

Boosting Complex-Systems Research through RSE Collaboration

Jeffrey Kelling^{1,2}, Richa Tripathi³, Justin M. Calabrese³

¹Department of Information Services and Computing, Helmholtz-Zentrum Dresden - Rossendorf (HZDR) mailto:j.kelling@hzdr.de, https://www.hzdr.de

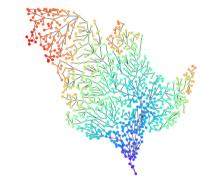
²Faculty of Natural Sciences, Chemnitz University of Technology ³Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden - Rossendorf (HZDR)

February 20, 2023

Context: Biodiversity in River Networks

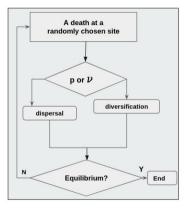
Mississippi-Missouri River System

https://svs.gsfc.nasa.gov/4493

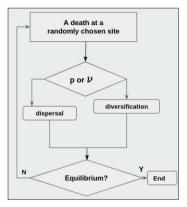


Context: Biodiversity in River Networks

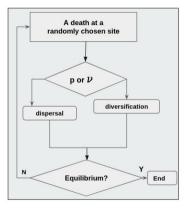
Mississippi-Missouri River System

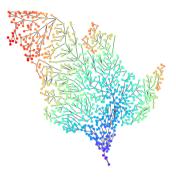

https://svs.gsfc.nasa.gov/4493

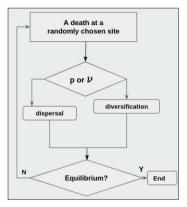
reduction to \sim 800 nodes



- Models death \rightarrow replacement \rightarrow death-cycle.
- Neutral with respect to species (no niches).

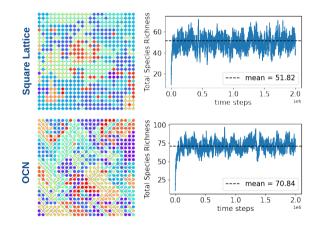



- Models death \rightarrow replacement \rightarrow death-cycle.
- Neutral with respect to species (no niches).
- Single individual replaced by
 - *p* dispersal species from different site with probability *p_{i,j}*, or

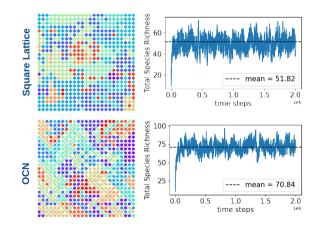

- Models death \rightarrow replacement \rightarrow death-cycle.
- Neutral with respect to species (no niches).
- Single individual replaced by
 - *p* dispersal species from different site with probability *p_{i,j}*, or
 - ν diversification new species with probability ν (small).

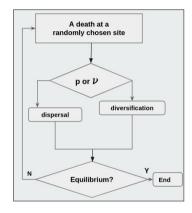
- \sim 800 nodes
- $\sim~20\,000$ total sites

- Models death \rightarrow replacement \rightarrow death-cycle.
- Neutral with respect to species (no niches).
- Single individual replaced by
 - *p* dispersal species from different site with probability *p_{i,j}*, or
 - ν diversification new species with probability ν (small).

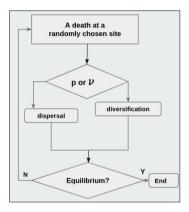

- \sim 800 nodes
- $\sim~20\,000$ total sites

3/12 Boosting Complex-Systems Research through RSE Collaboration · 2023-02-20


Example Observable: Total Species Richness

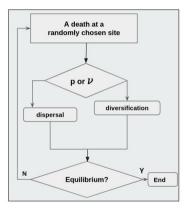


Example Observable: Total Species Richness

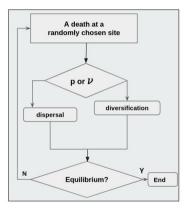

 $> 10^6$ loop iterations

CASVS

4/12 Boosting Complex-Systems Research through RSE Collaboration - 2023-02-20

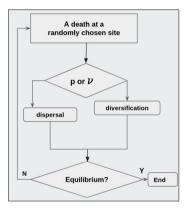

Starting Point: Python code

• 🗆



Starting Point: Python code

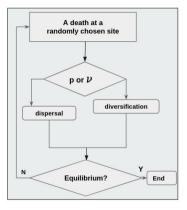
■ inefficiencies in random-event generation



Starting Point: Python code

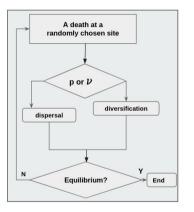
- inefficiencies in random-event generation
- $\blacksquare \sim 0.03\,ms$ per update
- Algorithm does not allow much use of numpy & friends.
- Large amount of time spend on analysis.
- \Rightarrow main problem: python

Starting Point: Python code

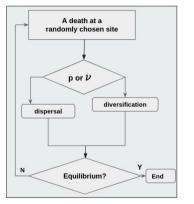

- inefficiencies in random-event generation
- $\blacksquare \sim 0.03\,ms$ per update
- Algorithm does not allow much use of numpy & friends.
- Large amount of time spend on analysis.
- \Rightarrow main problem: python

Goal: GPU code

- $\rightarrow\,$ larger graphs may be interesting in the future
- $\rightarrow\,$ large parameter studies
- GPUs are available to the institute.
- Energy-efficient compute.



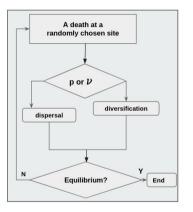
6/12 Boosting Complex-Systems Research through RSE Collaboration - 2023-02-20



1 Replace a site in each node simultaneously.

- Need to add process to avoid or resolve logical conflicts...
- ... not everyone is comfortable casually modifying accepted models in their field.

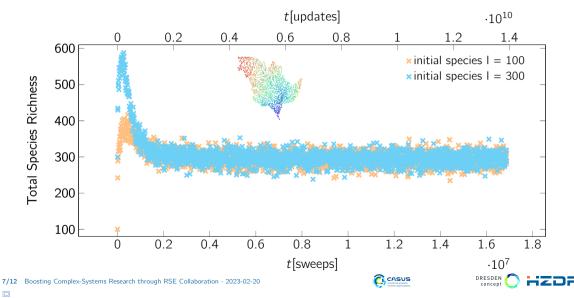
1 Replace a site in each node simultaneously.


- Need to add process to avoid or resolve logical conflicts...
- ... not everyone is comfortable casually modifying accepted models in their field.
- Small graph means limited paralellism.

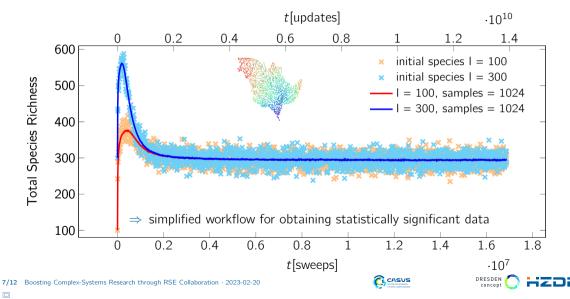
"Here is a GPU implementation, won't do much for your puny graph, but will be fast when you get to real big ones."

- True, but not very helpful.

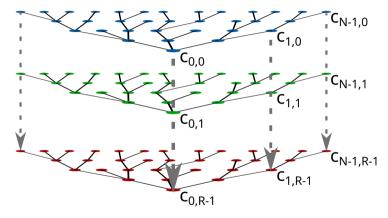
CASV


1 Replace a site in each node simultaneously.

- Need to add process to avoid or resolve logical conflicts...
- ... not everyone is comfortable casually modifying accepted models in their field.
- Small graph means limited paralellism.
- 2 Run multiple (partially) independent simulations
 - for averaging,
 - parameter studies or
 - response functions.



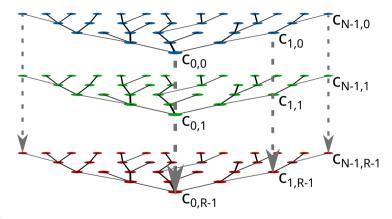
Averaging



Averaging

Replica Stacking

■ Variables from different replica are adjecent in linear memory:


 $[c_{0,0}, c_{0,1}, \dots, c_{0,R-1}, c_{0,1}, c_{1,1}, \dots, c_{1,R-1}, \dots, c_{N-1,0}, c_{N-1,1}, \dots, c_{N-1,R-1}]$

CASVS

Replica Stacking

■ Variables from different replica are adjecent in linear memory:

 $[C_{0,0}, C_{0,1}, \dots, C_{0,R-1}, C_{0,1}, C_{1,1}, \dots, C_{1,R-1}, \dots, C_{N-1,0}, C_{N-1,1}, \dots, C_{N-1,R-1}]$

Chose to replace the same site for all * replica. 8/12 Boosting Complex-Systems Research through RSE Collaboration - 2023-02-20

Implementation

- C++ + alsaka (https://github.com/alpaka-group/alpaka)
 - template-based offloading abstraction layer
 - backends: sequential CPU, OpenMP, CUDA, HIP, ...
 - Application logic decoupled from target execution model by abstraction.

9/12 Boosting Complex-Systems Research through RSE Collaboration - 2023-02-20

^ahttp://doi.acm.org/10.1145/2063384.2063405

Implementation

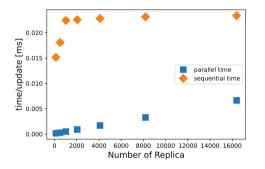
- C++ + alsaka (https://github.com/alpaka-group/alpaka)
 - template-based offloading abstraction layer
 - backends: sequential CPU, OpenMP, CUDA, HIP, ...
 - Application logic decoupled from target execution model by abstraction.
- Sequential + replica stacking
- Parallel + replica stacking Conflict resolution:
 - $1\;$ Generate and store one replacement per node.
 - 2 Apply all stored replacements.
- Computation of observables on GPU.

9/12 Boosting Complex-Systems Research through RSE Collaboration · 2023-02-20

^ahttp://doi.acm.org/10.1145/2063384.2063405

Implementation

- C++ + alsaka (https://github.com/alpaka-group/alpaka)
 - template-based offloading abstraction layer
 - backends: sequential CPU, OpenMP, CUDA, HIP, ...
 - Application logic decoupled from target execution model by abstraction.
- Sequential + replica stacking
- Parallel + replica stacking Conflict resolution:
 - $1\;$ Generate and store one replacement per node.
 - 2 Apply all stored replacements.
- Computation of observables on GPU.
- Counter-based random number generator
 - for parallel independent/identical random number generation and
 - reproducibility across platforms.
 - Philox^a implementation available in al/baka.

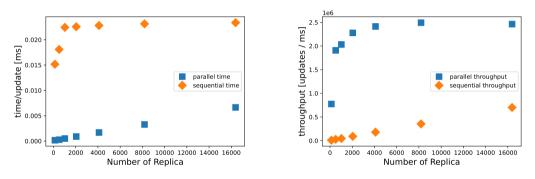


^ahttp://doi.acm.org/10.1145/2063384.2063405

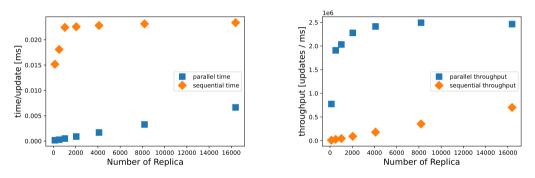
^{9/12} Boosting Complex-Systems Research through RSE Collaboration · 2023-02-20

Performance

• 🗆

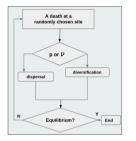


$N_{\text{graph nodes}} = 313$, Tesla V100-SXM2

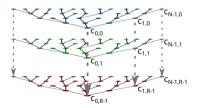

Performance

 $N_{\text{graph nodes}} = 313$, Tesla V100-SXM2

Performance

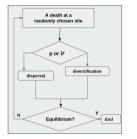

 $N_{\text{graph nodes}} = 313$, Tesla V100-SXM2

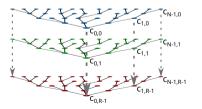
Code is not finely optimized, no profiling done ... fast enough for now.



Conclusions

- $\Rightarrow\,$ large speedup for both core simualtion loop and analysis
- \Rightarrow streamlined workflow for averages




• 🗆

Conclusions

 \Rightarrow large speedup for both core simualtion loop and analysis \Rightarrow streamlined workflow for averages

- Even when the stated goal is performance, first evaluate what type of performance improvement can help and is feasible in the short-term.
- When changing methods, build a baseline first to show that the change is safe.

Acknowledgments

 CASUS is jointly funded by the Federal Ministry of Education and Research (BMBF) and the Saxon Ministry for Science and Culture.

Thank You.

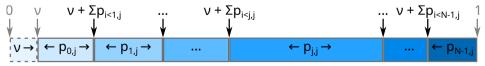
Random-event Generation

How to Select the Origin-Node for migration? Given

- $\nu\,$ probability of diversification event,
- $p_{i,j}$ probability for dispersal from node *j* to node *i*.

chose random node $j \rightarrow$ generate random number \rightarrow accept with $p_{i,j}$ \circlearrowleft

Random-event Generation


How to Select the Origin-Node for migration? Given

u probability of diversification event,

 $p_{i,j}$ probability for dispersal from node *j* to node *i*.

chose random node $j \rightarrow$ generate random number \rightarrow accept with $p_{i,j}$ \circlearrowleft

- 1 Prepare prefix sum of event probabilities.
- 2 Generate rantom number and search for corresponding interval.

or -

DRESDEN

concer

CASVS

