
29-09-2021

D2.2 – Report on the final release of the I/O
library

Version V1.0

GA no 952165

Dissemination Level

� PU: Public
� PP: Restricted to other programme participants (including the Commission)
� RE: Restricted to a group specified by the consortium (including the Commission)
� CO: Confidential, only for members of the consortium (including the Commission)

D2.2 – Report on the final release of the I/O library

Document Information

Project Title Targeting Real Chemical accuracy at the EXascale

Project Acronym TREX

Grant Agreement No 952165

Instrument Call: H2020-INFRAEDI-2019-1

Topic INFRAEDI-05-2020 Centres of Excellence in EXascale computing

Start Date of Project 01-10-2020

Duration of Project 36 Months

Project Website https://trex-coe.eu/

Deliverable Number D2.2

Deliverable title D2.2 – Report on the final release of the I/O library, as seen in GA

Due Date M12 – 31-09-2021 (from GA)

Actual Submission Date 29-09-2021

Work Package WP2 – Code modularization and interfacing

Lead Author (Org) Anthony Scemama (Centre National de la Recherche Scientifique
(CNRS))

Contributing Author(s) (Org) Evgeny Posenitskiy (CNRS)

Reviewers (Org) Axel Auweter (Megware computer vertrieb und service GmbH
(Megware)), Dirk Pleiter (Kungliga Tekniska högskolan (KTH)), Jan
Beerens (Universiteit Twente (UT))

Version V1.0

Dissemination level PU

Nature Report

Draft / final Final

No. of pages including cover 20

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

i of v

https://trex-coe.eu/

D2.2 – Report on the final release of the I/O library

Disclaimer

TREX: Targeting Real Chemical Accuracy at the Exascale project has received
funding from the European Union Horizon 2020 research and innovation program
under Grant Agreement No. 952165.

The content of this document does not represent the opinion of the European Union, and the European
Union is not responsible for any use that might be made of such content.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

ii of v

D2.2 – Report on the final release of the I/O library

Versioning

Version Date Authors Notes

1.0 29-09-2021 Anthony Scemama (CNRS) First Official Release

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

iii of v

D2.2 – Report on the final release of the I/O library

Abbreviations

AO Atomic Orbital

API Application Programming Interface

CNRS Centre National de la Recherche Scientifique

CoE Center of Excellence

ECP Effective Core Potential

HDF5 Hierarchical Data Format

HTML HyperText Markup Language

JSON JavaScript Object Notation

KTH Kungliga Tekniska högskolan

Megware Megware computer vertrieb und service GmbH

MO Molecular Orbital

TREX Targeting REal chemical accuracy at the eXascale

TREXIO TREX Input/Output

UT Universiteit Twente

WP Work Package

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

iv of v

D2.2 – Report on the final release of the I/O library

Table of Contents

Document Information . i

Disclaimer . ii

Versioning. iii

Abbreviations . iv

Table of Contents . v

1 Summary of the previous report . 1
Hierarchical design . 1
Data types . 2
Naming conventions . 2
Error handling. 2
File locking. 2

2 Changes with respect to the alpha version . 3
Safe functions. 3
Documentation . 3

3 New features . 4
String handling . 4
Index types . 4
Python interface . 4
Continuous integration . 5
Practical Applications. 5

4 Future work . 5
TREXIO . 5
TREX codes . 5

A TREXIO Tutorial . I
Importing TREXIO . I
Creating a new TREXIO file. I
Writing data in the TREXIO file . II

Writing NumPy arrays (float or int types) . IV
TREXIO error handling . V

Closing the TREXIO file . VI
Reading data from the TREXIO file. VI

Reading multidimensional arrays. VIII
Conclusion . IX

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

v of v

D2.2 – Report on the final release of the I/O library

1 Summary of the previous report

A report for the progress of this Work Package (WP) was made at month 6: D2.1 - Report on a
first alpha release of the I/O library, ready for WP4.1 We recall in this section the key points of the
developed library.

The objective of the TREX Input/Output (TREXIO) library is to facilitate inter-operability be-
tween codes in the field of quantum chemistry, primarily focused on enabling the communication of
data between the flagship codes of the Targeting REal chemical accuracy at the eXascale (TREX)
Center of Excellence (CoE): Neci, GammCor, Quantum Package, QMC=Chem, Champ,
TurboRVB. In the long term, we expect this library to be also adopted by codes outside of the
CoE. Data is read from or written to files in which the electronic wave function, reduced density
matrices, integrals, etc. are stored, and an Application Programming Interface (API) is provided to
store and retrieve the data in the files. To maximize the portability of the library, the source code is
written in the C99 language, and it is released under the BSD-3 clause license.

Hierarchical design

The data stored in the files is organized in different groups:

- Metadata - Electron

- Nucleus - Basis

- Atomic Orbital (AO) - Molecular Orbital (MO)

- AO one-electron integrals - MO one-electron integrals

- Effective Core Potential (ECP)

and the conventions for the data stored in each group are specified in the documentation (https:
//trex-coe.github.io/trexio/trex.html). The data groups are defined in a file, trex.json,
from which the library is automatically generated by a script.

Multiple back ends are proposed to write the data to disk, transparently to the users. The first
back end relies on version ≥1.8 of the Hierarchical Data Format (HDF5) library, and is expected to
be the default choice for production. The second back end is based on simple text files. Its purpose
is to reduce the dependencies by allowing the users to install the library even if they are not able to
install HDF5. A second purpose of this back end is for situations where the TREXIO files need to
be stored in a version control system, where the differences between binary files are difficult to deal
with.

1https://cordis.europa.eu/project/id/952165/results

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

1 of 5

https://trex-coe.github.io/trexio/trex.html
https://trex-coe.github.io/trexio/trex.html
https://cordis.europa.eu/project/id/952165/results

D2.2 – Report on the final release of the I/O library

Data types

A TREXIO file is referenced with a variable of type trexio_t. For the data contained in the files,
three types are considered: integers, floats and strings. Internally the data is always stored using 64
bits of precision for both floats and integers, but all the functions are available using 32-bit or 64-bit
interfaces and the type conversions are done automatically by the library. The default interface is
32-bit for integers and 64-bit for floats. Endianness is taken care of by the HDF5 back end.

As TREXIO is intended to be interfaced with multiple programming languages, it is important
to specify precisely the binary representation of numbers. In the C language, the definition of the
standard types of integers (short, long int, etc) depends on the architecture on which the code
is compiled, and such behavior is not desirable for files which may be used on different architectures.
Hence, we use the integer types defined in the <stdint.h> header.

In addition, a data type is proposed for the type of back end (back_end_t) and for the exit codes
of the functions (trexio_exit_code). These two types are just explicit redefinitions of int32t,
and are present to make the interface more readable.

Naming conventions

All the function names of the library are built using simple rules, such that users easily guess
the function names without reading the complete documentation. The names are always built as
trexio_[read|write|has]_[group]_[data]: for example trexio_read_nucleus_num reads the
variable num of group nucleus. To avoid confusion, the singular form is chosen for all the names of
the groups or variables.

Error handling

All the functions return an exit code, of type trexio_exit_code. Upon success of the execution of
the function, the exit code is TREXIO_SUCCESS (stored internally as 0). Otherwise, another exit code
is returned (see documentation for the complete list), and a textual description of the error can be
obtained by passing the returned exit code to the trexio_string_of_error function. This gives
the complete control on error handling to the users of the library: the library never aborts the calling
program.

File locking

The “multiple reader single writer” locking model was implemented, to avoid the accidental production
of corrupted files. It is implemented both at the thread level on the front end and at the file level on
the back end.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

2 of 5

D2.2 – Report on the final release of the I/O library

2 Changes with respect to the alpha version

Safe functions

In the alpha version, the arrays passed as arguments were given as pointers, and their dimensions
were obtained from data stored in the files. For instance, to read the array of nuclear charges, the
users would call trexio_read_nucleus_charge(trexio_file, charges) where trexio_file

is a pointer to the TREXIO file and charges is a pointer to an array of type double. This
approach minimizes the number of arguments and makes the API simple, but there is no pos-
sibility to check that the arrays provided by the user are large enough to accept the data read
from the file, and this can lead to segmentation faults or to a security vulnerability if users pro-
vide too small arrays as arguments. To solve this problem, we have introduced safe variants of
the functions with an extra argument corresponding to the size of the array. It is now possi-
ble to call trexio_read_safe_nucleus_charge(trexio_file, charges, nucleus_num) where
nucleus_num is the expected allocated size of the array. This allows the library to check that the
dimension of the array is valid, assuming that the argument passed by the user is correct.

Documentation

The technical documentation was improved. The JavaScript Object Notation (JSON) file containing
the definition of the data is now generated using the Emacs text editor from a file in Org syntax
containing the documentation of the groups. This file is also used to produce the HyperText Markup
Language (HTML) documentation.2 As a consequence, the documentation is always consistent with
the provided library, and the definition of new groups of data is even more user-friendly.

The documentation now contains examples and tutorials to help the adoption of the library by
newcomers. Examples are provided in Python, C and Fortran. An additional GitHub repository called
trexio-tutorials3 has been created in order to host TREXIO tutorials in the Jupyter notebook
format. This approach also facilitates creation of an isolated virtual environment in the cloud (e.g. on
Binder4). The produced environment can then be used be explore and execute the Jupyter notebooks
online without the need to install any software on the user machine. A demo notebook can be
launched using this link.

2https://trex-coe.github.io/trexio/
3https://github.com/TREX-CoE/trexio-tutorials/
4https://mybinder.org/

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

3 of 5

https://mybinder.org/v2/gh/TREX-CoE/trexio-tutorials/HEAD?filepath=notebooks%2Ftutorial_benzene.ipynb
https://trex-coe.github.io/trexio/
https://github.com/TREX-CoE/trexio-tutorials/
https://mybinder.org/

D2.2 – Report on the final release of the I/O library

3 New features

String handling

String types are now implemented. Special care was needed for these data types as strings are handled
differently in C and Fortran, and are well known to be problematic for the Fortran-C interoperability.
In Fortran, string sizes are fixed at allocation whereas in C, the size of a string is determined by
counting the number of characters until a null terminating character is found. As a consequence,
several functions were written to make the proper conversions, such that the user experience is the
same in both languages.

Index types

C uses zero-based indexing for arrays while Fortran uses one-based indexing. In other words, the first
index of an array is 0 in C and 1 in Fortran. This is problematic for integer arrays which contain data
corresponding to indices of other arrays. For example, the nucleus index array of the basis group
refers to the index of the first shell of each atom in the array of shells. These values are expected to
be consistent with the conventions of the language, shifted by one when used in Fortran with respect
to C. To solve this issue, a new data type (index) was added in the JSON description file for integer
variables referring specifically to array indices and index updates are handled by the library.

Python interface

The Python interface to the C library was one of our priorities, as the AiiDA software used in WP 4
is written in Python. In addition, it enables the possibility to create a set of simple tools to manage
TREXIO files. For example, we have written a script that computes numerically the overlap matrix
in the basis of atomic orbitals, and compare it with the stored overlap matrix. This tool is valuable
to developers integrating TREXIO in their software as it can help checking that the conventions used
for the definition of the basis set parameters are correct.

Another important aspect of having a Python interface is to enable the use of TREXIO files in
Jupyter notebooks. This will have a large benefit for tutorials, teaching, prototyping and interacting
with cloud services.

The Python interface was packaged to provide a simple installation procedures via the Pip package
manager. To install TREXIO within Python, users simply need to run pip install trexio.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

4 of 5

D2.2 – Report on the final release of the I/O library

Continuous integration

The Autotools configuration scripts have been finalized. Automake is now used together with libtool
to maximize the portability of the compilation of the library. The library can be configured in two
modes. A “maintainer” mode for the TREX developers working on the source code of the generator
or on the templates library. This mode requires Emacs to be present on the system to build the
library and the documentation. The second mode, the “normal” mode, is dedicated to users of the
library who only need to compile the source files and install the library on their system along with the
documentation, without requiring to re-generate all the files generated in the “maintainer” mode.
This last mode requires less dependencies than the “maintainer mode”, and is the default mode
provided in the tarballs of the distribution.

Continuous integration was set up with GitHub actions, testing the generation of the library
and the compilation in “maintainer” mode, the creation of the distributed tarball and the proper
functioning of the library. The library is now automatically tested for the latest x86 Ubuntu and
MacOS operating systems. In addition, the library was tested for the Apple M1 ARM processor.

Practical Applications

A plug-in was written for the Quantum Package program to export the computed wave function into
a TREXIO file. Several Python scripts5 were also written to convert output files from the Gaussian
and GAMESS codes into TREXIO format.

4 Future work

TREXIO

This first release enables the storage of single determinant wave functions (Hartree-Fock, Kohn-
Sham, . . .). In the next release, we will introduce the possibility to store multi-determinant wave
functions. In addition, we will provide the possibility to store 4-index tensors such as the electron
repulsion integrals and the two-body reduced density matrices. This will require the inclusion of new
data structures able to handle efficiently sparse arrays, possibly using compression. Finally, we will
provide new functions to enable the storage of quantities required for periodic systems.

An updated release of the I/O library is envisioned when submitting deliverable D2.6 Report on
final release of TREX platform with inter-operable flagship codes at M36 (30/09/2023).

TREX codes

The next step ongoing in our project is the integration of TREXIO in the TREX flagship codes. This
will be done using two different scenarios. The first one is to link TREXIO with the code, and call
directly its functions. This approach will be used in the Qmckl library, Quantum Package and
QMC=Chem. In other codes such as the AiiDA plugins of the codes or TurboRVB, it will be
easier to use the Python interface of TREXIO to produce the program-specific files.

5https://github.com/TREX-CoE/trexio_tools

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

5 of 5

https://github.com/TREX-CoE/trexio_tools

D2.2 – Report on the final release of the I/O library

A TREXIO Tutorial

This interactive Tutorial covers some basic use cases of the TREXIO library based on the Python API.
At this point, it is assumed that the TREXIO Python package has been successfully installed on the
user machine or in the virtual environment. If this is not the case, feel free to follow the installation
guide.

Importing TREXIO

First of all, let’s import the TREXIO package.

try:

import trexio

except ImportError:

raise Exception("Unable to import trexio. Please check that trexio is \

properly installed.")

If no error occurs, then it means that the TREXIO package has been successfully imported. Within
the current import, TREXIO attributes can be accessed using the corresponding trexio.attribute

notation. If you prefer to bound a shorter name to the imported module (as commonly done by
the NumPy users with import numpy as np), this is also possible. To do so, replace import

trexio with import trexio as tr for example. To learn more about importing modules, see the
corresponding page of the Python documentation.

Creating a new TREXIO file

TREXIO currently supports two back ends for file I/O:

1. TREXIO HDF5, which relies on extensive use of the HDF5 library and the associated binary file
format. This back end is optimized for high performance but it requires HDF5 to be installed
on the user machine.

2. TREXIO TEXT, which relies on basic I/O operations that are available in the standard C library.
This back end is not optimized for performance but it is supposed to work ”out-of-the-box”
since there are no external dependencies.

Armed with these new definitions, let’s proceed with the tutorial. The first task is to create a
TREXIO file called benzene demo.h5. But first we have to remove the file if it exists in the current
directory

filename = 'benzene_demo.h5'

import os

try:

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

I of IX

https://github.com/TREX-CoE/trexio/blob/master/python/README.md
https://github.com/TREX-CoE/trexio/blob/master/python/README.md
https://docs.python.org/3/tutorial/modules.html#more-on-modules
https://portal.hdfgroup.org/display/HDF5/HDF5

D2.2 – Report on the final release of the I/O library

os.remove(filename)

except:

print(f"File {filename} does not exist.")

File benzene_demo.h5 does not exist.

We are now ready to create a new TREXIO file:

demo_file = trexio.File(filename, mode='w', back_end=trexio.TREXIO_HDF5)

This creates an instance of the trexio.File class, which we refer to as demo file in this tutorial.
You can check that the corresponding file called benzene demo.h5 exists in the root directory. It
is now open for writing as indicated by the user-supplied argument mode’w’. The file has been

initiated using the TREXIO HDF5 back end and will be accessed accordingly from now on. The
information about back end is stored internally by TREXIO, which means that there is no need to
specify it every time the I/O operation is performed. If the file named benzene demo.h5 already
exists, then it is re-opened for writing (and not truncated to prevent data loss).

Writing data in the TREXIO file

Prior to any work with TREXIO library, we highly recommend users to read about TREXIO internal
configuration, which explains the structure of the wavefunction file. The reason is that TREXIO API
has a naming convention, which is based on the groups and variables names that are pre-defined by
the developers. In this Tutorial, we will only cover contents of the nucleus group. Note that custom
groups and variables can be added to the TREXIO API.

In this Tutorial, we consider benzene molecule (C6H6) as an example. Since benzene has 12
atoms, let’s specify it in the previously created demo file. In order to do so, one has to call
trexio.write nucleus num function, which accepts an instance of the trexio.File class as a
first argument and an int value corresponding to the number of nuclei as a second argument.

nucleus_num = 12

trexio.write_nucleus_num(demo_file, nucleus_num)

In fact, all API functions that contain write prefix can be used in a similar way. Variables that
contain num suffix are important part of the TREXIO file because some of them define dimensions
of arrays. For example, nucleus num variable corresponds to the number of atoms, which will be
internally used to write/read the nucleus coord array of nuclear coordinates. In order for TREXIO
files to be self-consistent, overwriting num-suffixed variables is currently disabled.

The number of atoms is not sufficient to define a molecule. Let’s first create a list of nuclear
charges, which correspond to benzene.

charges = [6., 6., 6., 6., 6., 6., 1., 1., 1., 1., 1., 1.]

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

II of IX

https://trex-coe.github.io/trexio/trex.html
https://trex-coe.github.io/trexio/trex.html

D2.2 – Report on the final release of the I/O library

According to the TREX configuration file, there is a charge attribute of the nucleus group,
which has float type and [nucleus num] dimension. The charges list defined above fits nicely in
the description and can be written as follows

trexio.write_nucleus_charge(demo_file, charges)

Note: TREXIO function names only contain parts in singular form. This means that,
both write nucleus charges and write nuclear charges are invalid API calls. These functions
simply do not exist in the trexio Python package and the corresponding error message should appear.

Alternatively, one can provide a list of nuclear labels (chemical elements from the periodic table)
that correspond to the aforementioned charges. There is a label attribute of the nucleus group,
which has str type and [nucleus num] dimension. Let’s create a list of 12 strings, which correspond
to 6 carbon and 6 hydrogen atoms:

labels = [

'C',

'C',

'C',

'C',

'C',

'C',

'H',

'H',

'H',

'H',

'H',

'H']

This can now be written using the corresponding trexio.write nucleus label function:

trexio.write_nucleus_label(demo_file, labels)

Two examples above demonstrate how to write arrays of numbers or strings in the file. TREXIO
also supports I/O operations on single numerical or string attributes. In fact, in this Tutorial you
have already written one numerical attribute: nucleus num. Let’s now write a string ’D6h’, which
indicates a point group of benzene molecule. According to the TREX configuration file, point group

is a str attribute of the nucleus group, thus it can be written in the demo file as follows

point_group = 'D6h'

trexio.write_nucleus_point_group(demo_file, point_group)

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

III of IX

D2.2 – Report on the final release of the I/O library

Writing NumPy arrays (float or int types)

The aforementioned examples cover the majority of the currently implemented functionality related
to writing data in the file. It is worth mentioning that I/O of numerical arrays in TREXIO Python
API relies on extensive use of the NumPy package. This will be discussed in more details in the
section about reading data. However, TREXIO write functions that work with numerical arrays
also accept numpy.ndarray objects. For example, consider a coords list of nuclear coordinates that
correspond to benzene molecule

coords = [

[0.00000000 , 1.39250319 , 0.00000000],

[-1.20594314 , 0.69625160 , 0.00000000],

[-1.20594314 , -0.69625160 , 0.00000000],

[0.00000000 , -1.39250319 , 0.00000000],

[1.20594314 , -0.69625160 , 0.00000000],

[1.20594314 , 0.69625160 , 0.00000000],

[-2.14171677 , 1.23652075 , 0.00000000],

[-2.14171677 , -1.23652075 , 0.00000000],

[0.00000000 , -2.47304151 , 0.00000000],

[2.14171677 , -1.23652075 , 0.00000000],

[2.14171677 , 1.23652075 , 0.00000000],

[0.00000000 , 2.47304151 , 0.00000000],

]

Let’s take advantage of using NumPy arrays with fixed precision for floating point numbers. But
first, try to import the numpy package

try:

import numpy as np

except ImportError:

raise Exception("Unable to import numpy. Please check that numpy is \

properly installed.")

You can now convert the previously defined coords list into a numpy array with fixed float64

type as follows

coords_np = np.array(coords, dtype=np.float64)

TREXIO functions that write numerical arrays accept both lists and numpy arrays as a
second argument. That is, both trexio.write nucleus coord(demo file, coords) and
trexio.write nucleus coord(demo file, coords np) are valid API calls. Let’s use the latter
and see if it works

trexio.write_nucleus_coord(demo_file, coords_np)

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

IV of IX

https://numpy.org/

D2.2 – Report on the final release of the I/O library

Congratulations, you have just completed the nucleus section of the TREXIO file for benzene
molecule! Note that TREXIO API is rather permissive and do not impose any strict ordering on
the I/O operations. The only requirement is that dimensioning (num suffixed) variables have to be
written in the file before writing arrays that depend on these variables. For example, attempting to
write nucleus charge or nucleus coord fails if nucleus num has not been written.

TREXIO error handling

TREXIO Python API provides the trexio.Error class which simplifies exception handling in the
Python scripts. This class wraps up TREXIO return codes and propagates them all the way from
the C back end to the Python front end. Let’s try to write a negative number of basis set shells
basis num in the TREXIO file.

try:

trexio.write_basis_num(demo_file, -256)

except trexio.Error as e:

print(f"TREXIO error message: {e.message}")

TREXIO error message: Invalid argument 2

The error message says Invalid argument 2, which indicates that the user-provided value -256

is not valid.
As mentioned before, num-suffixed variables cannot be overwritten in the file. But what happens

if you accidentally attempt to do so? Let’s have a look at the write nucleus num function as an
example:

try:

trexio.write_nucleus_num(demo_file, 24)

except trexio.Error as e:

print(f"TREXIO error message: {e.message}")

TREXIO error message: Attribute already exists

The API rightfully complains that the target attribute already exists and cannot be overwritten.
Alternatively, the aforementioned case can be handled using trexio.has nucleus num function

as follows

if not trexio.has_nucleus_num:

trexio.write_nucleus_num(demo_file, 24)

TREXIO functions with has prefix return True if the corresponding variable exists and False

otherwise.
What about writing arrays? Let’s try to write an list of 48 nuclear indices instead of 12

indices = [i for i in range(nucleus_num*4)]

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

V of IX

D2.2 – Report on the final release of the I/O library

try:

trexio.write_basis_nucleus_index(demo_file, indices)

except trexio.Error as e:

print(f"TREXIO error message: {e.message}")

TREXIO error message: Access to memory beyond allocated

According to the TREX configuration file, the nucleus index attribute of a basis group is
supposed to have [nucleus num] elements. In the example above, we have tried to write 4 times
more elements, which might lead to memory and/or file corruption. Luckily, TREXIO internally
checks the array dimensions and returns an error in case of inconsistency.

Closing the TREXIO file

It is good practice to close the TREXIO file at the end of the session. In fact, trexio.File class
has a destructor, which normally takes care of that. However, if you intend to re-open the TREXIO
file, it has to be closed explicitly before. This can be done using the close method, i.e.

demo_file.close()

Good! You are now ready to inspect the contents of the benzene demo.h5 file using the reading
functionality of TREXIO.

Reading data from the TREXIO file

First, let’s try to open an existing TREXIO file in read-only mode. This can be done by creating a
new instance of the trexio.File class but this time with mode’r’= argument. Back end has to be
specified as well.

demo_file_r = trexio.File(filename, mode='r', back_end=trexio.TREXIO_HDF5)

When reading data from the TREXIO file, the only required argument is a previously created
instance of the trexio.File class. In our case, it is demo file r. TREXIO functions with read

prefix return the desired variable as an output. For example, nucleus num value can be read from
the file as follows

nucleus_num_r = trexio.read_nucleus_num(demo_file_r)

print(f"nucleus_num from {filename} file ---> {nucleus_num_r}")

nucleus_num from benzene_demo.h5 file ---> 12

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

VI of IX

D2.2 – Report on the final release of the I/O library

The function call assigns nucleus num r to 12, which is consistent with the number of atoms in
benzene that we wrote in the previous section.

All calls to functions that read data can be done in a very similar way. The key point here is the
choice of the function name, which in turn defines the output format. Hopefully by now you got used
to the TREXIO naming convention and the contents of the nucleus group. Which function would
you call to read a point group attribute of the nucleus group? What type does it return? See the
answer below:

point_group_r = trexio.read_nucleus_point_group(demo_file_r)

print(f"nucleus_point_group from {filename} TREXIO file ---> {point_group_r}\n")

print(f"Is return type of read_nucleus_point_group a string? ---> {isinstance(point_group_r, str)}")

nucleus_point_group from benzene_demo.h5 TREXIO file ---> D6h

Is return type of read_nucleus_point_group a string? ---> True

The trexio.read nucleus point group function call returns a string D6h, which is exactly
what we provided in the previous section. Now, let’s read nuclear charges and labels.

labels_r = trexio.read_nucleus_label(demo_file_r)

print(f"nucleus_label from {filename} file \n---> {labels_r}")

nucleus_label from benzene_demo.h5 file

---> ['C', 'C', 'C', 'C', 'C', 'C', 'H', 'H', 'H', 'H', 'H', 'H']

charges_r = trexio.read_nucleus_charge(demo_file_r)

print(f"nucleus_charge from {filename} file \n---> {charges_r}")

nucleus_charge from benzene_demo.h5 file

---> [6. 6. 6. 6. 6. 6. 1. 1. 1. 1. 1. 1.]

The values are consistent with each other and with the previously written data. Not bad. What
about the format of the output?

print(f"nucleus_label return type: {type(labels_r)}")

nucleus_label return type: <class 'list'>

This makes sense, isn’t it? We have written a list of nuclear labels and have received back a
list of values from the file. What about nuclear charges?

print(f"nucleus_charge return type: {type(charges_r)}")

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

VII of IX

D2.2 – Report on the final release of the I/O library

nucleus_charge return type: <class 'numpy.ndarray'>

It looks like the trexio.read nucleus charge function returns a numpy.ndarray even though
we have provided a python-ic list to trexio.write nucleus charge in the previous section. Why
is it so? As has been mentioned before, the TREXIO Python API internally relies on the use of the
NumPy package to communicate arrays of float-like or int-like values. This prevents some memory
leaks and grants additional flexibility to the API. What kind of flexibility? Check this out:

print(f"return dtype in NumPy notation: ---> {charges_r.dtype}")

return dtype in NumPy notation: ---> float64

It means that the default precision of the TREXIO output is double (np.float64) for arrays
of floating point numbers like nucleus charge. But what if you do not need this extra precision
and would like to read nuclear charges in single (np.float32) or even reduced (e.g. =np.float16=)
precision? TREXIO Python API provides an additional (optional) argument for this. This argument
is called dtype and accepts one of the NumPy data types. For example,

charges_np = trexio.read_nucleus_charge(demo_file_r, dtype=np.float32)

print(f"return dtype in NumPy notation: ---> {charges_np.dtype}")

return dtype in NumPy notation: ---> float32

Reading multidimensional arrays

So far, we have only read flat 1D arrays. However, we have also written a 2D array of nuclear
coordinates. Let’s now read it back from the file:

coords_r = trexio.read_nucleus_coord(demo_file_r)

print(f"nucleus_coord from {filename} TREXIO file: \n{coords_r}")

nucleus_coord from benzene_demo.h5 TREXIO file:

[[0. 1.39250319 0.]

[-1.20594314 0.6962516 0.]

[-1.20594314 -0.6962516 0.]

[0. -1.39250319 0.]

[1.20594314 -0.6962516 0.]

[1.20594314 0.6962516 0.]

[-2.14171677 1.23652075 0.]

[-2.14171677 -1.23652075 0.]

[0. -2.47304151 0.]

[2.14171677 -1.23652075 0.]

[2.14171677 1.23652075 0.]

[0. 2.47304151 0.]]

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

VIII of IX

https://numpy.org/doc/stable/user/basics.types.html

D2.2 – Report on the final release of the I/O library

print(f"return shape: ---> {coords_r.shape}")

return shape: ---> (12, 3)

We can see that TREXIO returns a 2D array with 12 rows and 3 columns, which is consistent with
the nucleus coord dimensions [nucleus num, 3]. What this means is that by default TREXIO
reshapes the output flat array into a multidimensional one whenever applicable. This is done
based on the shape specified in the TREX configuration file.

In some cases, it might be a good idea to explicitly check that the data exists in the file before
reading it. This can be achieved using has -suffixed functions of the API. For example,

if trexio.has_nucleus_coord(demo_file_r):

coords_safer = trexio.read_nucleus_coord(demo_file_r)

Conclusion

In this Tutorial, you have created a TREXIO file using the HDF5 back end and have written the
number of atoms, point group, nuclear charges, labels and coordinates, which correspond to benzene
molecule. You have also learned how to read this data back from the TREXIO file and how to handle
some TREXIO errors.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

IX of IX

	Document Information
	Disclaimer
	Versioning
	Abbreviations
	Table of Contents
	1 Summary of the previous report
	Hierarchical design
	Data types
	Naming conventions
	Error handling
	File locking

	2 Changes with respect to the alpha version
	Safe functions
	Documentation

	3 New features
	String handling
	Index types
	Python interface
	Continuous integration
	Practical Applications

	4 Future work
	TREXIO
	TREX codes

	A TREXIO Tutorial
	Importing TREXIO
	Creating a new TREXIO file
	Writing data in the TREXIO file
	Writing NumPy arrays (float or int types)
	TREXIO error handling

	Closing the TREXIO file
	Reading data from the TREXIO file
	Reading multidimensional arrays

	Conclusion

