

Diagonal project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 953152.

RATION OF EUROPT

First principles study of Co-catalyzed MgH₂ for CO₂ capture and conversion

RozasAzconaS.1,2,AparicioMartínez S.1,2,* andAtilhanM.3,*

¹*Department of Chemistry, University of Burgos, 09001, Burgos, Spain. 2ICCRAM, University of Burgos, 09001, Burgos, Spain.* ³*Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI 49008‐5462, USA*.

***Corresponding authors: mert.atilhan@wmich.edu (M.A.) and sapar@ubu.es(S.A.M.)**

1.INTRODUCTION

- Greenhouse gases emissions, especially $CO₂$, have dramatically increased in the last decades. Hence, concern over the reduction of the rising $CO₂$ atmospheric concentration (above 400 ppm) have led to the development of carbon capture and utilization (CCUs) technologies or carbon capture and storage (CCSs) methods.
- For this purpose, designed materials with high carbon dioxide affinity are needed. Previous experimental works reported by our group1 have shown reduction and conversion of carbon dioxide pure gas employing magnesium hydride as hydrogen supplier showing great cobalt catalytic activity.
- In this work, Density Functional Theory was applied to comprehend, from an atomistic point of view, the interaction mechanism of carbon dioxide adsorption on magnesium hydride and cobalt catalyzed magnesium hydride systems.

2. COMPLITATIONAL METHODS

- DFT simulations were performed with the PW package in the Quantum Espresso suite (v. 6.3) and Periodic Boundary Conditions. Projected Augmented Wave (PAW) pseudopotentials were used together with the PBE exchange‐correlation functional. Dispersion forces were corrected semi‐ empirically by Grimme, DFT‐D3.
- MgH₂ tetragonal (P4₂ mnm) system was considered, with (030) surface and lattice parameters $a = b = 8.88$ Å and $c = 30.46$ Å. Bulk crystal comprise 3 layers depth, with the bottom layer atoms fixed.

Fig. 1. . Top- and side-views of starting optimized clean MgH₂ slab.

- Optimal k‐points were a 12 × 12 × 12 Monkhorst‐Pack grid, along with a cut‐off of 544.23 eV.
- The following scenarios were considered on MgH₂ interactions: $CO₂$ molecule, Co single atom catalyst (SAC), 1 to 5 CO₂ molecules, 1 to 9 Co atoms slab coverage and 1 CO₂ molecule on Co SAC.
- The adsorption energy, E_{ads} , was determined as follows:

 $E_{ads} = E_{surf+X} - E_{surf} - E_{X}$ X= CO₂, Co

and charge transfer was evaluated by Bader code.

3. RESULTS AND DISCUSSION

Fig. 2. Top- and side-view, E_{ads}, bond distances and angles of CO₂ molecule adsorption (a), 4 CO₂ molecules adsorption (b), Co SAC (c), 4 Co
atoms catalyst (d) and 1 CO₂ molecule adsorption on Co – SAC.

a)

DENSITY OF STATES CHARGE TRANSFER

Fig. 3. DOS for MgH2 clean slab (a), Co atom (b) and CO2 (c), Co SAC (d), 4 CO_2 molecules (e) and $4 \text{ Co atoms (f) adso}$ MgH₂. PDOS for the slab (Mg – salmon, H – white), as well as CO₂ (C – blue, O – red) and Co (green) are also shown.

ELECTRONIC DENSITY

Fig. 4. Charge density difference at distinct lattice plains after the absorption of CO₂ and Co atoms with regard to MgH₂ clean slab. Red and blue colors represent electronic charge ion and depletion, respectively

nic charge Mg_1 +0.01 -1.83 Mg_3 +0.17
 Mg_4 -1.01 Mg_5 -1.19
O₁ +7.28 Mg_5
 O_1
 $+7.28$
 O_2
 $+1.41$
 C_1
 -4.24 -4.24 arge $+0.86$ -8.42
 -1.50 H_6 -1.50
 Mg_3 +0.39
 Mg_4 -0.16 H_8 -1.93
Mg₅ +0.71 $+11.16$ Atom Ionic charge $\overline{0.40}$ Mg_2 -1.46 -7.42 4.24 $+0.32$ -2.99 O_1 +4.13 -2.34 $+4.15$ $+15.21$ nic charge H ‐0.76 Mg 1.55 c) b) d)

Table 1. Ionic charge (Bader electronic densities) of slabelisties of slabelisties (Mg, H), CO₂ and Co₂ atoms **Fig. 5.** Charge transfer of the studied systems (a-d) with regard to MgH₂ clean
slab. Yellow and blue colors represent the negative and positive electron density, respectively.

4.CONCLUSIONS

- Quantum calculations (DFT) show large affinity of carbon dioxide with the hydride material, and so, the feasibility of magnesium hydride to capture $CO₂$.
- Regarding the adsorption mechanism, charge density and atomic charges before and after gas adsorption allow us to conclude that CO₂ molecules adsorption on non-catalyzed MgH₂ possess a net physisorption character. However, MgH₂ catalyzed systems show important bending of carbon dioxide molecules, greater MgH₂-CO₂ interaction energies and higher charge transfer values, together with the density of states plots analysis, a chemisorption character of the adsorption process is inferred.

5.ACKNOWLEDGEMENT

This work was funded by European Union (953152‐DIAGONAL‐H2020‐NMBP‐TO‐IND‐2018‐2020). We also acknowledge SCAYLE (Supercomputación Castilla y León, Spain) for providing supercomputing facilities. The statements made herein are solely the responsibility of the authors.

[1] G. Amica, S. Rozas, S. Aparicio, F. C. Gennari, Catalysis effect on CO2 methanation using MgH2 as a portable hydrogen medium, Phys. Chem. Chem. Phys., 22 (2020), pp. 14720‐14730