
4343

№ 1 (1) | 2023
FERGANA BRANCH OF THE TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES NAMED AFTER MUHAMMAD AL-KHORAZMI

ISSN 1102-3321 «AL-FARG’ONIY AVLODLARI» ELECTRONIC SCIENTIFIC JOURNAL

PUBLIC, PROTECTED, PRIVATE MEMBERS IN PYTHON

https://doi.org/10.5281/zenodo.7716867

Musayev Khurshid,
assistant of Fergana branch of Tashkent University of 

Information Technologies named after Muhammad al-Khorazmi

Soliev Bakhromjon,
assistant of Fergana branch of Tashkent University of 

Information Technologies named after Muhammad al-Khorazmi
Abstract: This article focuses on the public, protected, and private view members in the Python programming 

language and provides information and examples of how to manage view rights in the Python programming 
language without using these keywords.

Keywords: Python, programming, encapsulation, polymorphism, inheritance, public, private, protected, 
class, self, property.

Introduction. In Python, class members can be 
classified into three categories: public, protected, 
and private. These access modifiers determine the 
visibility and accessibility of the class members to 
other parts of the program.

Public members are accessible from anywhere in 
the program, both inside and outside the class. They 
can be accessed using the dot operator after creating 
an instance of the class.

Protected members are not accessible from outside 
the class, but they can be accessed from within the 
class and its subclasses. In Python, this is achieved 
by adding a single underscore before the name of the 
member.

Private members are not accessible from outside 
the class or from its subclasses. In Python, this is 
achieved by adding two underscores before the name 
of the member.

Understanding the difference between public, 
protected, and private members is important in object-
oriented programming, as it allows for better control 
over the visibility and accessibility of class members. 
This can help in improving the overall design and 
security of a program.

Literature review and methodology. Python is 
a dynamically typed programming language [1, 2]. 
Python is an object-oriented programming language. 
But unlike many object-oriented languages, in 
Python, the scope of an object's use is determined by 
its current set of methods and fields, as opposed to 
inheriting from a specific class. The approach used in 
Python is called "duck typing". The name of the term 

comes from the English “duck test” (“duck test”), 
which in the original sounds like “If it looks like a 
duck, swims like a duck and quacks like a duck, then 
it probably is a duck” (“If it looks like a duck, swims 
like a duck, and quacks like a duck, then it's probably 
a duck") [3]. In Listing 1, the parse_node() function 
takes several parameters; Python does not specify 
the types of the parameters. Referring to parameter 
methods in the function body will be correct if the 
objects passed as parameters have these methods. This 
means that if the visitor object class has the prepare() 
and visit() methods defined (it “behaves like a duck”), 
then accessing them will succeed (it is considered that 
“it is a duck”). If, for example, the visit() method is 
not defined for the object class, then the interpreter 
will generate an exception AttributeError: A instance 
has no attribute 'visit' if visitor is an object of class 
A.[4]

Many practical problems of our time in economics, 
architecture, electronics and other fields of science at 
a certain stage of development require the solution 
of complex problems consisting of many interrelated 
parts. To solve them, a systematic approach is used, 
which allows you to get a single answer that takes into 
account all subtasks. But when the question concerns 
a formalized mathematical version of the problem of 
optimizing a solution for many factors and criteria at 
the same time, then the number of relatively general 
methods that give a single answer is very small. By 
constructing hypersurfaces corresponding to the 
output data of the experiment, their sections by level 
hyperplanes and their intersections, the optimization 



4444

№ 1 (1) | 2023
FERGANA BRANCH OF THE TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES NAMED AFTER MUHAMMAD AL-KHORAZMI

ISSN 1102-3321 «AL-FARG’ONIY AVLODLARI» ELECTRONIC SCIENTIFIC JOURNAL

area is reduced to the minimum possible dimension 
for subsequent selection among equivalent points by 
the user.

To implement the algorithm, the Python programming 
language was chosen, since it has wide capabilities 
for working with data arrays, is easy to learn and 
portable to any devices and systems. The software 
library includes two working classes: the main class is 
used for the optimization operation and working with 
database tables; auxiliary contains three basic groups 
of methods for processing sets of points and curves on 
a plane. The optimization methods of the main class 
of the library allow two main operations to be carried 
out: a section by a level plane and a search for the 
intersection of two hypersurfaces in spaces with the 
same dimensions. In the first case, one database table 
and a given height value for the level plane are used. 
On the basis of a complete enumeration of the values 
of the table, the contour curves of the hypersurface are 
constructed in all two-dimensional planes, except for 
those parallel to the section, which are subspaces of 
the workspace and fill the regular grid of table values. 
For each curve, the points of intersection with the 
projection of the section plane are found and stored 
in a new table representing the result of the section 
in the new dimension space one less than the original 
one. The intersection of two surfaces, unlike the first 
method, requires working with two source tables in 
the same dimensions. The resulting table is filled with 
the values of the intersection points of the contour 
curves of two hypersurfaces and has the dimension 
equal to the original one.[5]

Encapsulation is one of the fundamental principles 
of object-oriented programming (OOP). It refers to 
the practice of hiding the implementation details of an 
object from the outside world, and instead providing a 
public interface through which other code can interact 
with the object.

In Python, encapsulation can be achieved through 
the use of access modifiers, which control the visibility 
of class attributes and methods. There are two main 
types of access modifiers in Python:

Public: attributes and methods that are accessible 
from outside the class. These are not prefixed with 
any special characters, and can be accessed using the 
dot notation.

Private: attributes and methods that are only 
accessible from within the class itself. These are 
prefixed with a double underscore (e.g. "__my_

private_attribute"), and can only be accessed using 
special name mangling syntax (e.g. "_ClassName__
my_private_attribute").

Here's an example of how encapsulation can be 
implemented in Python:

Listing 1. An exampleEncapsulation in Python
class Car:
    def __init__(self, make, model):
        self.__make = make
        self.__model = model
        
    def get_make(self):
        return self.__make
    
    def get_model(self):
        return self.__model
    
    def set_make(self, make):
        self.__make = make
        
    def set_model(self, model):
        self.__model = model

In this example, the attributes "make" and "model" 
are declared as private using the double underscore 
prefix. The class provides public getter and setter 
methods for these attributes, which allow other code 
to access and modify them indirectly. By doing 
this, the implementation details of the Car class are 
hidden from the outside world, and the code is better 
organized and easier to maintain.

Results. Public Members. Public members 
(generally methods declared in a class) are accessible 
from outside the class. The object of the same class is 
required to invoke a public method. This arrangement 
of private instance variables and public methods 
ensures the principle of data encapsulation.

All members in a Python class are public by default. 
Any member can be accessed from outside the class 
environment.

Listing 1: Public Attributes
class Student:
    schoolName = 'XYZ School' # class 

attribute

    def __init__(self, name, age):



4545

№ 1 (1) | 2023
FERGANA BRANCH OF THE TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES NAMED AFTER MUHAMMAD AL-KHORAZMI

ISSN 1102-3321 «AL-FARG’ONIY AVLODLARI» ELECTRONIC SCIENTIFIC JOURNAL

     self.name=name # instance attribute
   self.age=age # instance attribute

You can access the Student class's attributes and 
also modify their values, as shown below.

Example: Access Public Members
>>> std = Student("Steve", 25)
>>> std.schoolName
'XYZ School'
>>> std.name
'Steve'
>>> std.age = 20
>>> std.age
20
Protected Members. Protected members of a class 

are accessible from within the class and are also 
available to its sub-classes. No other environment is 
permitted access to it. This enables specific resources 
of the parent class to be inherited by the child class.

Python's convention to make an instance variable 
protected is to add a prefix _ (single underscore) to 
it. This effectively prevents it from being accessed 
unless it is from within a sub-class.

Listing 2: Protected Attributes
class Student:
   _schoolName = 'XYZ School' 

# protected class attribute
    
    def __init__(self, name, age):
        self._name=name  # 

protected instance attribute
        self._age=age # 

protected instance attribute

In fact, this doesn't prevent instance variables from 
accessing or modifying the instance. You can still 
perform the following operations:

Example: Access Protected Members
>>> std = Student("Swati", 25)
>>> std._name
'Swati'
>>> std._name = 'Dipa'
>>> std._name
'Dipa'
However, you can define a property using property 

decorator and make it protected, as shown below.

Listing 3: Protected Attributes
class Student:
	 def __init__(self,name):
		  self._name = name
	 @property
	 def name(self):
		  return self._name
	 @name.setter
	 def name(self,newname):
		  self._name = newname

Above, @property decorator is used to make 
the name() method as property and @name.setter 
decorator to another overloads of the name() method 
as property setter method. Now, _name is protected.

Example: Access Protected Members
>>> std = Student("Swati")
>>> std.name
'Swati'
>>> std.name = 'Dipa'
>>> std.name
'Dipa'
>>> std._name # still accessible

Above, we used std.name property to modify _name 
attribute. However, it is still accessible in Python. 
Hence, the responsible programmer would refrain 
from accessing and modifying instance variables 
prefixed with _ from outside its class.

Private Members. Python doesn't have any 
mechanism that effectively restricts access to any 
instance variable or method. Python prescribes a 
convention of prefixing the name of the variable/
method with a single or double underscore to emulate 
the behavior of protected and private access specifiers.

The double underscore __ prefixed to a variable 
makes it private. It gives a strong suggestion not to 
touch it from outside the class. Any attempt to do so 
will result in an AttributeError:

Listing 4: Private Attributes
class Student:
    __schoolName = 'XYZ School' 

# private class attribute

    def __init__(self, name, age):
        self.__name=name  # 



4646

№ 1 (1) | 2023
FERGANA BRANCH OF THE TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES NAMED AFTER MUHAMMAD AL-KHORAZMI

ISSN 1102-3321 «AL-FARG’ONIY AVLODLARI» ELECTRONIC SCIENTIFIC JOURNAL

private instance attribute
        self.__salary=age # 

private instance attribute
    def __display(self):  # 

private method
	     print('This is 

private method.')

Example: Access Private Members and Errors
>>> std = Student("Bill", 25)
>>> std.__schoolName
AttributeError: 'Student' object 

has no attribute '__schoolName'
>>> std.__name
AttributeError: 'Student' object 

has no attribute '__name'
>>> std.__display()
AttributeError: 'Student' object 

has no attribute '__display'

Python performs name mangling of private 
variables. Every member with a double underscore 
will be changed to _object._class__variable. So, it 
can still be accessed from outside the class, but the 
practice should be refrained.[6]

Example: Access Private Members in Python
>>> std = Student("Bill", 25)
>>> std._Student__name
'Bill'
>>> std._Student__name = 'Steve'
>>> std._Student__name
'Steve'
>>> std._Student__display()
'This is private method.'

Conclusion. Python is a modern fast-growing 
programming language that continues to grow in 
technology market share. So, according to the monthly 
ranking of the popularity of programming languages 
PyPL, created on the largest web service of projects 
Github, based on search queries on the Internet, 
Python takes the first place at the time of June 2022 

with 27.61% of the total number of requests related to 
programming languages. One of the reasons for the 
popularity of the Python programming language is 
that this programming language has a large number 
of additional specialized software libraries designed 
to process and analyze large amounts of data. [7]

Thus, in the Python programming language, 
members with public, protected, and private views 
can be used. But the use of these members is quite 
different from how it is in programming languages 
like C#, Java, C++. This aspect is also another priority 
of the Python programming language.

References
1. Полсон Л. Разработчики переходят на дина-

мические языки / Л. Полсон: http://www.osp.ru/
os/2007 /02/4108153. 

2. Лутц М. Изучаем Python / М. Лутц. – М.: Сим-
вол-Плюс, 2010. – 1280 с.

3. Duck Typing in Python: http://www.voidspace.
org.uk/python/articles/duck_typing.shtml.

4. Зубов, М. В. Получение типов данных в язы-
ках с динамической типизацией для статического 
анализа исходного кода с помощью универсально-
го классового представления / М. В. Зубов, А. Н. 
Пустыгин, Е. В. Старцев // Вестник Астраханско-
го государственного технического университета. 
Серия: Управление, вычислительная техника и 
информатика. – 2013. – № 2. – С. 66-74. – EDN 
QJBSCD.

5. Московцев, М. Н. Программная реализация 
геометрического алгоритма многокритериальной 
оптимизации / М. Н. Московцев // Омский науч-
ный вестник. – 2014. – № 3(133). – С. 15-17. – EDN 
TKDJPD.

6.	 Muminjonovich K. A. Sun’yiy inellektni 
rivojlantirishda dasturlash tillarining ro ‘li //Journal 
of new century innovations. – 2023. – Т. 12. – №. 4. 
– С. 159-161.

7. Musayev X.SH., Ermatova Z.Q., Kotlin dasturlash 
tilida korutinlar bilan ishlashni talabalarga o ‘rgatish 
//Journal of Integrated Education and Research. – 
2022. – Т. 1. – №. 6. – С. 119-125.


