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Brain encoding

model

RGC LGN V1 V2 V4 IT behavior

One way to test the consistency of representations in artificial neural networks (ANNs) and the brain is to encode
brain activity based on ANN presented with identical stimuli. Figure from Schrimpf et al. Biorxiv 2020 reused under CC-BY license.
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Task performance vs brain
encoding

The quality of brain encoding has improved with the
emergence and scaling of large language networks (red)
over word embeddings (green), with some of the top
performing models for behaviour showing a downwards
trend for their brain score.

Brain encoding based on 2 hours of fMRI and MEG for
N=102 subjects.

From Caucheteux and King, Communications biology, 2022.



https://www.nature.com/articles/s42003-022-03036-1

(NeuroMod main objective

Brain-augmented learning: train artificial neural networks to imitate individual
human brain activity and behaviour.

Large amount of individual data will scale up performance of artificial neural
networks, and enable breakthroughs both for modelling the brain and training
better Al.



(NeuroMod databank
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Mega individual {MRI sample
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Participants

Inclusion criteria:

1) Generally healthy
2) MRI & MEG compatible

3) Have normal hearing for
their age

4) Solid comprehension of
English language

5) Be willing to be scanned for
1.5 - 3h/ week for at least 5
years!

Participant ID Sex Age at recruitment | Handedness* | Maternal language*
Sub-01 m 41 right french
Sub-02 m 47 right french
Sub-03 f 39 right english/french
Sub-04 f 31 right french
Sub-05 m 46 right english/czech
Sub-06 f 37 right english




danning set-up
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Auditory
Safety

We found no evidence of
acute damages to the hear,
by comparing pre- post-
scan hearing measures.

Long-term follow-up
identified loss in hearing
performance in some
subjects, but may reflect
processes unrelated to
scanning, or test-retest
reliability of cutting-edge
metrics.
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https://psyarxiv.com/7xkng/

Acquisitions

The full sample is N=6.

For Years 3-5, N=4 are scanned
about 100 hours per year,
representing about 50 hours of
functional neuroimaging data.

One subject paused
acquisitions in Year 4. One
subject has limited availability
and is scanned about 50 hours
per year.

Data from February 2023 (end
of Year 5).
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(NeuroMod datasets
controlled . . naturalistic
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Anatomical datasets
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Figure by Dr Mathieu Boudreau



Large controlled datasets

things (~15h)

Release 2023
N=4

4K+ unique image
from the
dataset x 3
repetitions = 12k+
image presentation.
Long-term memory
task.

triplets (~10h)

hammer

glove

Release 2024 Release 2024

N=5 N=5
709 triplets, and 1.8k+
1588 single words x 14 emotional
3 repetitions = 6.8k+ dimensions.

trials.
Word familiarity and
similarity tasks.

emotions (~10h)

hcptrt (~10h)  MULTFS (~10h)

MULTFS

Release 2024 Release 2024

N=6 N=5
7 functional Design
localizers ( )with  upcoming.

21 conditions across
varied domains.

15 repetitions per
task.


https://things-initiative.org/
https://www.pnas.org/doi/10.1073/pnas.1702247114
https://docs.cneuromod.ca/en/latest/DATASETS.html#hcptrt

Story datasets e

N=5 release
movie10 (~10h N=6) release 2020 2024
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Videogame datasets

controller (~1h) shinobi (~10h) mario (~15h) mariostars (~3h) mario3 (~10h)

Release 2023 Release 2022 Release 2023 Release 2023 Release 2024
N=4 N=4 N=5 N=5 N=5
3 levels 24 levels 24 levels 80 levels

same as mario
but
different sprites



Databank

Registered access =
]
1) Principal investigator with : B I DS

un ive rs|ty Credent|als BRAIN IMAGING DATA STRUCTURE

dalfa . ™

2) Short text about research

3) Sign data transfer agreement
with institutional
representative.

2022 data release features hcptrt,
Website: www.cneuromod.ca  movie10, friends s01-05 and shinobi



https://www.cneuromod.ca/

3 Staling up brain decoding
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Yu Zhang, PhD Valentina Borghesani, PhD Shima Rastegarnia, MSc
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Brain Decoding
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HUMAN

COHHGCtomC Mapping structural and functional connections in the human brain

PROJECT

- 1206 healthy subjects
- 21 experimental conditions across 7 cognitive domains.
- fMRI acquisition: TR=0.72s, 2mm iso-resolution

Task Domains #Subjects #Runs  #Volumes #Trials #Conditions  Minimal duration
per run per run per block (sec)
Working memory 1085 2 405 8 8 25
Motor 1083 2 284 10 5 12
Language 1051 2 316 8 2 10
Social Cognition 1051 2 274 5 2 23
Relational processing 1043 2 232 6 2 16
Emotion 1047 2 176 6 2 18




Graph convolutional network schematic view

Zhang et al., 2021; Fan et al., 2016; Xia et al., 2013




Test Accuracy of task prediction (%)

HCP group decoding performance
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https://doi.org/10.1016/j.neuroimage.2021.117847
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https://doi.org/10.1016/j.media.2022.102507

HCP test-retest (HCPtrt) experimental design @

Main Assess performance of decoding at the individual level using established
Objective tasks.
Task Domains #Subjects  #Runs  #Volumes  #Conditions
per run
- 15 repetitions of HCP tasks Working memory 6 15 202 8
) . Motor 6 15 144 5
- TR=1.49 s, 2mm iso-resolution Language 6 15 159 2
. Social Cognition 6 15 139 2
- Over 8h per SUbJeCt Relational processing 6 15 119 4
Emotion 6 15 92 2
Gambling 6 15 129 3



Individual activation maps

Example of GLM
activation, working
memory task, face
contrast. Figure by Dr
Valentina Borghesani)
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Single time point decoding performance
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Rasteqgarnia et al., Preprint 2022



https://doi.org/10.31234/osf.io/9t5nh

Subject specificity
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https://doi.org/10.31234/osf.io/9t5nh

Staling up: group vs individual

HCP decoding across 21 domains

State of the art group model (Zhang et al., 2022)
~3.5M single time point samples
best accuracy (high-order ChebNet functional graph): 76%

Individual models (Rastegarnia et al, 2022)
~7k single time point samples
best accuracy (multi-level perceptron): 58%-67%


https://doi.org/10.31234/osf.io/9t5nh
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Francois Paugam
PhD student
DIRO, Mila, UdeM



Individual auto-regression benchmark

A large benchmark of individual fMRI auto-regression i target
(11 models, 19h of fMRI per subject)

lag: 123456

AR model %

prediction

Paugam et al., preprint 2023



https://doi.org/10.31234/osf.io/pvx3d

Model comparison

Paugam et al.

. preprint 2023
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explain the most variance
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Model scaling
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1. CNeuroMod is an open dataset of dense individual data, including neuroimaging,
physiological and behavioral activity.

2. Individual subject design enables training of highly subject-specific models, with
competitive performance with large group samples.

3. Individual models benefit from data scaling up to 10 hours, and likely much more
for complex multimodal models.

Resources like Courtois NeuroMod may result both in novel computational models of
brain representations, as well as Al agents with improved generalization abilities.



