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Abstract 

In the Molten Salt Fast Reactor (MSFR), fuel is dissolved in a liquid salt, causing the 

formation and decay of fission products, such as noble metals, inside the salt. Noble 

metals have very low solubility and do not dissolve in the salt. They are known to 

agglomerate into particles which, in turn, diffuse, drift or sediment to interfaces such 

as walls, free surfaces and bubbles, where they deposit. Leveraging this in the MSFR, 

online or offline helium bubbling is foreseen to act as a means to extract noble metal 

particles from the salt. This can potentially limit strong deposition of particles onto 

walls (i.e., plating), preventing dangerous decay heat hotspots in the heat exchangers 

or other primary circuit components. In this paper, we investigate the efficiency of 

particle removal by helium bubbles in the MSFR using CFD modelling. Theoretical 

estimates of equilibrium particle size distributions are used as initial condition. CFD 

calculations are performed in a simplified MSFR geometry. Bubble expansion, turbulent 

bubble coalescence and turbulent break-up are accounted for using the poly-disperse 

LogMoM model [1], embedded in the two-fluid framework in OpenFOAM. The CFD 

analyses presented in this paper, in conjunction with the developed theory of noble 

metal particle formation, growth and capture, will help in the understanding and 

optimization of the fuel cycle in the MSFR or any other molten salt reactor design. The 

precise knowledge of how noble metal particle populations in the salt can be controlled, 

and how plating of noble metal particles onto primary circuit reactor components can 

be reduced, contributes to safe molten salt reactor operation. 



Introduction 

In the Molten Salt Fast Reactor (MSFR) [2], fuel is dissolved in a liquid salt, causing the formation and 

decay of fission products inside the salt. Some of these fission products are salt seekers and dissolve in 

the salt by forming stable bonds with fluorine. Other products, being noble gases and noble metals, have 

very low solubility and do not dissolve in the salt [3]. Noble metal atoms are known to agglomerate into 

particles which, in turn, diffuse, drift or sediment to interfaces such as walls, free surfaces and bubbles, 

where they deposit. Leveraging this in the MSFR, online or offline helium bubbling is foreseen to act 

as a means to extract noble metal particles from the salt [4]. This can potentially limit plating, preventing 

dangerous decay heat hot spots in the heat exchangers or other primary circuit components. However, 

currently the knowledge on the quantitative behavior of noble metal particles in the MSFR is unknown 

from both an experimental as well as modeling point of view. 

The mechanics of noble metal particle flotation in the MSFR, as it is currently understood, involves 

a complex interplay of noble metal atom formation by fission and decay, particle growth by coagulation, 

and particle capture by interfaces driven by Brownian diffusion, sedimentation or interception. Particle 

capture efficiency depends strongly on particle size. Small particles, having a diameter in the range of 

the nanometer scale, tend to diffusive more efficiently towards bubbles due to Brownian motion [5]. 

Larger particles, in the range of the micrometer scale and beyond, tend to sediment or drift due to inertial 

effects towards bubbles more efficiently [6]. The balance of this interplay of physics determines key 

integral properties of the system such as equilibrium particle size and noble metal atom cycle time, the 

latter being an import input parameter to salt inventory calculations. 

In this paper, we investigate the efficiency of particle removal by helium bubbles in the MSFR 

using CFD modelling. At steady-state operation, an estimate of the noble metal particle population can 

be calculated using homogeneous theory [7], incorporating particle formation, growth and removal. 

However, this theory depends on the behavior of helium bubbles in the MSFR, in terms of mean void 

fractions and bubble sizes. Preliminary CFD calculations are performed in a simplified MSFR geometry, 

in order to compute the mean bubble void fraction and size as a function of superficial inlet velocity and 

inlet size. Bubble expansion, turbulent bubble coalescence and turbulent break-up are accounted for 

using the poly-disperse LogMoM model [1], embedded in the two-fluid framework in OpenFOAM. A 

large number of CFD simulations spanning the input parameter space produce a correlation between 

superficial bubble inlet velocity on one hand, and the mean bubble void fraction and mean particle size 

on the other. In turn, this correlation is used to calculate the equilibrium noble metal particle size 

distribution residing in the reactor at steady-state conditions, from homogeneous theory. Finally, these 

size distributions are used as initial condition for transient CFD simulations, incorporating both 

diffusional and hydrodynamic flotation. From the decay rate of noble metal mass in the system, cycle 

times may be inferred. 

The CFD analysis presented in this paper, in conjunction with the developed theory of noble metal 

particle formation, growth and capture, will help in the understanding and optimization of the fuel cycle 

in the MSFR or any other molten salt reactor design. The precise knowledge of how noble metal particle 

populations in the salt can be controlled, and how plating of noble metal particles onto primary circuit 

reactor components can be reduced, contributes to safe molten salt reactor operation. 

  



Three-phase flotation model 

The problem of noble metal particle flotation is essentially governed by the interaction of three phases: 

gas bubbles, liquid molten salt and solid noble metal particles. To model this three-phase system, a 

combination of numerical methods is made. This is described in [8]. Here, we briefly recollect the main 

features of the three-phase flotation model. 

Conservation equations for mass, momentum, energy and particles 

For the gas−liquid mixture, the two-fluid model is adopted. The two-fluid model, retaining a full 

coupling between both phases, is needed because compressibility of bubbles may play an important role 

in the fluid mechanics of an MSR design as a whole [9] and because the coupling between salt and gas 

will be strong as a result of high void fractions. The behavior of noble metal particles, on the other hand, 

is modeled using a passive Eulerian approach that is one-way coupled to the gas−liquid mixture. This 

is a reasonable simplification because the volume fraction of particles in the reactor is expected to be 

extremely small making the salt and bubbles relatively unaware of the presence of particles, thus 

requiring no explicit coupling between particles on one hand and the gas–liquid mixture on the other. 

Starting with the two-fluid model [10], we identify the liquid salt phase ℓ and the gas phase g, which 

have a local volume fraction α, velocity u and mass density ρ. For k ∈ (ℓ,g), we have an equation for the 

conservation of mass, i.e., 

 
(1) 

with interfacial mass transfer term Λk which is zero for helium bubbles in salt. Next, we have an equation 

for the conservation of momentum, i.e., 

 
(2) 

with phase k viscous and turbulent stress tensors Tk and Tk
t, respectively, mixture pressure p, 

gravitational acceleration g and phase k interfacial momentum transfer term Mk which also satisfies Mℓ 

= Mg. Finally, the phase k energy conservation equation is given by 

 
(3) 

with phase k internal energy ek, laminar and turbulent heat fluxes qk and qk
t, total stress tensor τk = – pkIk 

+ Tk and interfacial energy transfer term Ek which, just like the interfacial mass and momentum transfer 

terms, satisfies Eℓ = – Eg. The system (1–3) is closed by the selection of a suitable equation of state, 

constitutive relations for the viscous stress tensor and heat flux, a turbulence model for the turbulent 

stress and turbulent heat flux and appropriate models for the interfacial mass, momentum and energy 

transfer terms. The selection of these models will be discussed later on. For more details on the two-

fluid model, the reader is referred to Ishii & Hibiki [10] or Drew & Passman [11]. 

Noble metal particles are modeled in a poly-disperse way, meaning that the full size distribution of 

particles is considered. We distinguish between a ‘free’ particle population nf(d) of which member 

particles are suspended in the salt and are free to diffuse or sediment, and a ‘captured’ particle population 

nc(d) of which member particles are attached to a bubble and move along with that bubble. Here, d is 



the particle diameter. We use a simple sectional discretization of the particle size domain, so that both 

distributions are represented by a finite collection of Dirac delta functions, each of which describing the 

concentration of particles at a distinct and fixed particle diameter di. More precisely, if we let nj(d) be a 

population with j ∈ (f,c) defined in such a way that nj(d)dd gives the total number of type j particles per 

unit volume in the size range [d, d + dd], then it is approximated by 

 
(4) 

with Ni,j the number concentration of type j particles having size di. Conversely, if we integrate nj(d) 

over a section defined by, for example, the range [(di-1 + di)/2, (di + di+1)/2], then we obtain Ni,j. Such an 

integration can be applied to the population balance equation modeling the dynamics of the complete 

population (e.g., see [12−14]), and results in 

 
(5) 

with particle velocity vi,j, particle diffusivity Di,j and source term Si,j, all three for type j particles in 

section i. The velocity of free particles must be modeled by taking into account their inertia, drag 

imposed by salt, gravity and other forces exerted onto the particles. Moreover, the free particle velocity 

is a function of particle size. A simple algebraic ‘local equilibrium’ model for the particle velocity can 

be used, incorporating  inertia, Stokes drag and gravity, see [8]. It is given by 

 
(6) 

with particle mass density ρp and Stokes relaxation time τp. This model is suitable only for very low 

particle Reynolds numbers, an assumption which is expected to hold because particles will not exceed 

the micron scale. The free particle diffusivity can be modeled using the Stokes-Einstein relation. 

Captured particles move with the gas phase, meaning that vi,c = ug and Di,c = 0 for all i. Finally, the 

source term Si,j accounts for the transfer of particles between the free and the captured populations, 

through flotation. Additionally, it can also account for new particle formation due to precursor decay or 

fission, loss due to decay, or changes in the population due to particle coagulation. However, in this 

work these contributions are ignored, as we will only consider the removal rates of particles from an 

initial population that is at an equilibrium as predicted by homogeneous theory. Returning to the process 

of particle transfer by flotation, the source term for free particles can be modeled as [6] 

 
(7) 

with Hi the hydrodynamic flotation rate, Di the diffusive flotation rate, Nb the number concentration of 

bubbles and Pcol,i, Pad,i and Pstab,i the efficiencies of collision, adhesion and stabilization, which will be 

explained momentarily. The hydrodynamic flotation part of (7) represents ‘classical’ flotation by means 

of particle inertia and sedimentation leading to interception, which is relevant for relatively large 

particles with sizes just below the micro scale and beyond. The diffusive flotation part is not as 

commonly considered in flotation theory, and is relevant mostly for relatively small particles with sizes 

around the micro scale and below (for example, see [5]). The source term for captured particles is simply 

given by Si,c = − Si,f. Next, we will shortly discuss the models for hydrodynamic and diffusional flotation. 

  



Hydrodynamic and diffusional flotation theory 

Starting from classical hydrodynamic flotation theory, if we consider a spherical bubble then the rate at 

which it would collect particles if those particles were not to change trajectory is given by [6] 

 
(8) 

with bubble diameter db, which is simply the frontal area of interception of the bubble multiplied by the 

relative velocity magnitude. This would be the ideal rate of flotation. In practice, particles will be pushed 

away by the salt flow around the bubble, reducing the number of particles in the path of the bubble that 

will collide with it. To account for this, the collision efficiency Pcol is introduced. Subsequently, when 

particles collide with a bubble, they may not necessarily attach to the bubble. The fraction of particles 

colliding with the bubble and attaching to it is usually smaller than unity, and is modeled by Pad,i. Finally, 

attached particles can form a bond with the bubble that is not stable and may be shed by the bubble 

again. This is accounted for by the efficiency of stabilization, Pstab,i. All these three efficiencies are 

subject to a vast amount of flotation research, e.g., see Nguyen & Schulze [6]. Here, we use the model 

of Yoon & Luttrell [15] for Pcol and Pad,i. This model is applicable to finite non-zero Reynolds number 

flow around the bubbles. Moreover, we assume that the efficiency of stabilization, Pstab,i, is unity as a 

result of the low solubility of noble metals in salt. Thus, we have 

 

(9) 

 
(10) 

 (11) 

with bubble Reynolds number Reb and the non-dimensional coefficient Γi given by 

 
(12) 

with induction time τi. The induction time is essentially a parameter that embodies the complex interplay 

of microscopic forces acting on the bubble interface, salt and particle leading to adhesion of particles. 

From the experiments of Dai et al. [16] we have tind,i = Adi
B with A = 0.05 and B = 0.6. 

The diffusional flotation part of (7) is represented by the flotation rate Di. Following what was done 

in [7], it is given by 

 (13) 

with Sherwood number Shi and particle diffusivity Di. The diffusivity is given by the Stokes-Einstein 

relation, i.e., 

 
(14) 

with Boltzmann’s constant kB, temperature T and salt dynamic viscosity µℓ. The Sherwood number is 

modeled using the Ranz-Marshall relation [17], given by 



 
(15) 

with Sci the Schmidt number given by Sci = νℓ/Di  where νℓ is the salt kinematic viscosity. The Ranz-

Marshall model was originally developed for evaporating drops, but also holds validity for colloidal 

mass transfer in light of the diffusive nature of the transfer process. Moreover, in the MSRE it was 

observed that noble metals migrate according to the simplest form of mass transfer theory [3,18,19], 

which gives further credence to the validity of this analogy. 

Log-normal method of moments for bubbles 

Bubbles are injected into the bottom of the reactor vessel at a certain size. Depending on that size, their 

number and local turbulent conditions, they will undergo coalescence or break-up. Moreover, with 

decreasing pressures higher up in the vessel, they will expand. Therefore, the evolution of the bubble 

population subject to these effects must be modeled. For this, we use the Log-normal Method of 

Moments (LogMoM), developed in [1,20]. The method assumes that the bubble size distribution has a 

log-normal shape. The log-normal function has three degrees of freedom: its width, height and offset. 

The function is closed by the solution of three independent moment transport equations (number, 

interfacial area and volume concentrations) which are obtained from the bubble population balance 

equation, by integration. The integration of the coalescence and break-up terms is done using Gauss 

quadrature, which makes the approach very versatile and able to deal with complicated break-up and 

coalescence kernels. Special attention is paid to the consistent integration of the break-up term, assuring 

a source term that is always non-negative. From the solution of the three moment equations, LogMoM 

produces the full bubble size distribution from which the Sauter mean diameter can be calculated. In 

turn, the Sauter mean diameter is fed to all closure models that require information of the size of bubbles, 

such as the drag model for bubbles or the hydrodynamic and diffusional flotation rates. 

This, then, completes the short description of the main features of the mathematical three-phase 

model. We now continue with the description of the simulation setup for particle flotation in the MSFR. 

Simulation setup of particle flotation in the MSFR 

The model as discussed above is implemented in OpenFOAM-9. The two-fluid model is solved using 

the standard multiphaseEulerFoam solver of OpenFOAM. A separate library called flotationFoam is 

developed for the modeling of the free and captured particle populations. This library can be 

dynamically linked against the standard multiphaseEulerFoam solver of OpenFOAM, therewith 

avoiding any modification of standard OpenFOAM code. In this Section, we describe the simulation 

setup of particle flotation in the MSFR, using OpenFOAM. 

Simplified geometry of the MSFR 

The MSFR is envisioned to be a cylindrical vessel in which molten salt is circulated by means of both 

natural convection and forced convection. Previously, within the EVOL project, studies have been 

performed on the specific design of the vessel in order to promote mixing and reduce temperature 

peaking, see for example [21]. This led to a complex design with a curved core cavity shape and a 

number of radial channels in which a heat exchanger and pump are placed, cooling the salt and re-

injecting it again at the bottom of the vessel. The proper simulation of this geometry requires a full three-

dimensional mesh of at least one periodic slice of the domain. Instead, here a simplified axisymmetric 



geometry is considered, that was also used by Caruggi et al. [22] to study gaseous fission product 

removal rates. Because of the axial symmetry, it is sufficient that only a two-dimensional wedge of the 

full geometry is simulated. This two-dimensional wedge is shown in Figure 1. A wedge angle of 5o is 

chosen, conform OpenFOAM’s recommendation for wedge geometry simulations. The domain consists 

of a vessel cavity (shaded by stripes in Figure 1), which is connected to a pump and heat exchanger 

region (shaded by blue and red). The dimensions of the geometry are indicated in Figure 1, where it is 

noted that the inlet and outlet of the heat exchanger and pump channel are equal in height and width. 

Bubbles are injected from the bottom, and the salt-bubble mixture is allowed to expand into an expansion 

tank as indicated. Bubbles and captured particles attached to them are removed from the salt mixture 

once they reach the region shaded in green, such that no bubbles or captured particles are recirculated. 

The heat exchanger is modeled by a sink term that brings the temperature back to the desired inlet 

temperature. The effect of the pump is represented by a momentum source that establishes the desired 

flow rate of salt. The inlet mass flow rate of bubbles is controlled by specification of the inlet velocity 

ug at a constant void fraction of 10%. Boundary conditions are the standard ones for wall bounded flow. 

At the outlet the pressure is fixed at atmospheric pressure and a zero-gradient condition is applied for 

the salt and bubble velocity. Conversely, on the inlet both velocities are set while pressure is zero-

gradient. 

Figure 1: Simplified two-dimensional wedge representation of the MSFR with pump region 

(red), heat exchanger region (blue and red) and bubble and captured particle remover (green, 

red and blue). Divisions between mesh blocks are indicated by the thin red lines. The reactor 

cavity is shaded by the diagonal grey lines. 

 

The mesh is constructed using OpenFOAM’s blockMesh tool, from the eight blocks that result 

from the division of the mesh as marked by the thin red lines in Figure 1. Each block is mapped by 

hexahedral cells in such a way that the mesh density is equal, or very close to, 64 cells/m per spatial 

direction. In the radial direction, from axis to the outer wall of the heat exchanger and pump, blocks 

have 72, 44 and 15 cells, respectively. In the axial direction, from bottom to top, blocks have 12, 120 

and 12 cells, respectively. This gives a total of 13.584 cells, which is very moderate and allows for long 

calculations with limited computational effort. 



Figure 2: Prompt and decay heat source as obtained from the steady-state results of Caruggi et 

al. [22]. 

 

Selection of physical models 

For the gas phase, the turbulent closure terms are set to zero, i.e., a ‘laminar’ turbulence model in 

OpenFOAM is selected. For the salt phase the turbulent closure terms are calculated using the k-epsilon 

model. Because the mesh is not wall resolving, standard OpenFOAM wall models are used for k and 

epsilon. 

The gas phase is constituted by helium, which is assumed to behave as a compressible ideal gas. 

Its mole weight is set to 4 g/mol and its viscosity to 4.6913∙10-5 kg/m/s. The mass density of the salt is 

set to a constant value of 4215 kg/m3, which corresponds to its mass density at 1000 K. This is expected 

to be close to the mean temperature of the reactor inventory. The constant salt density leads to a lack of 

natural circulation in the system, possibly affecting the flow pattern in the vessel. Also viscosity is set 

to a constant value, being 0.01 kg/m/s. 

The two-fluid model’s interfacial mass, momentum and energy transfer terms are closed as follows: 

• It is assumed that no mass transfer occurs between helium bubbles and salt, meaning that helium 

does not condense onto the salt and salt does not evaporate into the bubbles. 

• Heat transfer between bubbles and salt is based on the Ranz-Marshall correlation (15) (where 

Sh becomes Nu, i.e., the Nusselt number) as given above. Preliminary simulations showed that 

the heat transfer between salt and gas is so quick that virtually anywhere the temperature 

difference between salt and gas is very small, within tenths of Kelvin. Thus, the choice of heat 

transfer model between the two phases is not important. 

• For the momentum transfer between salt and bubbles, we use the Schiller-Naumann model [23] 

for drag, virtual mass force with a standard coefficient of 0.5, the turbulent dispersion model of 

Lopez de Bertodano et al. [24] and a wall-damped lift model of Tomiyama et al. [25]. Where 

needed, bubbles are assumed to be perfectly spherical. 

The LogMoM model requires the selection of a break-up kernel and a coalescence kernel. For break-up 

we use the model of Luo & Svendsen [26] with σ = 0.07197, 5 Gauss-Hermite quadrature points and 5 

Gauss-Legendre quadrature points. For the coalescence kernel we use the one of Prince & Blanch [27] 

including both turbulent and buoyant coalescence, and with 5 Gauss-Hermite quadrature points. As 



closing moments in LogMoM we use the zeroth (number), second (interfacial area) and third (volume) 

moments. 

As outlined above, the particle phase is modeled using a sectional representation of the free and 

captured particle populations. For each distribution we use 16 sections, that logarithmically map the 

diameter space in such a way that the first section is located at 1 Å and the last section at 1 μm, thus 

spanning four diameter decades each with four sections. For the particle velocity a ‘local equilibrium’ 

model is used. Particle diffusivity is given by the Stokes-Einstein model. The modeling of hydrodynamic 

and diffusional flotation rates and efficiencies is as discussed above. 

Unlike Caruggi et al. [22], no full multi-physics simulation is performed in the sense that the 

neutronics part of the problem is completely ignored. Instead, steady-state ‘prompt’ and ‘decay’ power 

fields were obtained from [22], to model the heat deposition inside the salt. These two fields are shown 

in Figure 2. 

Numerical setup 

Time-accurate simulations are performed with an adaptive time step controlled by a Courant-Friedrich-

Lewy (CFL) limit of 0.5. The pressure-velocity system is solved in a segregated way using 

OpenFOAM’s standard PIMPLE algorithm, with two outer iterations and three inner ones. In the first 

two inner iterations, the pressure equation is solved such that the residual has decreased by two decades. 

In the final inner iteration, the pressure equation is solved to an absolute tolerance level of 10-5. The 

preconditioned conjugate gradient solver is used for the pressure equation. All other equations are solved 

using OpenFOAM’s ‘smoothSolver’, all to an absolute tolerance level of 10-5. No under- or over-

relaxation is applied, so that simulation results are, in principle, time-accurate (although we mostly look 

at steady-state solutions of the salt-gas mixture). 

Time derivatives are discretized using a mix of forward and backward Euler schemes, where the 

backward scheme is preferred in favor of the forward scheme if terms can be taken implicitly with 

respect to the main solution variable, for stability. The convective terms in the momentum and energy 

equation are discretized using OpenFOAM’s standard ‘limitedLinear’ scheme. The convective terms in 

the k and epsilon equations are discretized using the first order upwind scheme, for stability. All other 

convective terms, including that of the void fraction, the zeroth and second moment of the bubble size 

distribution and the sectional free and captured particle concentrations, are discretized using the Van 

Leer scheme [28]. Laplacians, face interpolations and surface-normal gradients are all calculated using 

linear schemes without any non-orthogonality corrections because the computational grid is fully 

orthogonal.  



Figure 3: Steady state solution for the axial velocity (top left), radial velocity (top right), salt 

temperature (bottom left) and pressure (bottom right), calculated for φ = 10 g/s and din = 1 mm. 

 

Simulation results and analysis 

The goal of performing flotation simulations in the MSFR is to compute the cycle time of noble metals 

in the reactor, as a function of operational conditions. The key parameter to control noble metal content 

in the reactor is the mass flow rate φ of helium bubbles. One could envision the inlet bubble size as a 

secondary parameter. However, we will later show that the inlet bubble size has negligible influence on 

the mean particle size inside the reactor vessel, because the bubble size distribution rapidly adjusts to a 

mean bubble size that depends solely on the interplay of void fraction, coalescence and break-up but not 

on bubble size history. Thus, the only parameter to the problem is the helium mass flow rate. 

In principle, we should perform transient simulations of particle formation, particle growth by 

coagulation and particle removal by bubbles. However, in [7] it was shown that the establishment of 

particle size distribution equilibria can, as a function of a single parameter Π (being the ratio between 

growth and removal time scale), take extremely long, even up to years for small values of Π. Such long 

operation times are infeasible for full transient CFD simulations. Moreover, in order to model particle 

growth a numerical method to solve the coagulation equation (e.g., see [29]) should be implemented, 

which is currently not done. Thus, the following alternative simulation strategy is adopted: 



1. The main idea is to start from equilibrium size distributions that follow from theory, and to 

compute cycle times from the decay of such initial particle size distributions by bubble removal, 

without production or growth of new particles. As shown in [7], the equilibrium size distribution 

depends on parameter Π. In turn, Π depends on the interfacial area concentration of bubbles 

which is not known a priori and is a function of the helium mass flow rate. Thus, we must first 

compute the dependence of Π, averaged over the reactor vessel volume, on the mass flow rate 

φ, using our CFD model. 

2. Once this dependence is known, an initial equilibrium size distribution of free particles can be 

calculated for any mass flow rate φ from theory [7]. Starting from such an initial condition, the 

rate of decay of total noble metal particle inventory as a function of time gives an estimate of 

the cycle time of noble metals in the MSFR. This cycle time can be compared with the 

theoretical one, in order to establish an interpretation of the role that both spatial inhomogeneity 

and hydrodynamic flotation play—physics that were neglected by the theory. 

In this Section, we will discuss the simulation results of these two steps. 

Figure 4: Steady state solution for the void fraction (top left), Sauter mean bubble diameter (top 

right), salt turbulent kinetic energy (bottom left) and salt turbulent viscosity (bottom right), 

calculated for φ = 10 g/s and din = 1 mm. 

 

 



Figure 5: Reactor cavity volume-averaged void fraction and Sauter mean bubble diameter 

calculated for a range of mass flow rates and three inlet Sauter mean bubble diameters. 

 

  

Preliminary simulations without noble metal particles 

We perform preliminary simulations of the complex bubble-salt flow in the two-dimensional simplified 

representation of the MSFR geometry. For a range of inlet bubble diameters din and helium mass flow 

rates φ (defined in terms of the full geometry, not the wedge geometry), the steady-state vessel volume-

average void fraction and bubble Sauter mean diameter are calculated. Note that the volume flow rate 

of helium depends on the pressure, which is the result of the static pressure of salt which is held at 

atmospheric pressure at the outlet to the expansion tank, see Figure 1. This leads to a pressure of roughly 

2 bars at the inlet, although the exact value depends on the gas holdup in the vessel. 

Figure 3 and 4 show the steady state solution variables at t = 100 s calculated using a helium mass 

flow rate of 10 g/s and an inlet Sauter mean bubble diameter of 1 mm. The calculation of the Sauter 

mean bubble diameter is not very accurate (nor very relevant) in low void fraction regions. Its value is 

set to zero in areas with void fractions below 0.1%. It can be observed from the temperature plot that 

the heat exchanger reduces the salt temperature back to an inlet temperature of approximately 920 K. 

Also the removal of bubbles is seen to be effective, so that no re-circulation of bubbles is established. 

The bubble diameter is seen to grow, which is the result of isothermal expansion due to reduced 

pressures. Moreover, the bubble size distribution is modified by the interplay of break-up and 

coalescence, which, in turn, depends on salt turbulence. The salt turbulence, expressed by the turbulent 

kinetic energy and turbulent viscosity fields, is seen to be highly non-uniform in the reactor vessel as a 

result of its geometry. The CFD model is capable of capturing these spatial effects, and the influence of 

the change of the bubble size distribution on the flotation efficiency, which will be discussed below. 

From the simulations results we can calculate a volume-average void fraction and Sauter mean 

diameter in the reactor cavity. We define these two quantities as 

 
(16) 

where Vcav is the reactor cavity volume as indicated in Figure 1. Figure 5 shows the two volume-averaged 

quantities, calculated at steady state for a range of helium mass flow rates and three inlet Sauter mean 



bubble diameters. Clearly, both quantities are quite independent of the choice of inlet diameter, 

suggesting that break-up and coalescence re-organize bubbles sufficiently quickly so that the inlet 

diameter has no significant influence on the volume-average result. On the other hand, both the volume-

averaged void fraction and bubble diameter are seen to change noticeably with increasing helium mass 

flow rate. This is a trivial result for the void fraction, however, for the bubble diameter it is less obvious, 

as it results from a complex interplay of the coalescence and break-up kernels depending on non-uniform 

void fraction and turbulence. The effect of coalescence and break-up can generally be understood by the 

observation that a larger concentration of bubbles increases the likelihood of coalescence and thus size. 

Also shown in Figure 5 is a linear fit on both quantities, each averaged over the three inlet diameters. 

These linear fits give a correlation between helium mass flow rate and mean vessel void fraction on one 

hand, and helium mass flow rate and mean vessel bubble diameter on the other. In turn, these two 

quantities can be fed into the definition of parameter Π, yielding the vessel volume-average parameter 

 
(17) 

with initial noble metal particle diameter b, coagulation constant K and noble metal particle production 

rate F, see [7]. The Sherwood number is, through the Ranz-Marshall relation (15), a function of bubble 

Reynolds number, for which a correlation is given in [7] as function of the bubble diameter, and the 

particle Schmidt number which is estimated in [7] too. Using the resulting Sherwood number function 

along with the fits shown in Figure 5 for ⟨αg⟩ and ⟨db⟩ and the values of b, F and K (also given in [7]), 

gives the vessel volume-averaged parameter ⟨Π⟩ which is shown in Figure 6 as a function of helium 

mass flow rate. A linear fit in the double logarithmic space as displayed in Figure 6 yields 

 
(18) 

This function, then, is used as the sole input to the model presented in [7] that predicts the equilibrium 

noble metal size distribution. In turn, the outcome of that model which, through ⟨Π⟩, has become a 

function of φ, is used as the initial condition for the free particle population for the flotation CFD 

calculations presented next. 

  



Figure 6: The reactor vessel volume-average parameter ⟨Π⟩ as function of the helium mass flow 

rate for the simplified two-dimensional geometry of the MSFR. 

 

Noble metal particle flotation simulations 

From the model presented in [7] and the function for ⟨Π⟩ (18) the initial free particle population nf(d) at 

time t = 0 can be constructed. For large values of ⟨Π⟩ at high helium mass flow rates, the initial free 

particle population will have predominantly small particles while for small values of ⟨Π⟩ at low helium 

mass flow rates the initial free particle population will have predominantly much larger particles. Thus, 

when we increase the helium mass flow rate, we automatically decrease the initial mean noble metal 

particle sizes because at high helium mass flow rates the equilibrium particle size distribution predicted 

by theory will not grow significantly as a result of more effective flotation. 

Next, we calculate the initial sectional concentrations using 

 
(19) 

with yi the lower integration limit of section i and yi+1 the upper integration limit of section i. These 

limits are set midway between the two adjacent representative sectional sizes in logarithmic space, i.e., 

yi = √(di-1di) with the exception of y1 and yn+1 which are set to zero and infinity, respectively. 

  



Figure 7: Total noble metal mass inventory in the reactor scaled by its initial amount as a 

function of time for eight values of the helium mass flow rate (left) and the corresponding cycle 

times (right). 

 

 

Starting from a fully developed steady-state solution in terms of the salt-helium mixture, we 

initialize the appropriate equilibrium free noble metal particle population and simulate the transfer of 

that free particle population to the captured particle population by means of flotation. We recall that the 

removal rate of particles as predicted by the CFD simulation may differ from the theory because of 

spatial inhomogeneity, but also because the CFD simulation incorporates hydrodynamic flotation. Thus, 

the initial free particle population is only an estimate and does not necessarily reflect exact steady-state 

conditions subject to the CFD model. Simulations are performed over the course of one hour, in order 

to establish significant particle removal for all considered mass flow rates. Figure 7 (left) shows the total 

noble metal mass inventory m in the reactor, scaled by its initial value, as a function of time, for eight 

values of the helium mass flow rate. The mass inventory is calculated as the third moment of the free 

particle size distribution, i.e., 

 
(20) 

It is clearly observed in Figure 7 (left) that low mass flow rates lead to slow particle removal while for 

higher mass flow rates the removal becomes progressively more efficient, as a result of the presence of 

more interfacial area. We may quantify the rate of removal by calculating the cycle time τc that generates 

the best match between the numerical data and an exponential decay function given by 

 
(21) 

Since our simulation time is 1 h, we can thus calculate the cycle time as τc = −1/log(m1h/m0) in units of 

hours, where m1h is the total noble metal mass inventory after 1 h of simulated time. The cycle times 

that result from this definition are shown in Figure 7 (right) for a range of helium mass flow rates. Also 

shown is the theoretical prediction. From this plot, we can draw three conclusions: 

• For high helium mass flow rates the initial particle population contains only small particles that 

are not susceptible to hydrodynamic flotation and only to diffusional flotation, the latter upon 



which the theoretical prediction is exclusively based. Thus, at high flow rates the difference 

between theory and numerical prediction are related to the diffusion term and not to the 

hydrodynamic flotation term. We observe that the numerically calculated cycle time is almost 

a decade larger than the theoretical one at the highest flow rate shown, which is significant. One 

reason for this is that the parameter ⟨Π⟩ is based on the reactor vessel cavity only, while free 

particles can also enter the pump and heat exchanger volume which comprises a significant 

amount of volume (due to radial expansion of the geometry) but where no bubbles are present 

giving free particles more chance to avoid removal. Also, as can be seen in Figure 4, bubbles 

are concentrated locally in an upward plume. Particles in that plume are removed efficiently, 

but particles outside it largely avoid removal until they diffuse into the plume. This diffusional 

processes is slow, particularly for large particles which hold most mass. Moreover, mean bubble 

size is seen to be strongly varying in space too, changing the local flotation characteristics with 

respect to the vessel volume averaged one. 

• We also observe in Figure 7 that the slope of the cycle time curve is slightly steeper in the 

theoretical line, even at large mass flow rates. This can be explained by the fact that in the theory 

the particle Sherwood number is assumed to be independent of particle size while in reality it 

carries a weak dependence (~ d−1/3). This dependence is considered in the CFD simulation, but 

is ignored in theory, resulting in a slightly steeper slope in the theoretical cycle time prediction. 

• At lower helium mass flow rates the difference in cycle time prediction decreases, and at some 

point changes sign; for small flow rates the cycle time becomes smaller than the theoretical one. 

This can be attributed to the modeling of hydrodynamic flotation and the enhancement in 

removal rates it results in for large particles. Such large particles are only present for low helium 

mass flow rate runs, because for low mass flow rates the initial noble metal particle size 

distribution contains significantly larger particles. 

The results above are ‘integral’ quantities in the sense that we considered the decay rate of the total 

noble metal mass inventory. Instead, we can also look at the decay rate of the sixteen individual free 

particle sections, for the set of eight simulated mass flow rates giving 128 data points. Moreover, from 

each such point a corresponding ‘partial’ cycle time can be computed in the same way as before, but 

now based on the fraction of free particles in section i, Ni,f(1h)/Ni,f(0), giving the partial cycle time as a 

function of both helium mass flow rate and noble metal particle size. This, then, is shown in Figure 8. 

It can be seen that at constant helium mass flow rate, the cycle time increases monotonically until 

particle sizes of about 500 nm as a result of decreased Brownian diffusivity. Above roughly 500 nm, 

hydrodynamic flotation is seen to become more effective, decreasing the cycle time in turn. We note, 

however, that the net cycle time of noble metal mass inventory is an integral over all sizes weighted by 

the free particle population. This is what is discussed above and presented in Figure 7, and represents 

the main finding of this work. 

  



Figure 8: Partial cycle time as a function of both helium mass flow rate and noble metal particle 

size. 

 

Conclusions 

This work has investigated the hydrodynamic and diffusional flotation of noble metal particles in 

an MSR, by CFD simulation of a simplified reactor geometry. Theory shows that at low bubble flow 

rates it takes very long to establish equilibrium particle distributions, which is not feasible to be 

simulated by CFD. Instead, we imposed approximate equilibrium size distributions that were calculated 

by theory as initial condition, and simulated the removal of member particles of that initial size 

distribution in time. Based on the decay rate of noble metal mass, a cycle time was calculated for a range 

of bubble mass flow rates. It was shown that simulated cycle times are almost an order of magnitude 

larger at very high bubble flow rates as compared to theory, suggesting that inhomogeneity of the 

reactor, which is not accounted for in the theory, plays an important role. Several reasons for this were 

discussed. Most importantly, the plume of bubbles and the bubble sizes contained within are very non-

uniform and are expected to change flotation characteristics significantly. From this we can conclude 

that it is important to simulate an accurate representation of the real MSFR geometry and that a two-

dimensional simplified geometry may not be sufficient for the calculation of accurate removal rates. 

Moreover, it was observed that the slope of the cycle time curve was slightly steeper in the simulations, 

attributed to the fact that the size dependence of the Sherwood number is ignored in the theory. 

Finally, we concluded that at low bubble flow rates the initial particle distribution (predominantly 

containing large particles) was subject to hydrodynamic flotation too, reducing the cycle time as 

compared to the theory which only includes diffusional flotation. However, large particles can only arise 

in the MSR after very long steady-state operational times, which may be unrealistic. 
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