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Abstract. In recent years, different structural health monitoring (SHM)
systems have been proposed to assess the actual conditions of exist-
ing bridges and effectively manage maintenance programmes. Nowadays,
artificial intelligence (AI) tools represent the frontier of research pro-
viding innovative non-invasive and non-destructive evaluations directly
based on output-only vibration measures. This is one of the key aspects
of smart structures of the future. In the current study, an artificial neural
network (ANN) method has been proposed in order to perform damage
detection based on subspace-based damage indicators (DIs) and other
statistical indicators. A numerical case study example has been analysed
with simulated damaged conditions. Based on a comparison between a
reference situation and a new one, the greatest advantage in adopting
these particular DIs is because they are able to point out significant
changes, i.e. possible damage, without requiring a beforehand modal
identification procedure, which may introduce further noise and mod-
elling errors inside the traditional damage detection process.

Keywords: Structural health monitoring · Machine learning ·
Artificial neural network · Subspace-based damage indicators

1 Introduction

Many different Structural Health Monitoring (SHM) systems and innovative
techniques have been proposed by the scientific community in recent years
in order to assess the actual conditions, effectively manage maintenance pro-
grammes and increase the nominal life of existing heritage [1,2]. At least two
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main different methodologies, which differ in the adoption or not of a model, can
be identified into the SHM paradigm [3]. The first class of methods is denoted
as parametric [4], whereas the second one is denoted as non-parametric [5].
Nowadays, the operational modal analysis (OMA) is the most widespread tool
for dynamic identification of a structure based on output-only post-processing
techniques of the vibration response [6,7]. The parametric Stochastic Subspace
Identification algorithm (SSI) [8] and the non-parametric Enhanced Frequency
Domain Decomposition (EFDD) [9] are the two most adopted OMA algorithms
[3]. The SHM paradigm is structured into at least five levels of analysis, where
the first four are associated with the diagnosis phase [10] and the last one to
the prognosis phase [11]. The present study mainly focuses on Level 1 of the
SHM problem, which is associated with the damage detection phase. This task
could be possibly solved through the tracking of any change in the experimen-
tal modal parameters. However, several scholars proved that the OMA resulting
modal parameters are not the best elements to solve the SHM Level 1 effectively
[12]. Moreover, other studies provided non-parametric damage detection proce-
dures which do not require a prior OMA, thus avoiding manipulating vibration
data without a further introduction of modelling errors [13]. In particular, the
subspace-based damage indicators (DIs) [14–16], rely on residuals calculated by
covariance changes between two different situations: an initial reference condition
and a current, possibly damaged, one. In the present study, a machine-learning
artificial neural networks (ANN) model is adopted for the damage detection
task (SHM Level 1) by exploiting information contained in raw vibration data
combined with the above-mentioned subspace-based DIs, as depicted in Fig. 1.
A similar procedure has already been attempted in [17], where both a support
vector machine model and an ANN multi-layer percetron (MLP) architecture
have been trained on a numerical pinned-pinned beam model to perform the
damage classification task. The ANN has been trained on statistical parameters
only directly calculated on the raw time series vibration data, such as mean,
variance, skewness, kurtosis, etc. This promising study exploited very simple
calculations and basic statistics to determine the input dataset of the MLP,
without requiring any modelling assumptions or additional data manipulation.
However, this method resulted in relatively poor accuracy on the simple numeri-
cal beam scheme, whereas accuracy negligibly improved on the analyzed real case
studies. In the present work, the authors attempt to further enhance this MLP
scheme by giving as input both the most important statistical features and even
considering a subspace-based DI. Since this latter seems to be more sensitive
to damage to the naive statistical indicators, their combination is expected to
provide relatively higher accuracy in the classification performance. The current
proposed damage detection framework with ANN and subspace-based DI has
been finally analysed on a numerical simply supported beam case study model.
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Fig. 1. Illustration of the proposed method to handle SHM Level 1 by an ANN trained
on statistical features and subspace-based DI.

2 Subspace Residuals and Subspace-Based DIs

SSI is one of the most adopted algorithms in OMA and it relies on the following
state-space representation [18]:

xk+1 = Axk + vk
yk = Cxk + wk

(1)

where xk ∈ R
n are the states, whereas yk ∈ R

r is the outputs, then A ∈ R
n×n is

called state transition matrix and C ∈ R
r×n is denoted as observation matrix,

with connoting n the system order and r the number of sensors. The term vk rep-
resents a Gaussian white noise sequence with zero mean and constant covariance
matrix Q = E(vkvT

k ) def= Qδ(k − k′) (with E (·) as expectation operator), and
represents the unmeasured environmental excitation, whereas the wk terms is
refereed to the measurement noise. Based on this state-space representation, dif-
ferent damage diagnosis indicators have been developed, which have the advan-
tage of not requiring a prior OMA but directly working on output-only vibration
data [19,20]. Tracking changes in time occurred in the above-mentioned features,
the SHM Level 1 may be performed. Generally, the feature vector is approxi-
mately assumed as zero-mean normal Gaussian distributed in the reference state
(assumed as an undamaged situation) which evolves in a non-zero mean when
damages occur. Therefore, a residual vector may allow monitoring the relative
changes among the new probable damaged state, and the initial reference one
[21]. According to nomenclature proposed in [22], the subspace residuals are
classified in conventional and robust with respect to how they are influenced
by noise and changes in input excitation patterns. The residual matrix relies on
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the orthonormal property between the subspaces related to a reference situa-
tion in comparison with the subspace related to a different structural response
dataset, which could be varied because of input noise or structural damages.
In [23,24], a residual function based on the covariance-driven output-only sub-
space identification algorithm was proposed to detect damages directly from raw
measurements yk (e.g. acceleration responses). Let G = E(xk+1y

T
k ) be the cross-

covariance between the states and the outputs, Ri = E(ykyT
k−i) = CAi−1G be

the theoretical output covariances, and

Hp+1,q
def=

⎡
⎢⎢⎢⎣

R1 R2 . . . Rq

R2 R3 . . . Rq+1

...
...

. . .
...

Rp+1 Rp+2 . . . Rp+q

⎤
⎥⎥⎥⎦

def= Hank(Ri) (2)

the theoretic block Hankel matrix. Using measured data (yk)k=1,...,n , a consis-
tent estimate Ĥp+1,q is obtained from the empirical output covariances

R̂i =
1
N

N∑
k=1

yky
T
k−i (3)

Ĥp+1,q = Hank(R̂i) (4)

The residual function proposed by Basseville [23,24] performs a comparison of
the system undamaged or reference state with the damaged or current one. The
system parameters in terms of eigenvalues and eigenvectors in the reference and
current states are denoted respectively θ0 and θ. [25] proposed a non-parametric
damage detection approach in which it is not necessary to know explicitly the
system parameters θ0 in the reference state. In OMA SSI, the modal intrinsic
properties information are obtained by the factorization property of the Hankel
matrix which allows decomposing it in an observability matrix and a reversed
controllability matrix [3]. The observability matrix is thus calculated starting
from the Singular Value Decomposition (SVD) of the Hankel matrix:

Ĥp+1,q ≈ [U1U2]
[
S1 0
0 0

]
[V 1V 2]T ≈ U1S1V 1 (5)

As expressed in [26], U1 represents the left active subspace of the independent
column vectors of the Hankel matrix, whereas U2 denotes the null subspace of
the independent column vectors of the Hankel matrix. Similar definitions are
provided for V 1 and V 2 for row vectors of Hankel matrix. Finally, S1 collects
the non-neglectable singular values in a diagonal matrix sorted in decreasing
order. The orthonormal properties of these matrices state that

UT
1 Ĥp+1,qV 1 ≈ S1 (6)

Ĥp+1,qV 2 ≈ eV (7)

U2Ĥp+1,q ≈ eU (8)
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The above residues eV and eU can be different from zero vectors because of noise
effect or neglected weakly excited high modes. However, [26] pointed out that
they are not the ideal candidates for tracking relative changes for damage detec-
tion purposes, taking into account the same state. The orthonormal property
instead can be exploited by comparing two different states. Therefore, instead
of using the null space S(θT0 ) on the parameterized observability matrix [23,24],
an empirical (non-parametric) null space S is computed on an estimated block
Hankel matrix from data in the reference state using e.g. the SVD. The residue
is thus expressed in matrix form as

êc = ST Ĥp+1,q (9)

where ST is the left null space of the block Hankel matrix Ĥp+1,q in the reference
state and Ĥp+1,q is the covariance block Hankel matrix in the current, possible
damaged, one. In real life, the excitation covariance Q varies between different
acquisition sessions due to random environmental noise, but the excitation is
assumed as stationary during the same session. Therefore, a change in the exci-
tation covariance Q leads to a change in the cross-covariance between states and
outputs G and thus in the Hankel matrix. In [22,26], the authors presented a
new residual definition, which appears to be robust to variations of excitation.
Let Û1 be the matrix of the left singular vectors obtained from an SVD of
Ĥp+1,q. Since Û1 is a matrix with orthonormal columns, it is independent of the
excitation Q. Therefore, the residual matrix can be written as

êr = S ÛT
1 (10)

2.1 Yan et al. Damage Detection Test

In [26], the authors have provided a geometrical interpretation to the residual
matrix concept, such as expression of a loss of orthonormality between reference
subspace and another current state. Therefore, they give some DIs related to the
rotation angle which arises between the two subspaces when structural damage
occurs. Finally, they established that the best-found DI was given by the norm
of matrix êr

σ̂2
N = norm(êr) (11)

where norm(•) : Rm×n → R denotes the matrix spectral norm operator which
corresponds to the maximal singular value of a matrix, from the numerical point
of view. Therefore, the authors adopt the following DIs:

Iy,nr = norm(êc) (12)

Iy,r = norm(êr) (13)

In the current study, this latter explained method has been selected as a
subspace-based damage-sensitive feature to train the ANN classification model
presented in Fig. 1.
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3 Case Study: Numerical Beam Model

A numerical beam finite element (FE) model depicted in Fig. 2 has been anal-
ysed in the present study. It has been implemented into the OpenSeesPy module
[27], and it represents a simply supported steel beam, with a square cross-section
of side 0,10 m and a span length of 2,00 m. The steel material is characterized
by Young’s modulus E = 210 GPa and a mass density of ρ = 7850 kg/m3.
One beam support has been dynamically excited by a Gaussian random white
noise acceleration [13]. This is a widespread method in the literature in order
to simulate unknown environmental operational conditions in numerical cases
or laboratory experiments [4,28]. The white noise process has been generated
by a random sampling of a standard zero-mean Gaussian distribution N(0, 1),
normalized and scaled up to 0.01 g of peak ground acceleration (PGA). Similarly
to an acting earthquake limited to the vertical direction only, the input accel-
eration has been imposed in one single support to be sure to excite all modes,
since any perturbation propagates almost instantaneously in every element of
the beam [29]. The beam model has been discretized with a uniform mesh (see
Fig. 3), in which the time history acceleration responses have been retrieved from
in each node, simulating the presence of accelerometer sensors placed in corre-
spondence of the nodes. To perform some initial comparisons, a critical situation

Fig. 2. Geometry of the simply supported beam with x, y, z reference system, where
L is the span length, b is the square cross section side, gk1 is the self weight load and
v(z) is the beam deflection. üy(t) denotes the Gaussian white noise acceleration input.

Fig. 3. Numerical beam FE model in the undamaged (a) and damaged (b) scenarios.
In blue: element numbering; in green: node numbering.
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in the damaged model has been considered with severe damage simulated with
a cross-section reduction of 50% in a specific fixed position.

3.1 Limits of Traditional Modal Analysis and OMA

Since the availability of beam FE models in both in the damage and undamaged
scenarios, it was possible to conduct an initial classic modal analysis in order
to evaluate the dynamic properties changes. In Table 1, it is possible to point
out a general increase of the natural periods due to the presence of the damage.
This increase is strongly related to the modification of beam dynamic properties
both related to a local flexural stiffness loss and a mass loss. By a visual inspec-
tion of the mode shapes, it is also possible to highlight qualitatively the loss of
symmetry in the mode shapes due to the non-symmetric damage. In order to
evaluate quantitatively the similarity between the mode shapes in the damaged
and undamaged case, the cross modal assurance criterion (crossMAC ), may be
adopted:

MAC =

∣∣∣φ̂U φ̂
T

D

∣∣∣
2

∣∣∣φ̂U

∣∣∣
2∣∣∣φ̂D

∣∣∣
2 (14)

where φ̂U and φ̂D are the estimated mode shape vector referred to undamaged
and damaged situations. Thereafter the mode shapes have been normalized, the
crossMAC results have been reported in Table 2. Focusing on the main diago-
nal, it is worth noting a similarity of 99% among the first three mode shapes
and it decreases to 96% on the fourth mode. On the other hand, focusing on

Table 1. Modal analysis comparison in the undamaged and damaged cases.

Undamaged case Damaged case

Mode T [s] f [Hz] T [s] f [Hz]

1 0.534 1.872 0.611 1.638

2 0.134 7.479 0.139 7.184

3 0.060 16.722 0.064 15.680

4 0.049 20.583 0.052 19.368

Table 2. CrossMAC comparison in the undamaged and damaged cases.

Undamaged case

Mode 1 2 3 4

Damaged case 1 0.9987 0.4359 0.5800 0.6245

2 0.3948 0.9993 0.4281 0.4838

3 0.5906 0.4112 0.9981 0.9535

4 0.5768 0.3837 0.8866 0.9616
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all off-diagonal elements, the cross-correlations between different modes in the
two different situations are not of major interest within the scope of the present
study. In conclusion, the traditional modal analysis cannot evidence the presence
of damage, even with severe damage levels. Moreover, in real-life problems, it
is not possible to perform a traditional modal analysis, since the damage type
and location are unknown. However, even with performing an OMA, a dam-
age detection framework merely based on frequency changes it would be quite
ineffective. Furthermore, in real-life, background noise may jeopardize the entire
identification process, preventing a reliable detection of decimal changes in nat-
ural frequencies and mode shapes. In addition, it is not simple, even for experts,
to identify at first sight changes in mode shapes.

3.2 Influence of Damage Level and Acquisition Time Duration
on Subspace-Based DIs

In this section, an empirical sensitivity analysis has been conducted on the beam
FEM model to determine how the damage affects Yan’s et al. [26] subspace-based
DI. Referring to the undamaged and damaged scenarios illustrated in Fig. 3,
to calculate the DI it is necessary to define the active space and null space
dimensions. They can be identified by inspecting the singular values from SVD
and detecting when they approach zero [3]. Thus, in this case, an active space
dimension equal to two has been set. The time shift, adopted for Toeplitz matrix
assembling, has been empirically set to 23 in order to contain the computational
effort and still obtain an informative damage feature. Thereafter, an empirical
study has been conducted in order to show the influence of the damage level
percentage on the Yan et al. DI value for a certain identical input vibration and
for the undamaged and damaged scenarios. Referring to Fig. 3, the damage level
in element 3 has been varied from 5% to 50% of cross-section reduction with 5%
constant step size. In Fig. 4 (a), even for low levels of damage, the subspace-based
DIs point out the presence of damage assuming non-zero values in a monotonic

(a) (b)

Fig. 4. Empirical study of parameters affecting the subspace-based DI: (a) analysis of
the damage level percentage; (b) analysis of the acquisition time duration.
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way. It assumes almost zero (order of magnitude 10−2) only when there is no
damage, and it approaches 1 with high level of damage. In conclusion, empirical
analysis has been conducted regarding the acquisition time duration, considering
1, 3, 10, 15 and 30 min of time acquisition duration. In Fig. 4(b), the Yan et al.
DI produces quite scatter values for very short acquisition durations and it stalls
after the 5 min duration. Therefore, in the current study, an acquisition time of
5 min duration was addressed as the best trade-off between computational effort
and subspace-based DI quality of information.

4 Damage Detection with ANN Multiclass Classification

In order to collect the dataset to perform ANN training to address SHM Level
1, in total, 5000 time histories numerical simulations were conducted on the
above-mentioned beam FEM model. For every simulation, to increase the gen-
eralization of the proposed framework, the algorithm randomly selected how
many elements considered damaged and the level of damage to assign to them
accordingly three different levels: undamaged situation, low damage scenario
(cross-section reduction of 25%) and high damage scenario (cross-section reduc-
tion of 50%). Thereafter, for each acceleration record, some statistical features
have been extracted. In particular, as demonstrated in [17], the following sta-
tistical features appear to be the most informative and they can be effectively
considered by a machine learning model for damage detection. Denoted in gen-
eral each time series acceleration response as x, the extracted features are the
peak value xP,(i,j), the root mean square xRMS,(i,j), the variance xVAR(i,j), the
skewness xSKEW,(i,j), the kurtosis xKURT,(i,j), and the K-factor xK,(i,j).

xP,(i,j) = max{|xk|}nk=1, (15a)

xRMS,(i,j) =

√√√√ 1
n

n∑
i=1

x2
k, (15b)

xVAR(i,j) =
1
n

n∑
k=1

(xk − x)2, (15c)

xSKEW(i,j) =
1
n

∑n
k=1(xk − x)3(√
xVAR(i,j)

)3 (15d)

xKURT(i,j) =
1
n

∑n
k=1(xk − x)4(√
xVAR(i,j)

)4 (15e)

xK,(i,j) = xP,(i,j) · xRMS,(i,j). (15f)

In the previous equations, the x indicates the mean value, the subscript k denotes
the k-th component of the time series vector x which has totally n elements.
The subscript i denotes the i-th simulation out of the 5000 total runs, whereas
j denotes the j-th accelerometer from which the time series has been recorded.
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Fig. 5. Illustration of the implemented MLP ANN classification model, referring to the
method (B) of Fig. 1.

Table 3. ANN MLP model summary. None indicates a variable dimension, depending
on the batch size (in this case empirically set to 50).

Layer Output shape Activation function Parameters number

Input Layer (None, 61) – 0

Hidden Layer (None, 15) ReLU 915

Output Dense Layer (None, 3) Softmax 48

Total Trainable parameters: 963
Epochs: 1000 (limited to 200 with Early Stopping)
Loss: Categorical Cross-entropy (Optimizer: Adam)

Because of 5 min acquisitions have been recorded for each run with a sampling
frequency 500 Hz, n is thus equal to 150000. The number of accelerometers inside
the beam domain is 5, excluding the extremal support restraint points. In total,
for each numerical simulation, 6 statistical features have been extracted from
each accelerometer producing, in total, 30 extracted features. Remembering that
for each simulation, two cases have been considered (undamaged scenario and
a possible damaged one), altogether, 60 features have been produced from each
algorithm run. In the ANN architecture depicted in Fig. 5, the input is repre-
sented by 61 components coming from the statistical features concatenated with
Yan’s et al. subspace-based DI. The chosen architecture is a MLP with sin-
gle hidden layer of 15 units, chosen as a good compromise between simplicity
of the model, final accuracy performances and computational effort, trying to
avoid overfitting and underfitting issues [30,31]. The summary of the MLP model
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(a) (b)

Fig. 6. MLP multiclass classification results for SHM Level 1. (a) Training perfor-
mances history; (b) Confusion matrix of the test set predictions.

properties is reported in Table 3. The activation function of the hidden layer is
the Rectified Linear Unit (ReLu) function, whereas the softmax activation func-
tion has been adopted in the output layer to deal with the multiclass classification
task [30,31]. The MLP adopts the strategy one-versus-the-rest (or one-versus-
all) to address the multiclass classification problem [31]. The entire dataset has
been subdivided in a training set (80%), from which a further 10% has been
adopted as validation set during the training phase, and a test set (20%). The
maximum number of epochs has been set to 1000, but with the early stopping
criterion [30] it was possible to stop at 200 epochs to avoid overfitting issues.
The training history results are reported in Fig. 6(a). The performance of the
trained model has been validated with the test set, whose classification results
have been condensed in the confusion matrix illustrated in Fig. 6(b). The overall
accuracy obtained is about 92.30% and it measures the portion of the validation
set which has been correctly classified (the sum of main diagonal terms) out of
the entire validation set size (1000 samples). Two other metrics are presented in
the confusion matrix: precision and recall. The precision measures the number
of samples correctly classified in a certain class over the total number of sam-
ples which have been associated with that class, whereas the recall represents
the number of samples correctly classified to a certain class over the number
of samples which actually belongs to that class [31]. In conclusion, the current
MLP is able to provide quite interesting multiclass classification results consid-
ering the statistical time series features coupled with the Yan’s et al. subspace
DI, extending the capabilities of the MLP model trained in [17]. As a matter of
fact, in that study, the MLP classification reaches only about 88% on the same
numerical beam problem, whereas giving in input the new information contained
in the subspace-based DI, the overall accuracy reaches 92.30%. Furthermore, a
good generalization of the current ANN model is related to the fact that the 5000
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numerical simulations randomly considered both how many damaged elements
to take into account (even none) and the level of damage to associate with those
selected elements.

5 Conclusions and Future Remarks

In the current study, the Level 1 of the ideal SHM paradigm, i.e. the damage
detection task, is accomplished by an ANN model. The proposed method imple-
ments a MLP architecture to perform multiclass damage detection. A numerical
beam FEM model has been analysed to simulate a realistic monitoring system
placed on the structure to test the proposed method. In addition, some dam-
aged scenarios have been considered by reducing the cross-section area of some
elements in the model. The input data of the MLP are composed of statisti-
cal features calculated from time series vibration data. Furthermore, to enhance
the classification performances of the MLP, a subspace-based damage sensitive
feature is also combined with the input statistical features. After 5000 sim-
ulations, the ANN model has been trained and classification and generaliza-
tion performances have been investigated reporting the results in a confusion
matrix, inspecting the overall accuracy, the precision and the recall metrics. The
results demonstrated that the Yan’s et al. subspace-based DI helps to improve
the MLP classification task reaching about 92.30% of overall accuracy. Future
developments will explore the effects of the acquisition noise levels, which affect
real-life applications. Further investigations may explore some other prominent
deep learning architectures and experimentally prove the current study on a real
engineering case study.
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