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Abstract— Gastrointestinal (GI) diseases are amongst the
most painful and dangerous clinical cases, due to inefficient
recognition of symptoms and thus, lack of early-diagnostic
tools. The analysis of bowel sounds (BS) has been fundamental
for GI diseases, however their long-term recordings require
technical and clinical resources along with the patient’s
motionless concurrence throughout the auscultation procedure.
In this study, an end-to-end non-invasive solution is proposed to
detect BS in real-life settings utilizing a smart-belt apparatus
along with advanced signal processing and deep neural
network algorithms. Thus, high rate of BS identification and
separation from other domestic and urban sounds have been
achieved over the realization of an experiment where BS
recordings were collected and analyzed out of 10 student
volunteers.

Clinical relevance— Precise separation of BS from both
stationary and non-stationary background noise allows for
reliable long-term remote monitoring of bowel function; hence,
timely diagnosis or prognosis of GI diseases.

I. INTRODUCTION

Gastroenterology defines bowel sounds (BS) as the sounds
detected in the abdominal region of human body and gener-
ated by the movement of gases and liquids during intestinal
peristalsis. Gastrointestinal physiology has been studied for
decades because of the significant inherited information
related to various gastrointestinal (GI) diseases. To date,
GI diagnostic tools consist of invasive medical procedures
such as computerized topography scan, manometry, biopsy
and endoscopy secondary effects of which pose high risk
of bleeding, infection, anaesthetic complications, physical
discomfort and psychological distress.

Hence, BS investigation has introduced promising non-
invasive solutions through auscultation of the abdominal area
in combination with signal processing techniques. First and
foremost, Cannon [1] auscultated, examined methodically
the intestinal area and linked each type of sound to the
corresponding GI process. In addition, in favor of the rapid
technological advances, the scientific interest has been fo-
cused on spectral analysis of BS [2], [3] by applying complex
signal processing methods, high order statistics [4]-[8] and
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by implementing machine learning models [9]-[13] in order
to extract the most clinically important, information. Accord-
ingly, other authors linked BS with specific GI diseases such
as pyloric stenosis [14], irritable bowel syndrome, Crohn’s
and ileus [15]-[19]. However, in order for these diseases to
be diagnosed effectively, a long-term monitoring of intestinal
functionality is required [10] while a silent background
increases BS reliability.

This study proposes an end-to-end non-invasive tool for
BS detection in adverse background environments based on
multi-channel recordings of the abdominal region, and is
composed of three fundamental parts, (a) stationary noise
suppression, (b) artifacts’ elimination taking into account the
correlation between the recording channels, (c) comparison
of extracted sounds with non-stationary signals derived from
domestic and urban environments by an autoencoder-based
deep learning model.

II. METHODOLOGY

This survey’s methodology is based on four fundamental
parts where each one filters different unwanted signal com-
ponents. At first, part A contains BS-oriented pre-processing
of the raw recording channels, part B removes the stationary
background noise via a time-frequency signal processing
technique, then part C detects BS by investigating the cor-
relation of signals from different channel and finally, part
D separates BS from environmental non-stationary noise
through a deep autoencoder deep neural network.

A. Pre-processing of Raw Recordings

The first phase consists of a 16" order Butterworth
high pass filter with cut-off frequency at 90Hz in order
to avoid interference with heart sounds. In addition, short
or weak sound-segments with duration less than 15ms or
amplitude less than 0.005mV, respectively, are removed. As
final pre-processing step, consecutive sound segments that
are separated by less than 10ms of silence are considered a
single event.

B. Stationary Noise Removal

This stage aims at removing stationary background noise.
Although this is a common task in signal processing, in this
work a more advanced technique is applied being adapted to
BS signal characteristics. This technique is a time-frequency
(TF) filtering based on spectrogram zeros proposed by Flan-
drin in [20]. Specifically, the zero values of the spectrogram
form triangles which can be clustered to different regions in
the TF plane where each cluster indicates a component of the



signal. Moreover, Flandrin proved that in presence of white
Gaussian noise the distribution of edge lengths of Delaunay
triangles appears to be normal, differentiating it from the
corresponding distribution of a signal.

The stationary noise removal procedure begins with the
computation of the signal’s short-time Fourier transform
(STFT) and extracting the locations of the zero values. As
follows, triangles are formed from the zero points’ coordi-
nates applying Delaunay triangulation. Next, depending on
each triangle’s largest edge length value, the corresponding
area is considered to represent either a signal component
or white noise. Neighboring “signal” triangles are clustered
together forming an individual component. These areas of
clusters define masks which when multiplied with the initial
STFT result the TF representation of the respective com-
ponent. Lastly, the signal component reconstructed in time
domain applying inverse STFT to masked STFT represen-
tation. The different stages of the stationary noise removal
based on spectrograms zeros procedure is illustrated in Fig.1.

C. Multi-channel Bowel Sound Detection (MBSD)

Except for stationary noise, there can be non-stationary
noise produced by external sources e.g. urban noises, motion
artifacts and inferences with other biomedical sounds. Given
that one microphone of the smart-belt is unattached recording
the environment (see Section III), non-stationary external
noisy sources mostly have higher amplitude in the unattached
channel than the attached ones. Hence, this property is
utilized in order to detect and remove unwanted external
signal components. The MBSD procedure implements the
extraction of the highest correlated sounds amongst data
channels, proposing, thus, an inter-channel type of signal
detection which is organized as follows.

1) Identification of two similar, in terms of the cross-
correlation measure, sound-segments recorded by dis-
tinct microphones and consideration of that pair as
siblings-sounds. By examining the similarity of all
segments from different channels, the final set of
siblings is created.

2) Elimination of every subset of siblings in which the
cross-correlation of its two component sounds is infe-
rior to an empirical threshold value of 0.2.

3) Deletion of noise-correlated segments by observation
of cross-correlation values between siblings and noise
channel. Likewise, siblings-sounds are removed if (a)
a sound event takes place at the same time in the noise
channel, (b) is highly correlated at with a sibling pair
and (c) is twice more powerful than these, respectively.

4) Single channel construction through concatenation of
the cleanest and loudest sound of each pair of siblings.

According to the aforementioned procedure, multi-channel
BS are processed in such a way that the most corre-
lated sounds, which indicate intestinal motility, are selected.
Thereby, a single-channel output may enable clinicians to
validate and label the extracted sounds effortlessly.
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Fig. 1: Stationary noise removal based on the spectogram
zeros applied on a noisy quadratic chirp: (a) STFT magni-
tude, (b) Delaunay triangles whose vertices coincide with
zero values, (c) selected domain with large edge length, (d)
masked STFT.

D. Bowel Sound Detection

The last part of methodology is dedicated to differentiating
the previous extracted sounds from other non-stationary sig-
nals with similar to BS TF features, i.e. duration, frequency
range, spectral centroid, generated either by an internal, e.g.
respiratory sounds, cardiac signals and/or external mech-
anism e.g. urban noise, human speech, domestic sounds.
Thus, this work employs an autoencoder deep neural net-
work approach in order for the unwanted components to be
distinguished from those containing BS.

The autoencoders are artificial neural networks (ANN)
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Fig. 2: Schematic representation of the data flow and in-
volved processes.

that are trained to accomplish optimized reconstruction of
the input data to its output. These ANN models are met in
different architectures and they have numerous applications
such as dimensionality reduction, denoising, information
retrieval and anomaly detection [21]-[23], among others.
An autoencoder, typically, is composed of three layers, (a)
input layer or encoder, (b) hidden layer or code and (c) the
output layer or decoder whose dimensions coincide with the
encoder’s ones while the size of the code depends on the
application and the available data. This paper, implements an
autoencoder for detection with equal size of encoder, code
and decoder layers, which is created with MATLAB. The
training set consists of the filtered BS dataset (positive label
class) only whereas the validation set consists of both BS
and non-BS sounds (see Section III). The objective of this
deep learning method is to clarify whether a signal is BS or
not, depending on the reconstruction error of the autoencoder
upon its attempt to copy the input to its output. The mean
squared error (MSE) function has been used as reconstruction
error and the optimal threshold defines the classification rule
between the BS and non-BS cases as can be seen in Fig.2.
The model’s evaluation is accomplished by ROC (Receiver
Operating Characteristic) analysis which demonstrates the
succession rate and the capabilities of the proposed solution.

III. EXPERIMENTAL DATA

This section describes the methodology’s application to
a real-life BS detection problem utilizing two datasets,
depicting the BS and non-BS cases, respectively. The first
dataset is comprised of BS data that were collected from
ten healthy volunteers (aged 20-25 years old) and recorded
(one 10-minute-long recording per participant) in an ane-
choic chamber of Aristotle University of Thessaloniki. The
sampling frequency was set to 1 kHz since literature indicates
maximum frequencies of the abdominal lower than 500Hz
[31.[6],[14].

The BS were captured via a prototype smart-belt con-
structed by PLUX wireless biosignals S.A. (Fig.3) and is
equipped with four microphones that three of them were
attached to the abdominal area (data channels) of each
participant, while the fourth one was unattached, monitoring
the background environment (noise channel). The volunteers
applied a fasting protocol by not consuming any food in less
than 6 hours and not drinking any liquids in less than 2 hours
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Fig. 3: Instrumentation for abdominal auscultation. a) Smart-
belt with four embedded microphones. b) Attachment area
of the corresponding microphone (https://nursecepts.com).

before the experiment. After the recording, in order to get
ground-truth, the recorded signals were examined by a gas-
troenterologist who annotated the areas that contain medical
information. In addition, the non-BS case was synthesized
by non-stationary signals recorded in both domestic and
urban environments (human speech, traffic, nature, television,
kithcen, domestic animals, etc.) and obtained by public data
web repositories (kaggle and VoxForge) [24]-[26] that were
resampled to 1kHz as for the data to be consistent with
the smart-belt’s sampling frequency. In both BS and non-BS
cases, each group of data consists of 2440 sound signals with
5 seconds maximum duration. Overall, a 4880-size dataset
has been utilized for this study as the combination of two
subsets (BS and non-BS). Table 1 shows the total dataset’s
division into training, validation and testing sets along with
the corresponding sample sizes in order to fit the autoencoder
model.

H Datasets ‘ BS ‘Non-BS H

Training 1952 0
Testing 0 1952
Validation | 488 488
Total 2440 2440

TABLE I: Data Splitting

IV. RESULTS AND DISCUSSION

This section presents the experimental results produced by
applying the proposed methodology to the aforementioned
dataset. At first, Fig.4 and Fig.5 show the stationary noise
removal through spectrogram “s zeros technique applied to a
recorded raw signal [20], whereas Fig.6 reveals the genera-
tion of siblings-sounds (MBSD’s output), taking into account
the noise channel. The MBSD algorithm “s performance was
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Fig. 4: Noise removal based on the spectogram zeros applied
to a single BS.

evaluated by means of Sensitivity=50%, Precision=91.9%,
F1-Score=64.8% and Success Rate=100% (BS detected by
MBSD / Total number of annotated BS), based on the clinical
annotations, indicating a significantly high percentage of
BS detection. It’s important to highlight that Sensitivity is
affected by the False Negative values, therefore low values
of this metric indicate the presence of numerous signals that
were initially classified by MBSD as Bowel Sounds but not
included in the medical annotations, due to low power or
short duration.

Thereupon, following the methodology’s parts A and B,
BS data have been extracted creating, thus, the BS case of
the deep learning model. Specifically, 1952 signals out of
the total 2440 BS sounds were used for training and 488 for
validation. Likewise, 1952 non-BS data samples were used
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Fig. 5: BS identification and separation from the recorded
noisy signal applied to multiple BS segments.
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Fig. 6: (a) Generation of brother-segments consisted of high-
correlated sound waves that were recorded by different data
channels (orange-channel 1, blue-channel 2) with a time
latency as it takes for the bowel sounds to be propagated
through the intestinal area. (b) Example of brother-segments
deletion by the MBSD algorithm due to high-correlation with
the noise channel.

for testing, while the remaining 488 to model’s validation.
Fig.7 show the distribution of the reconstruction error in both
BS and non-BS cases revealing an obvious source separation
of the two cases.

In addition, ROC analysis has been used in order to
select the optimal discrimination threshold that maximizes
the performance of the autoencoder. The best threshold is
observed at MSE=0.0075 where the AUC (Area Under the
ROC Curve) measure is calculated to 0.9991. Thus, by ap-
plying the best observed threshold (MSE=0.0075), effective
discrimination (i.e., Sensitivity = 99.2%, Precision = 99.6%,
F1-Score = 99.4%, Accuracy = 99.4%) has been achieved
between BS and the non-stationary noise.
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V. CONCLUSIONS

This work proposes a multi-stage signal processing
pipeline that achieves effective and efficient identification of
BS, even in noisy settings, such as home and urban environ-
ments. Towards this direction, a prototype abdominal sound
capturing device, namely, smart-belt, has been used. The
novel architecture of the proposed approach in combination
with the rather promising experimental results paves the way
for an abdominal auscultation tool that enables user-friendly
long-term home-based bowel sound monitoring.

Future work includes optimization of denoising and au-
toencoder’s training performance towards augmented BS
detection behavior. Furthermore, further research will focus
on utilizing the proposed algorithm to assess gastrointestinal
activity in the context of diseases with relevant symptoms,
such as Crohn’s and Parkinson’s disease.
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