadd.replace("idreg1",str(1))

tmpadd = tmpadd.replace("idreg2",str(idxreg))

tmpadd = tmpadd.replace("idfac2",str(MR//2))

outcode = outcode + tmpadd + "\n"

idxreg = idxreg + 1

tmpload = loadrtom.replace("REG",regdict[sizeReg])

tmpload = tmpload.replace("regname","RCX")

tmpload = tmpload.replace("szereg",str(sizeReg))

tmpload = tmpload.replace("idreg1",str(1))

tmpload = tmpload.replace("idfac2",str(MR//2))

outcode = outcode + tmpload + "\n"

tmplea = "\n\t" + lea.replace("regname","RCX")

tmplea = tmplea.replace("jmpfac",str(MR))

outcode = outcode + "\t" + tmplea + "\n"

header =r"""

TEST(RSI, RSI)

JE(K_LOOP)""" + "\n\t" + "LABEL(LOOP1)\n\n"

tailer =r"""

DEC(RSI)

JNE(LOOP1)
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""" + "\nLABEL(K_LOOP)\n\n"

finalcode = header + finalcode + tailer + outcode

# Ending

reglist = r""

for i in range(numReg):

reglist = reglist + "\"" + regdictlc[sizeReg] + str(i) + "\"" + ", "

return(beginning + initReg(numReg,sizeReg) + setupRegs() + \

finalcode + ending.replace("reglist",reglist))

print(mainLoop(32,512,2))
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