Artifact for the paper
“Verification-Preserving Inlining in Automatic
Separation Logic Verifiers”

Overview

This is the artifact for the OOPSLA 2023 paper “Verification-Preserving Inlining in Automatic
Separation Logic Verifiers”, which contains:

1. An Isabelle/HOL mechanization that fully supports the technical claims from the
paper made in Section 4, also formalizes the structural condition from Section 5 and
formally proves that the structural condition implies the semantic condition.

2. An analysis of the test suites of VeriFast, GRASShopper, RSL-Viper, Nagini, which
supports the claims in table 1.

a. We provide scripts to support the results in the rows “satisfy syntactic
condition”, “violate syntactic condition”, “not always preserving”.

b. We do not explain in detail how to obtain the rows “always preserving”,
“validated by semantic condition”, “validated by structural condition” (we
provide the files and an informal argument). The reason is the following.
Understanding why a file is always preserving (or is captured by the semantic
or structural condition) requires an understanding of how the verifiers work
and requires conveying an informal proof that is out-of-scope for this artifact
(as the call for artifacts states: “paper proofs are not accepted for the
evaluation”). The reason why such a proof is required is because one must
reason about any inlining bound and any feasible client. We do not expect the
reviewers to be able to confirm these claims.

3. Aninlining tool for Viper, which inlines calls and unrolls loops, while also checking the
structural condition. This supports the claim that we have built such a tool.

4. Atest framework that runs the inlining tool on the examples in table 2 (main paper)
and table 3 (appendix in the extended version). This supports the claims in Section
6.4.

We describe below how to get started, namely how to use Isabelle/HOL to ensure that all
files of the mechanization are successfully verified, then how to use our inlining tool on an
example, and finally how to (quickly) check that most of our evaluation performs as
expected.

After that we include a detailed step-by-step instructions section.

The source code for our inlining tool is available at
https://github.com/tdardinier/carbon/tree/b314c6e16d202139ad812670b681ecbbbb10cf3f,
which is a fork of Viper’s verification condition generator (it is already cloned in the virtual
machine at ~/inlining_tool). The main part of the inlining implementation is done at
https://github.com/tdardinier/carbon/blob/b314c6e16d202139ad812670b681ecbbbb10cf3f/sr
c/main/scala/viper/carbon/modules/impls/DefaultinliningModule.scala.



https://github.com/tdardinier/carbon/tree/b314c6e16d202139ad812670b681ecbbbb10cf3f
https://github.com/tdardinier/carbon/blob/b314c6e16d202139ad812670b681ecbbbb10cf3f/src/main/scala/viper/carbon/modules/impls/DefaultInliningModule.scala
https://github.com/tdardinier/carbon/blob/b314c6e16d202139ad812670b681ecbbbb10cf3f/src/main/scala/viper/carbon/modules/impls/DefaultInliningModule.scala

Our artifact comes with a virtual machine and we have recorded all commands used to set
up the virtual machine at
https://github.com/tdardinier/carbon/blob/b314c6e16d202139ad812670b681ecbbbb10cf3f/et
c/vm/setup _vm.sh.

Getting Started Guide

1. Virtual machine

We have installed all required dependencies on an Ubuntu 20.04 VirtualBox virtual machine.
To test the artifact, we used 8192 GB of RAM (using less RAM can lead to problems when
checking proofs with Isabelle) and 2 processors for the virtual machine and VirtualBox
version 6.1. The username is “inlining” and the password is “test”.

2. Mechanization

To get started, we recommend making sure that all the files are successfully verified by
Isabelle.

Our mechanization is located in ~/artifact/mechanization, and it contains the following 5
Isabelle files:
e SepAlgebra.thy
Semantics.thy
Inlining.thy
StructuralCondition.thy
ExtendedInlining.thy

a. Using Isabelle’s CLI
One can check that Isabelle successfully verifies all 5 files using the Isabelle command line
interface (located at ~/fools/Isabelle2022/bin/isabelle, accessible via the shortcut isabelle)
with the command “isabelle build -c -d. -I Inlining” (this command tells Isabelle to build the
Inlining session, which is defined in the ROOT file).

This can be achieved with the following command:

> cd ~/artifact/mechanization
> isabelle build -c -d. -l Inlining

Expected output:
The final lines of the output should look like the following:

Session Unsorted/Inlining
~/artifact/mechanization/ExtendedInlining.thy


https://github.com/tdardinier/carbon/blob/b314c6e16d202139ad812670b681ecbbbb10cf3f/etc/vm/setup_vm.sh
https://github.com/tdardinier/carbon/blob/b314c6e16d202139ad812670b681ecbbbb10cf3f/etc/vm/setup_vm.sh

~/artifact/mechanization/Inlining.thy
~/artifact/mechanization/Semantics.thy
~/artifact/mechanization/SepAlgebra.thy
~/artifact/mechanization/StructuralCondition.thy

Running Inlining ...

Finished Inlining (0:02:26 elapsed time, 0:08:41 cpu time, factor 3.57)

0:02:31 elapsed time, 0:08:41 cpu time, factor 3.44

This output indicates that Isabelle successfully verified the 5 files in 8 minutes and 41
seconds (it might take a bit longer). A different output might indicate a problem.

b. Using Isabelle’s GUI

Note that Isabelle’s GUI, which is located at ~/fools/Isabelle2022/Isabelle2022, can also be
used to ensure that Isabelle can verify all files. To verify that a file is successfully verified:
1. Open the file (File > Open...).
2. Open the Theories panel (Plugins > Isabelle > Theories panel). It should be visible on
the right of the window.
3. Activate "continuous checking" by ticking the box at the top of the Theories panel.
4. Put the cursor at the end of the file.

The verification status can be seen on the right of the editor, next to the scrollbar:
e Pink indicates a part that has not been verified yet.
e Purple indicates ongoing verification.
e Clear or orange indicates successful verification. Orange indicates a warning
(warnings do not make a proof invalid, but provide help to improve the proof).
e Clear or orange indicates successful verification for this part; Orange indicates a
warning (warnings do not make a proof invalid, but help to make the proof better).
Red indicates an error (this should not happen).

3. Inlining tool

The Viper file ~/artifact/example_figure_2.vpr contains the encoding shown in Figure 2, but
where the annotations are not commented out.

1. First, run modular verification :
> inlining artifact/example_figure_2.vpr
(not providing the --SI option results in modular verification)
Verification should be successful.
Output expected:

carbon finished verification successfully in 4.05s.



2. Run inlining (without checking our conditions):
> inlining --noCheckSC --S| 1 --entry r --ignoreAnnotations artifact/example_figure_2.vpr
Verification should fail, which shows that inlining is not preserving in this case.
Output expected:

carbon found 1 error in 3.91s:
[0] Assert might fail. There might be insufficient permission to access A(b).
(example_figure_2.vpr@4.1)

The options mean the following:

e --noCheckSC: The tool does not check the structural condition

e --Sl 1: This option activates inlining, with the bound 1. Note that if this option is not
provided, then inlining is not applied (irrespective of any other arguments) but the
input Viper file is verified modularly (as was the case in step 1.).
--entry r: This option specifies the name of the entry method (r in this case).
--ignoreAnnotations: Does inlining without partial annotations (as described in
Section 4.2)

3. Run inlining and check the structural condition:
> inlining --SI 1 --entry r --ignoreAnnotations artifact/example_figure_2.vpr

On top of the error from inlining the method, our tool should report two errors here:
“Statement might not be monoOut” (i.e., output monotonicity does not hold), and “Statement
might not be framing”, which proves that our tool captures this false positive.

Output expected:

carbon found 3 errors in 3.57s:

[0] FRAMING 1: Statement might not be monoOut (order not preserved) ?
(example_figure_2.vpr@14.1)

[1] FRAMING 1: Statement might not be framing ? (example_figure 2.vpr@14.1)

[2] Assert might fail. There might be insufficient permission to access A(b).
(example_figure_2.vpr@4.1)

4. Playing with the tool

Other options of the tool include:

--disableSyntacticSC: Disable the syntactic condition.
--noCheckSC: Does not check the structural condition when inlining
--print file.bpl: Write the Boogie output file to file.bpl

--printSC: Print the Viper code for which we check mono or framing

To find other examples of Viper programs, and understand the Viper syntax, we recommend
the Viper tutorial: http://viper.ethz.ch/tutorial/.



http://viper.ethz.ch/tutorial/

4. Quick checks for the evaluation

We propose the following quick checks, to ensure that most of our evaluation works
correctly.

a) VeriFast
Run the following commands (should take less than two minutes):

> cd ~/artifact/verifast
> sh 1_clone_and_analyze_verifast.sh
>sh 2_run_witnesses_non_preserving.sh | diff -s expected_output.txt -

Output expected (first command):

Automatic analysis of the VeriFast test suite

Number of analyzed files: 1002

Lines of code: 160.4 (mean), 67.0 (median)

Number of files violating the syntactic condition: 696
Number of files considered for manual analysis: 271

Output expected (second command):
Files expected_output.txt and - are identical
b) GRASShopper

Run the following commands (should take less than one minute) and then compare the
output of the second script with ~/artifact/grasshopper/expected_output.txt

> cd ~/artifact/grasshopper
>sh 1_clone_and_analyze grasshopper.sh
> sh 2_run_witnesses_non_preserving.sh

The first script should output the following numbers at the end:

Automatic analysis of the GRASShopper test suite

Number of analyzed files: 314

Lines of code: 123.8 (mean), 57.0 (median)

Number of files violating the syntactic condition: 111

Number of files violating the syntactic condition because of exact bounds on resources: 11
Number of files violating the syntactic condition because of imprecise assertions: 107

c) RSL-Viper

Run the following command:
> cd ~/artifact/rsl_viper



>sh 1_clone_and_analyze_rslviper.sh

The expected output at the end is:

14 out of 14 files violate the syntactic condition
d) Nagini
Run the following command:

> cd ~/artifact/nagini
> python3 global_analysis_nagini.py --naginirepo nagini_expected

The expected output is (should not take more than a few seconds):

# Python files analyzed:232

# Viper files analyzed (should match number of Python files):232
# tests that violate the syntactic condition:232

# trivial tests: 114

# non-trivial tests (manual analysis required):118

# non-trivial tests considered for manual analysis:79

# non-trivial tests discarded:39

# tests with permission branching:64

# tests with dynamic field branching:62

Captured lines of code for 232 files

All lines of code: mean 73.02155172413794 median 47.5

Run the following command (should not take more than a few seconds):
> source ~/tools/nagini_env/bin/activate

> nagini

> deactivate

The expected output is:
/home/inlining/tools/nagini_env/lib/python3.7/site-packages/mypy/lex.py:770: FutureWarning:
Possible nested set at position 1
open_bracket_exp = re.compile('[[({]")
usage: nagini [-h] [--viper-jar-path VIPER_JAR_PATH] [--boogie BOOGIE]
[--z3 Z3] [--mypy-path MYPY_PATH] [--print-silver]
[--write-silver-to-file WRITE_SILVER_TO_FILE] [-v]
[--verifier VERIFIER] [--sif] [--show-viper-errors] [--arp]
[--log LOG] [--benchmark BENCHMARK] [--ide-mode]
[--select SELECT] [--ignore-global] [--server]
python_file
nagini: error: the following arguments are required: python_file

e) Test framework



Start the Viper HTTP Server in one terminal by running:
> cd ~/test_framework/viperserver/
> sbt run

After at most a few minutes and around 25 lines of “[info]...” output, the following message
should appear:

[info] ViperServer online at http://localhost:PORT

where PORT is some integer. This means the server can be reached on the port PORT (the
port is not always the same).

Keep this terminal open and do not stop the process, since it is required for the next
command

Open another terminal and run (where PORT is given by the number outputted above and R
is the number of times each configuration should be tested):

> cd ~/test_framework/viperserver/carbon/src/test/inlining_test framework/
> python3 run_inlining_tests.py --port PORT --reps 1 --boogieExe $BOOGIE_EXE --z3Exe
$23_EXE --dir ../resources/inlining/

This command should finish in around 6 minutes. Check that the output matches
“~[artifact/expected_output_test framework.txt”.

Step by Step Instructions

1. Isabelle/HOL mechanization

Structure of the mechanization

The artifact contains the following 5 Isabelle files:

SepAlgebra.thy: This theory formalizes the separation algebra.

Semantics.thy: This theory formalizes the parametric verification language described
in Section 4.1, with its semantics and verification definition (sem and ver), as well as
mono and framing.

e Inlining.thy: This theory formalizes inlining (Definition 4.1), the semantic condition
(Definition 4.4), and proves the verification-preserving inlining theorem without taking
(partial) annotations into account (Theorem 4.5).

e StructuralCondition.thy: This theory formalizes the structural properties (structural
mono and structural framing), the structural condition, and proves that the structural
condition implies the semantic condition (Section 5).

e ExtendedInlining.thy: This theory proves the verification-preserving inlining theorem
when (partial) annotations are taken into account (Theorem 4.7). Moreover, this
theory includes the corresponding corollaries of both Theorem 4.5 and 4.7, which



prove that an error in the inlined program implies that there is no annotation that
makes the original program verify modularly (the corollary for 4.7 considers only
annotations that are stronger than the already existing partial annotation).

Correspondence with the paper

We suggest using Isabelle’s GUI to navigate the mechanization (see how in the Getting
Started Guide), in order to check that it is consistent with the claims in the paper. To jump to
the definition of a term, click on it while holding the Control key.

Note the following differences between the formal descriptions in the paper and the
Isabelle/HOL mechanization:

1.

Annotations: Annotations in the Isabelle/HOL mechanization are directly part of the
program, whereas the annotation and the program are separate in the paper. That is,
the methods always have an annotation and loops always have an invariant.
Renaming: The paper ignores renaming issues, but the mechanization covers this
aspect. In particular, the locale semantics_algebra (lines 84-152 in the file
Semantics.thy, see (**)) has several parameters relevant to renaming. Moreover, the
functions inline (to inline) and SC (corresponding to the semantic condition) have a
supplementary parameter that records which variables have been used until this
point, to avoid variable capturing when inlining further method calls.

Semantics: In the paper, the functions sem and ver take as input a single state. In
the mechanization, they take as input a set of states. Moreover, the semantics in the
mechanization is defined via a function semantics (see table below), from which we
derive sem and ver. Accordingly, the definitions of mono and framing in Isabelle/HOL
are also expressed in terms of sets of states instead of single states.

The table below connects the claims in the paper with the Isabelle/HOL mechanization. To
show the line numbers, click on “View > Toggle Line Numbers”.

Paper Isabelle/HOL mechanization
Section | Element(s) File Element(s)
4.1 State model SepAlgebra.thy locale (*) commutative_monoid (lines 9-17)
locale (*) sep_algebra (lines 158-175)
Language and semantics | Semantics.thy datatype stmt (lines 7-19)
function semantics (lines 1409-1445)
Functions ver and sem Semantics.thy locale (**) semantics_algebra (lines 84-152)
definitions ver and sem (lines 1484-1488) (**)
4.2 Definition 4.1 Inlining.thy function inline (lines 46-60)
Definition 4.2 Semantics.thy definitions ssafeMono, smonoOut, and smono
(lines 1497-1504) (**)
Definition 4.3 Semantics.thy function framing (lines 3939-3941) (**)




Definition 4.4

Inlining.thy

functions SC and inlinable_SC (lines 106-124)
(****)

Theorem 4.5

Inlining.thy

theorem preservation (lines 4310-4323)

Corollary of Theorem 4.5

ExtendedInlining.thy

theorem preservation_corollary (lines
4484-4512)

4.3 Definition 4.6 ExtendedInlining.thy functions annotate_stmt, annotate_method, and
annotate_program (lines 22-37) (***)
Theorem 4.7 ExtendedInlining.thy theorem extended_preservation (lines
4026-4110)
Corollary of Theorem 4.7 | ExtendedInlining.thy theorem extended_preservation_corollary (lines
4112-4118)
5 Definition 5.1 StructuralCondition.thy | definition structural_mono (lines 8-13)
Lemma 5.2 (in the StructuralCondition.thy | lemma structural_mono_implies_mono (lines
updated Section 5 shown 15-39)
in
“paper_updated_section__
5.pdf’) [structural mono
implies mono]
Theorem 5.3 (in the StructuralCondition.thy | theorem structural SC _implies_SC (lines
updated Section 5 shown 110-175)
in
“paper_updated_section_
5.pdf’) [structural
condition implies
semantic condition]
App. A.1 | Definition A.1 SepAlgebra.thy locale (*) commutative_monoid (lines 9-17)
locale (*) sep_algebra (lines 158-175)
App. A.2 | Language Semantics.thy datatype stmt (lines 7-19)
Definition A.2 SepAlgebra.thy type_synonym ‘a assertion (line 5)
Definition A.3 SepAlgebra.thy definition add_set (®) (lines 374-375)
definition bigger_set (> ) (lines 443-444)
Definitions A.4 and A.6 Semantics.thy locale (**) semantics_algebra (lines 84-152)
function semantics (lines 1409-1449)
definitions ver and sem (lines 1484-1488) (**)
Definition A.5 Semantics.thy definition h (lines 474-475)
definition h_comp (lines 673-674)
App. B Definition B.1 Inlining.thy function inline (lines 46-60)
Definition B.2 Inlining.thy functions SC and inlinable_SC (lines 106-124)

(****)




Definition B.3

ExtendedInlining.thy

function annotate_stmt (lines 22-30)

App. F

Definition F.1 (in the

StructuralCondition.thy

definition structural_framing (lines 42-45)

updated appendix of
“paper_updated_section_
5.pdf’)

Lemma F.2 (in the
updated appendix of
“paper_updated_section_
5.pdf’)

StructuralCondition.thy
(lines 47-70)

(*) A“locale” is a way in Isabelle/HOL to define a parametric theory, by fixing some
parameters and assuming some axioms. In our case, the locale sep_algebra, which inherits
from the locale commutative_monoid, corresponds to the separation algebra described in
Section 4.1 and Appendix A (definition A.1).

(**) The locale semantics_algebra captures the parameters and requirements needed to
instantiate our parametric verification language. In particular, it covers all aspects relevant to
renaming variables, and the heuristics for exhale statements.

(***) Since (in our semantics) assert P verifies in a state larger than some state in which the
assertion P holds, we only use “P” and not “P * true” in the mechanization.

(****) The terminology “call-free” in the paper corresponds to the negation of inlinable in the
mechanization: inlinable(s) holds iff the statement s contains a loop or a method call.

2. Evaluation Part 1 (table 1)

In the following section, we explain how we obtained the results for table 1 discussed in
Section 6.1 and Section 6.2. We explain our approach for each of the four verifiers (VeriFast,
GRASShopper, RSL-Viper, Nagini) in a separate subsection. Each of the subsections is
structured as follows:

1. First, we explain how to obtain the corresponding verifier test suite and how to
perform an automatic analysis on the test suite. The automatic analysis on the test
suite is used to (1) find files that violate the syntactic condition (i.e., rows “satisfy
syntactic condition” and “violate syntactic condition” in table 1), (2) automatically
discard files for the manual analysis, (3) obtain numbers on different patterns
appearing in the test suite.

2. Second, we explain our manual analysis discussed in 6.2 and 6.3.

a. For the “not always preserving files” we provide “non-preserving witnesses”
that show that the file is not always preserving. That is, we add clients (i.e., an
initial statement) to the analyzed files such that: the file verifies modularly, but
does not verify if the client is inlined. We have written a script for each verifier
that runs the modular verification followed by the verification of the inlined
program.

lemma structural_framing_implies_framing




b. If afile is always preserving (and typically always captured by our semantic
and structural conditions), we write the informal reason (coming from our
manual analysis of these files) for why this is the case. Understanding why
the informal reasons imply that a file is always preserving requires an
understanding of how the verifiers work and requires conveying an informal
proof that is out-of-scope for this artifact (as the call for artifacts states: “paper
proofs are not accepted for the evaluation”). We do not expect the reviewers
to be able to confirm these claims.

VeriFast

1. Clone the VeriFast test suite, and run the automatic analysis

The script 1_clone_and_analyze_verifast.sh in the folder ~/artifact/verifast first clones the
VeriFast repository (with the relevant commit), and then runs the Python file verifast.py (see
the comments in the file for more details), which performs the automatic analysis:

> cd ~/artifact/verifast
> sh 1_clone_and_analyze verifast.sh

Output expected (should take less than a minute):

Cloning into 'verifast'...

remote: Enumerating objects: 22153, done.

remote: Counting objects: 100% (161/161), done.

remote: Compressing objects: 100% (80/80), done.

remote: Total 22153 (delta 83), reused 134 (delta 74), pack-reused 21992
Receiving objects: 100% (22153/22153), 7.74 MiB | 11.93 MiB/s, done.
Resolving deltas: 100% (15824/15824), done.

Automatic analysis of the VeriFast test suite

Number of analyzed files: 1002

Lines of code: 160.4 (mean), 67.0 (median)

Number of files violating the syntactic condition: 696
Number of files considered for manual analysis: 271

The analysis script also writes two files:
e selection.txt: List of the 271 files that were considered for the manual analysis. The
expected output for this file is in expected selection.txt.
e discarded.txt: List of the 425 files that were not considered for the manual analysis.
The expected output for this file is in expected_discarded.txt.

2. Manual analysis
The table below shows the 20 files that were randomly sampled from the list of files

considered for the manual analysis (selection.txt). For each file, we write whether it is always
preserving or not.



Always-preserving files: If a file is always preserving (and typically always captured by our
semantic and structural conditions), we write the informal reason (coming from our manual
analysis of these files). Since these reasons can be considered as informal proofs, and
require some knowledge of how VeriFast works to be understood, we do not expect the
reviewers to be able to confirm these claims.

Non-preserving witnhesses: For each file that is not always preserving (in red), we have
written a client that proves this claim. These clients are in the folder
~/artifact/verifast/non_preserving_witnesses. More precisely, for each file FILE.c not always
preserving, we have written two modified files: FILE_client.c, which only contains the client
(non-inlined), and FILE client _inlined.c, in which we have also manually inlined the method
calls and unrolled loop iterations manually. Running the tool on FILE_ client.c should verify
(since verification is modular), whereas running the tool on FILE_client _inlined.c should fail,
which thus proves non-preserving inlining.

Note that, in some tedious cases, we inline or unroll only partially (i.e., we keep method calls
or loops that should have been replaced by assume false because the inlining bound has
been reached), since this is sufficient to prove non-preserving inlining. Every partially inlined
client could be turned into an inlined client where we assume false once the bound is
reached, and we would get the same results.

To automatically run all the witnesses (first showing successful modular verification and then
showing verification failure with the inlined client), run the script

2 _run_witnesses_non_preserving.sh from the ~/artifact/verifast folder:

> cd ~/artifact/verifast
> sh 2_run_witnesses_non_preserving.sh

It should take less than a minute to run. The expected output of this script is given in the file
~/artifact/verifast/expected output.txt.

All paths in the table below are relative to the folder ~/artifact/verifast/verifast/examples.

Path Always Reason
Preserving
crypto_ccs/bin/stdlib/crypto/auxiliary_definitions | No see client in non_preserving_witnesses folder
©
dyncode.c Yes e potentially imprecise assertions are
precise
e “open” statement directly following the
relevant “close” statement, so it does
not have a choice
floating_point/sqrt_with_rounding/sqrt_with_rou | No see client in non_preserving_witnesses folder
nding.c




shared_boxes/datastructures/dklmap.c Yes “‘exwitness(?)” statements always following the
relevant “close” or “assert” statements, so they
do not have a choice
java/Account.java Yes potentially imprecise assertions are precise
fm2012/problem1-split.c No see client in non_preserving_witnesses folder
shared_boxes/stack_hpl/listex2.c No see client in non_preserving_witnesses folder
vstte2012/problem5/Iset.c Yes “‘exwitness(?)” statements always following the
relevant “close” or “assert” statements, so they
do not have a choice
javallterator/Singletonlterator.java Yes potentially imprecise assertions are precise
shared_boxes/shared_boxes.c No see client in non_preserving_witnesses folder
vstte2012/problem4/treerec_list.c Yes potentially imprecise assertions are precise
javallterator.java Yes potentially imprecise assertions (“valid(?)”) are
precise
quicksort.c Yes potentially imprecise assertions (“ints(,,?)”) are
precise
splitcounter/splitcounter.c No see client in non_preserving_witnesses folder
monitors/barbershop.c No see client in non_preserving_witnesses folder
shared_boxes/incrbox.c Yes imprecise “leak” always following the allocation
of memory, so they do not have a choice
mcas/ghost_lists.c No see client in non_preserving_witnesses folder
linking/simple_pred/give_pred_body_main.c Yes “‘open” statements directly following the
relevant “close” statement, so they do not have
a choice
shared_boxes/datastructures/diset.c Yes e potentially imprecise assertions are
precise
e “open” statement directly following the
relevant “close” statement, so it does
not have a choice
java/chat/Member.java Yes “open” statements directly following the

relevant “assert” statements, so they do not
have a choice

GRASShopper




1. Clone the GRASShopper test suite, and run the automatic analysis

The script 1_clone_and_analyze grasshopper.sh in the folder ~/artifact/grasshopper first
clones the GRASShopper repository (with the relevant commit), and then runs the Python
file grasshopper.py (see the comments in the file for more details), which performs the
automatic analysis:

> cd ~/artifact/grasshopper
>sh 1_clone_and_analyze grasshopper.sh

Output expected (should take a few seconds):

Cloning into 'grasshopper"...

remote: Enumerating objects: 22254, done.

remote: Counting objects: 100% (1379/1379), done.

remote: Compressing objects: 100% (418/418), done.

remote: Total 22254 (delta 946), reused 1378 (delta 946), pack-reused 20875
Receiving objects: 100% (22254/22254), 7.79 MiB | 8.74 MiB/s, done.
Resolving deltas: 100% (14679/14679), done.

Automatic analysis of the GRASShopper test suite

Number of analyzed files: 314

Lines of code: 123.8 (mean), 57.0 (median)

Number of files violating the syntactic condition: 111

Number of files violating the syntactic condition because of exact bounds on resources: 11
Number of files violating the syntactic condition because of imprecise assertions: 107

2. Manual analysis

The table below shows the 20 files that were randomly sampled for the manual analysis. For
each file, we write whether it is always preserving or not.

Always-preserving files: If a file is always preserving (and typically always captured by our
semantic and structural conditions), we write the informal reason (coming from our manual
analysis of these files). Since these reasons can be considered as informal proofs, and
require some knowledge of how GRASShopper works to be understood, we do not expect
the reviewers to be able to confirm these claims.

Non-preserving withesses: For each file that is not always preserving (in red), we have
written a client that proves this claim. These clients are in the folder
~/artifact/grasshopper/non_preserving_witnesses. More precisely, for each file FILE.sp/ not
always preserving, we have written two modified files: FILE_client.spl, which only contains
the client (non-inlined), and FILE_client_inlined.spl, in which we have also manually inlined
the method calls and unrolled loop iterations manually. Running the tool on FILE_ client.spl
should verify (since verification is modular), whereas running the tool on
FILE_client_inlined.spl should fail, which thus proves non-preserving inlining.



To automatically run all the witnesses (first showing successful modular verification and then
showing verification failure with the inlined client), run the script
2_run_witnesses_non_preserving.sh from the artifact/grasshopper folder:

> cd ~/artifact/grasshopper
> sh 2_run_witnesses_non_preserving.sh

It should take less than a minute to run. The expected output of this script is given in the file
~/artifact/grasshopper/expected_output.txt.

All paths in the table below are relative to the folder
~/artifact/grasshopper/grasshopper/tests/spl.

Path S::v:grsv - Reason

array/destroy.spl Yes potentially imprecise assertions are precise
array/quicksort.spl Yes potentially imprecise assertions are precise
array/selection_sort.spl Yes the argument content is existentially quantified (implicit

ghost), but it is not used

counter/counter_simple.spl No see client in non_preserving_witnesses folder
dl/dl_dancing.spl Yes potentially imprecise assertions are precise
flows/b-link-core.spl Yes e potentially imprecise assertions are precise

e disjunctions are pure

flows/b-link-half-old.spl Yes potentially imprecise assertions are precise
flows/b-link-half.spl Yes potentially imprecise assertions are precise
flows/hashtbl-link.spl Yes e potentially imprecise assertions are precise

e disjunctions are pure

include/treeset.spl Yes potentially imprecise assertions are precise
list_set/delete.spl Yes potentially imprecise assertions are precise
list_set/difference.spl Yes potentially imprecise assertions are precise
list_set/intersect.spl Yes potentially imprecise assertions are precise
list_set/traverse.spl Yes potentially imprecise assertions are precise
recursive_defs/list.spl No see client in non_preserving_witnesses folder
recursive_defs/treeset.spl Yes potentially imprecise assertions are precise
simple_arrays/bubble.spl Yes the parameters ub and /b of the procedure bubble_sort

are existentially quantified; it thus seems that the
precondition array_bnd(a, Ib, ub) is imprecise, but it




nonetheless does not seem possible to get
non-preserving inlining out of this, because of the way the
automation for this existential works

tree/binary_search_tree.spl Yes potentially imprecise assertions are precise
tree/union_find.spl Yes potentially imprecise assertions are precise
uninterpreted_datat_set/hashset.spl | Yes potentially imprecise assertions are precise

RSL-Viper

0. General remarks about RSL-Viper

RSL-Viper is a tool to automatically verify weak-memory programs using the RSL logic by
encoding programs into Viper. The originally published RSL-Viper tool is not distributed as a
separate standalone tool. Instead, programs are directly expressed in Viper, where
operations are expressed via Viper macros. The macro definitions provide the Viper
encoding.

Each RSL-Viper file in the test suite is a Viper file where the first part of the file is given by
the program expressed via Viper macros and the rest of the file includes the macro
definitions along with other background theory needed for the encoding. For example,
“fetchUpdate(count, t, t+1, true, false)” expresses an atomic fetch-and-add operation. In
Viper, the syntax “define fetchUpdate(x, tmp, newVal, readSync, writeSync) { ... }" defines
the macro.

1. Clone the RSL-Viper test suite, and run the automatic analysis
The script 1_clone_and_analyze_rslviper.sh in the folder ~/artifact/rs|_viper/ extracts the
RSL-Viper tests from the Viper examples repository (with the relevant commit), and then
runs the Python file analyze rsl_viper.py (see the comments in the file for more details),

which performs the automatic analysis:

> cd ~/artifact/rs|_viper
>sh 1 _clone_and_analyze rslviper.sh

The expected output is:

14 out of 14 files violate the syntactic condition

For the lines of code reported in the caption of table 1, we used all lines from the first part of
the program to the last part of the program (excluding the comments at the beginning and

the macro definitions and background theory).

Proof rule selection strategies and exact bounds on resources




In the paper, we report that proof rule selection strategies that depend on the owned
resources appear in 5 files. We established this by manual inspection and the 5 files are
given by:

e RelAcgMsgPass.sil
RelAcgDblMsgPassSplit.sil
FencesDbIMsgPass.sil
FencesDblIMsgPassAcgRewrite.sil
FencesDbIMsgPassSplit.sil
One can observe that all 5 files have such proof rule selection strategies by noticing that
each of these files use the “waitOnAcquireRead” or “waitOnRelaxedRead” macros, which
are defined in terms of the macro atomicReadInhaleWithVar(x, v, sync, isSRMW, tmpSet)
where isRMW is set to false. As can be seen in the macro definition for
atomicReadlnhaleWithVar, if isSRMW is false, then there is a branch on the permission of the
AcqConjunct resource (see macro hasAcqConjunct) that corresponds to the proof rule
selection strategy discussed in figure 2 of the paper.

Considered for manual analysis
We took all files into account for the manual analysis except for FollyRWSpinlock_err.sil and
FollyRWSpinlock_err_mod.sil, because they were too complex to analyze.

2. Manual analysis

The table at the end of this subsection shows the 12 files that were taken into account for the
manual analysis. For each file, we write whether it is always preserving or not.

Always-preserving files: If a file is always preserving (and typically always captured by our
semantic and structural conditions), we write the informal reason (coming from our manual
analysis of these files). Since these reasons can be considered as informal proofs, and
require some knowledge of how RSL-Viper works to be understood, we do not expect the
reviewers to be able to confirm these claims.

Non-preserving witnesses: For each file that is not always preserving (in red), we have
written a client that proves this claim. These clients are in the folder
~/artifact/rs|_viper/non_preserving_witnesses. More precisely, for each file FILE.sil not
always preserving, we have written one modified file: FILE client.sil, which contains the
client (non-inlined) [the original file is also included in the same folder]. Verifying

FILE_ client.sil should verify modularly, whereas inlining the client (with some bound) in
FILE client.sil should fail, which thus proves non-preserving inlining.

Note that in some cases we commented out irrelevant methods of the program in

FILE client.sil.

Since we are dealing with Viper files here, we can use our Viper inlining tool to show that
inlining the clients leads to verification failing.

To automatically run all the witnesses (first showing successful modular verification and then
showing verification failure with the inlined client), run the script
2_run_witnesses_non_preserving.sh from the ~/artifact/rsl_viper folder:



> cd ~/artifact/rs|_viper
> sh 2_run_witnesses_non_preserving.sh

The command takes around 4 minutes. The expected output of this script is given in the file
~/artifact/rs|_viper/expected_output.txt.

All paths in the table below are relative to the folder ~/artifact/rsl_viper/examples (which is
created once the examples are cloned with the script in step 1).

Path Always Reason
Preserving

FencesDbIMsgPass.sil No see client in non_preserving_witnesses folder

FencesDbIMsgPassAcgRe [ No see client in non_preserving_witnesses folder

write.sil

FencesDbIMsgPassSplit.sil | No see client in non_preserving_witnesses folder

FollyRWSpinlockStronger | Yes The problematic statements that could lead to nonpreserving

mod.sil inlining are the CAS and fetch_update macros, which both take
arguments “true” and “true” in this case. The resulting expanded
Viper pattern cannot lead to nonpreserving inlining, because
owning more permission can only lead to more permission being
obtained (and the obtained permission does not interact with any
non-monotonic features).

FollyRWSpinlockStronger.si | Yes Same reason as FollyRWSpinlockStronger_mod.sil

I

RelAcqgDblMsgPassSplit.sil | No see client in non_preserving_witnesses folder

RelAcqMsgPass.sil No see client in non_preserving_witnesses folder

RelAcqRustARCStronger.sil | No see client in non_preserving_witnesses folder

RSLLockNoSpin-not-in-app | Yes This file is always preserving and captured by the semantic

endix.sil

condition, but it is not captured by the structural condition,
because of an incompleteness of determinization. More precisely,
a method in this file creates (at some point) the set of all
references to which it has some non-zero permission to some field
(using permission introspection features from Viper), which is
different depending on the resources owned. The method is
always preserving (and captured by our semantic condition),
because of the way this set is subsequently used. However, this
set is created as follows (simplified):

var my_set: Set[Ref]
assume (forall r: Ref :: rin my_set <==> perm(r.f) > 0)

The issue is that determinization is a bit too naive, and thus it will
force my_set to start with the same value in both executions it
compares. In this case, it cannot prove that the assume will not




remove the trace (i.e., it cannot prove exist on line 8 in Figure 8),
and thus it fails.

Note that the atomic read operation is not problematic in this file
(as opposed to, e.g., RelAcqDbIMsgPassSplit), because in this file
full ownership of AcqConjunct is never held, and thus the
problematic branch is never being taken.

RSLSpinlock.sil Yes This file is always preserving and captured by the semantic
condition, but it is not captured by the structural condition, for the
same reason as RSLLockNoSpin-not-in-appendix.sil.

RustARCOriginal_err.sil No see client in non_preserving_witnesses folder

RustARCStronger.sil No see client in non_preserving_witnesses folder

Nagini

0. General remarks about Nagini
Nagini is an automatic verifier for Python programs that works by translating a Python file to
a Viper file. In our evaluation, we analyzed inlining in terms of the generated Viper file.

If you want to try out Nagini yourself in the VM, you can do so by activating the Python virtual
environment in which Nagini was installed:

> source ~/tools/nagini_env/bin/activate

> nagini --write-silver-to-file INPUTFILE_viper_encoding.vpr INPUT_FILE.py

You can deactivate the virtual environment with the command “deactivate”.

1A. Clone repository and generate Viper encodings [NOTE: this command takes 1
hour in the virtual machine]

For our analysis, we require Nagini’s Viper encoding for every Python file in Nagini’s test
suite. To do so, we must run Nagini on every Python file in Nagini’s test suite which takes
quite long. In the VM, it takes around an hour. We have already prerun the associated
command and stored the resulting Nagini repository with the corresponding Viper files in the
folder “~/artifact/nagini/nagini_expected” (the tests are given by all Python files in
“~/artifact/nagini/nagini_expected/tests”; for each Python file “FILE.py” there is the
corresponding Nagini-generated Viper encoding “FILE.vpr”).

We now describe the associated command (that we have prerun)

Comand (takes around 1 hour on the VM):

> cd ~/artifact/nagini

> source ~/tools/nagini_env/bin/activate
> sh clone_nagini.sh

> deactivate



Parts of the expected output of the command is given in
“~/artifact/nagini/expected_output_after _clone nagini.txt’. The command stores the cloned
Nagini repository with the Python and Viper files in “~/artifact/nagini/nagini”; the test suite is
in “~/artifact/nagini/nagini/tests”.

More precisely, the command does the following
1. Activate the Python virtual environment in which Nagini was installed
2. Clone the Nagini repository
3. Remove all Python files that are not verification tests (e.g., parser and consistency
tests) and that are not part of Nagini’s main test suite (i.e., remove tests that require
Nagini extensions)
4. Generate Nagini’s Viper encodings for every Python file in Nagini’s main test suite

clone_nagini.sh has comments explaining the different steps

1B. Automatic analysis of test suite

Run the following command to obtain the automatic analysis of the Nagini test suite
(obtained either by running the above command or directly using
“~/artifact/nagini/nagini_expected”):

> cd ~/artifact/nagini
> python3 global_analysis_nagini.py --naginirepo NAGINI_REPO_DIR

where NAGINI_REPO_DIR is “nagini” if you ran the command above or “nagini_expected” if
you want to reuse the precomputed Nagini test suite with the corresponding Viper files

The expected output is (should not take more than a few seconds):

In the following, we give a brief description of this output. The filenames in the following
bullet points are relative to ~/artifact/nagini.

e Trivial tests: A test is “trivial” if we could establish syntactically that inlining is trivially
always preserving (even though the syntactic condition may be violated) using
knowledge about how Nagini produces Viper-generated files. The script stores those
files in “trivial.txt” and expected content is in “expected_trivial.txt”. Nontrivial tests are
all other tests (i.e., manual analysis is required for nontrivial tests). (note that in



expected_trivial.txt the relative paths may be different [w.r.t. nagini or
nagini_expected], and the order may be different but the tests are the same)

e The non-trivial files considered for manual analysis are stored in selection.txt. The
expected content is in “expected_selection.txt” (note that in expected_selection.ixt
the relative paths may be different [w.r.t. nagini or nagini_expected], and the order
may be different but the tests are the same).

e From the nontrivial tests, 39 files tests were automatically discarded for the manual
analysis, since they contain features that were too hard to analyze (see
~/artifact/nagini/global_analysis.py for more details).The corresponding file paths are
stored in discarded.txt. The expected content is in “expected_discarded.txt” (note that
in expected_discarded.txt the relative paths may be different [w.r.t. nagini or
nagini_expected], and the order may be different but the tests are the same).

e Tests with permission branching: These are tests that branch on the available
resources in the Viper encodings using resource introspection. The corresponding
file paths are stored in branch.txt.

e Tests with dynamic field branching: These are tests that branch on the available
resources using Viper’s resource introspection as a result of a recurring Nagini
pattern that can be shown to satisfy the structural condition only thanks to the
bounded relaxation. The corresponding paths are stored in dynamic_field_branch.txt.

2. Manual analysis

The table below shows the 20 files that were randomly sampled for the manual analysis. For
each file, we write whether it is always preserving or not.

Always-preserving files: If a file is always preserving (and typically always captured by our
semantic and structural conditions), we write the informal reason (coming from our manual
analysis of these files). Since these reasons can be considered as informal proofs, and
require some knowledge of how Nagini works to be understood, we do not expect the
reviewers to be able to confirm these claims.

Non-preserving witnesses: For each file that is not always preserving (in red), we have
written a client (i.e., a witness) that proves this claim. These clients are in the folder
~/artifact/nagini/non_preserving_witnesses. More precisely, for each file FILE.vpr not always
preserving, we have written one modified file: FILE_client.vpr, which contains the client
(non-inlined). Verifying FILE_ client.vpr should verify modularly, whereas inlining the client
(with some bound) in FILE client.vpr should fail, which thus proves non-preserving inlining.
Note that in some cases we commented out irrelevant methods of the program in

FILE client.vpr.

Since we are dealing with Viper files here, we can use our Viper inlining tool to show that
inlining the clients leads to verification failing.

To automatically run all the witnesses (first showing successful modular verification and then
showing verification failure with the inlined client), run the script
2_run_witnesses_non_preserving.sh from the ~/artifact/nagini folder:



> cd ~/artifact/nagini

> sh run_witnesses_non_preserving.sh

It takes around 2 minutes to run. The expected output of this script is given in the file
~/artifact/nagini/expected_output_nonpreserving.txt.

All paths in the table below are relative to the folder ~/artifact/nagini/nagini/tests (or
~/artifact/nagini/nagini_expected/tests if you use the already-prepared Nagini test suite)

functional/verification/examples/ | vag dynamic field branch not an issue
keon_knapsack.vpr
functional/verification/examples/ | vag dynamic field branch not an issue
parkinson_recell.vpr
functional/verification/examples/ | ygg dynamic field branch not an issue
test_student_enroll_preds.vpr
functional/verification/issues/00 | ygg dynamic field branch not an issue
112.vpr
functional/verification/test_defin | ygg dynamic field branch not an issue
edness.vpr
functional/verification/test_dyna | ygg dynamic field branch not an issue
mic_field_creation.vpr
functional/verification/test_exce | ygg dynamic field branch not an issue
ption.vpr
functional/verification/test_gene | vgg dynamic field branch not an issue
ric_classes.vpr
functional/verification/test_isinst | vag dynamic field branch not an issue
ance.vpr
functional/verification/test_raise | vgg dynamic field branch not an issue
d_exception.vpr
functional/verification/test_threa Yes b .dynamic field branch not an issue o
d_fork.vpr e inhale forperm but only for bound 0 (no obligations)
functional/verification/test_union | veg dynamic field branch not an issue
_contracts.vpr
functional/verification/test_wildc | Yes wildcard (existential fraction) only appears in non-problematic
ard_permissions.vpr positions
Yes e always preserving, because inlined program always verifies
obligations/verification/test_whil e semantic condition does not capture program (see reason
e_must_terminate.py below)
obligations/verification/chalice2s | N see client in non_preserving_witnesses folder

ilver/christian/obl_loop.vpr




obligations/verification/chalice2s | Yes e only need to consider existing clients because would need

ilver/lifetime.vpr

obligations otherwise

obligations/verification/chalice2s | No
ilver/loopsAndRelease.vpr

see client in non_preserving_witnesses folder

obligations/verification/test_beh | Nq
avioral_subtyping.vpr

acquired locks are always released

obligations/verification/test_met | N see client in non_preserving_witnesses folder
hod_leak_check.vpr

°b|i?ations‘/veriﬁcatio”/teSt—Wait' Yes see client in non_preserving_witnesses folder
evels.vpr

Comments on inlining in Nagini

Note that we analyze inlining in the Nagini-generated Viper files directly and not on
the Python files, because our inlining tool works directly on the Viper files.

Our tool currently does not reliably support gotos and labels. In almost all
Nagini-generated Viper files gotos and labels exist, but they can be trivially removed
without changing the meaning of the program. Before running our inlining tool, we
removed gotos and labels manually (and made sure that the meaning of the program
does not change).

Nagini translates bodyless Python library methods into Viper methods with the body
“‘inhale false” (which is the same as assume false). Before inlining, we made sure
that bodyless Python library methods are also bodyless in the Viper encoding.
Nagini often uses Viper inhale-exhale assertions, which are written as [A,B] in
specifications. Their meaning is that when checking the assertion (i.e., checking the
precondition) [A,B] is treated as B and when assuming the assertion (i.e., obtaining
the postcondition) [A,B] is treated as A. For inlining at the Viper level, it does not
make sense to take such inhale-exhale assertions into account when asserting
partial annotations, because our inlining theorems that relate inlining to modular
verification require that, e.g., the precondition which a caller checks is the same as
the precondition which the corresponding callee assumes. As a result, we ignore all
inhale-exhale assertions except in the entry method (i.e., the initial statement),
because no one calls the entry method (our inlining tool automatically ignores
inhale-exhale assertions in non-entry methods, but when considering modular
verification to relate to what inlining does for Nagini-generated Viper programs we
must comment them out).

As we write in the paper (footnote 7), we use restrictions on possible Nagini clients
when doing the analysis in table 2. In particular, we do not consider new clients (i.e.,
clients that do not already exist in the files) that themselves obtain “obligation
resources” (e.g., via the precondition), because Nagini contains leak checks (via
resource introspection) that would lead to inlining almost always being
nonpreserving, which would not reflect the typical scenario.

Always preserving file that is not captured by semantic condition
The Nagini test

~/artifact/nagini/nagini_expected/tests/obligations/verification/test_while_must_terminate.py




is always preserving, because the inlined program always verifies (if one takes the
“Comments on nonpreserving inlining in Nagini” into account). However, the semantic
condition does not capture the example. The reason is because of the statement

exhale perm(MustTerminate(_cthread 158)) > none ==>
acc(MustTerminate(_cthread_158), perm(MustTerminate(_cthread_158)) -

_loop original must_terminate)

in the Viper encoding. Because the inlined program contains ownership to MustTerminate(t),
the statement is not mono (the statement verifies trivially with zero ownership of
MustTerminate(t), but may not verify with more ownership of MustTerminate(t)). Note that the
statement is mono if the inlined program has no ownership to MustTerminate(t) due to the
bounded relaxation (which is important, because this scenario occurs often in Nagini).

3. Evaluation Part 2: Table 2

In this part, we show how we obtained the results for table 2 in the paper and for table 3 in
the appendix of the extended version, discussed in Section 6.4.

Table 2: Files and test configurations

The following table provides the mapping between file names used in table 2 and the actual
paths of the original files in the corresponding test suites (the paths are relative to the root
folder of the respective verifier repository):

Table 2 filename Test suite path

iap_bst (Nagini) tests/functional/verification/examples/iap_bst.py
parkinson_recell (Nagini) tests/functional/verification/examples/parkinson_recell.py
loops_and_release (Nagini) tests/obligations/verification/chalice2silver/loopsAndRelease.py
rust_arc (RSL) RelAcqRustARCStronger.sil

lock_no_spin (RSL) RSLLockNoSpin-not-in-appendix.sil

msg_pass_split_1 (RSL) RelAcqDblMsgPassSplit.sil

msg_pass_split_2 (RSL) RelAcgDblMsgPassSplit.sil

account (VeriFast) examples/java/Account.java

Icp (VeriFast) examples/fm2012/problem1-split.c

iterator (VeriFast) examples/java/lterator/Singletonlterator.java

stack (VeriFast) examples/java/Stack.java

bstree (GRASShopper) tests/spl/recursive_defs/bstree.spl




nodes (GRASShopper) tests/spl/symb_exec/basic.spl

The three examples colored yellow (iterator, stack, nodes) were added after the artifact
evaluation.

The examples from table 3 were taken from the Viper examples repository

(https://github.com/viperproject/examples, commit hash 5ecb3527baf20d7bc25edeb) [note
that this repository also contains the RSL examples, but those are not included in table 3].

For table 2 and table 3, we modified the original examples in order to add clients that were

inlined and in order to seed errors. Below, we explain test configurations that contain the
paths to the modified examples.

Test configurations

For each example in table 2 and table 3, we ran our Viper inlining tool once with a single test
configuration or multiple times with different test configurations. A test configuration consists
of three parameters: (1) the entry method to inline (i.e., the initial statement), (2) the inlining
bound, and (3) seeded errors. In table 3, if the column “Inl. P.” has a green checkmark, then
this means that inlining is preserving w.r.t. all considered test configurations. Analogously, if

the columns “SC” (resp. “Str. C” have green checkmarks), then the semantic (resp.

structural) condition holds for every test configuration. We established these checkmarks via
manual analysis and then ran our tool to check whether the correct results were reported.

We have documented all test configurations in the following JSON files:
e VeriFast Table 2 test configurations:

o ~/test_framework/viperserver/carbon/src/test/resources/inlining/verifast/test_c

onfig_verifast.json
e GRASShopper Table 2 test configurations:

o ~ftest_framework/viperserver/carbon/src/test/resources/inlining/grasshopper/t

est_config_grasshopper.json
e RSL Viper Table 2 test configurations:

o ~/test_framework/viperserver/carbon/src/test/resources/inlining/rsl/test_config

_rsl.json
e Nagini Table 2 test configurations:

o ~/test _framework/viperserver/carbon/src/test/resources/inlining/nagini/test_co

nfig_nagini.json
e Table 3 test configurations:

o ~/test _framework/viperserver/carbon/src/test/resources/inlining/syntactic/time/

test_config_syntactic.json

Each test configuration is specified as a separate object and each test configuration is
structured the same way. As an example taken from the Nagini test configurations:

{
"file":"iap_bst.vpr",
"bound":3,

"entry":"client_error",


https://github.com/viperproject/examples

"sc_holds":true,
"errors":[{"tag": "assert.failed:assertion.false"}]

}

“file” specifies the file path relative to where the JSON file is located
“bound” specifies the inlining bound to be used
“entry” specifies the entry method to inline (i.e., the initial statement)
“sc_holds” specifies whether the structural condition holds for the given configuration
“errors” specifies which kind of errors we expect (if “sc_holds” is false, the errors are
irrelevant).
o In the above example, we expect one error that has the tag
“assert.failed:assertion.false” (Viper uses different tags for different kinds of
errors)

Note that for the same example in Table 3, we sometimes use different files for different
configurations, where different errors are seeded. For example, for iap_bst in Table 3, we
use the files

e ~/test framework/viperserver/carbon/src/test/resources/inlining/nagini/iap_bst.vpr

e ~/test_framework/viperserver/carbon/src/test/resources/inlining/nagini/iap_bst_error.v

pr

Seeded errors in modified files

The test configurations specify whether we expect an error or not (in cases, where the
structural condition is not expected to hold, the errors are irrelevant). In the files, where we
expect errors we mostly seeded the errors ourselves. We often also added a short comment
with the term “error”, used “client_error” for an erroneous client or used a Viper “ERROR”
macro, where depending the value of “ERROR” an error is expected or not). In some cases,
errors already existed in the original file (such as parkinson_recell.py where the original file
contains “ExpectedError” annotations).

Note that for Nagini files, we seeded errors (or used existing errors) in the Python files. The
test configuration for Nagini files points to the Viper encoding (since we apply our inlining
tool on the Viper encoding), but for each Nagini Viper encoding there is a Python file with the
same name in the same folder. For example:

~/test_framework/viperserver/carbon/src/test/resources/inlining/naginif/iap_bst.py is the
Python file used to generate
~/test_framework/viperserver/carbon/src/test/resources/inlining/nagini/iap_bst.vpr (which is
the Viper file mentioned in the test configuration.

Running the inlining tool on all test configurations to confirm table 2 and table 3

We developed a test framework that runs our inlining tool for each configuration separately
and checks whether the inlining tool reports the correct results (that is, the inlining tool
correctly reports whether the structural condition holds and if the structural conditions indeed
holds, then the inlining tool reports the correct errors). The test framework is given by the
Python file

~/test_framework/viperserver/carbon/src/test/inlining_test framework/run_inlining_tests.py



The test framework relies on two already-existing components:

e ViperServer (https://github.com/viperproject/viperserver)
o Thisis a HTTP server that manages Viper verification requests. By using
ViperServer, one avoids the Java Virtual Machine startup times
o We instantiate ViperServer with our inlining tool
e ViperClient (https://github.com/viperproject/viper_client)
o Atool that communicates with ViperServer. We use ViperClient to obtain
verification results of our inlining tool as JSON objects. This allows us to
easily analyze verification results and verification times.

Run the following commands to run our test framework on all the test configurations

Start the Viper HTTP Server in one terminal by running:
> cd ~/test_framework/viperserver/
> sbt run

After at most a few minutes and around 25 lines of “[info]...” output, the following message
should appear:

[info] ViperServer online at http://localhost:PORT

where PORT is some integer. This means the server can be reached on the port PORT (the
port is not always the same).

Keep this terminal open and do not stop the process, since it is required to run the test
framework.

Open another terminal and run (where PORT is given by the number outputted above and R
is the number of times each configuration should be tested):

> cd ~/test_framework/viperserver/carbon/src/test/inlining_test framework/
> python3 run_inlining_tests.py --port PORT --reps R --boogieExe $BOOGIE_EXE --z3Exe
$23 _EXE --dir ../resources/inlining/

For the results in table 2, we chose “R=5" (for the results in table 2, we used Windows and
did not get the results inside a VM). In the VM “R=5" takes around 33 minutes. You could
also choose “R=1", which takes around 6 minutes in VM

The expected output of the above “run_inlining_tests.py” command is given in
“~/artifact/expected_output_test framework.txt” (if the output is as expected, then this means
the inlining tool always reports the correct result). Moreover, this command produces a CSV
file that contains timing information (in milliseconds) for every configuration in

“~/test_framework/viperserver/carbon/src/test/resources/inlining/YYYYMMDD_ HHMMSS te
st_summary.csv”



where YYYYMMDD_HHMMSS provides the timestamp when the command was run (so, if
you run the command multiple times, you will see multiple test_ summary.csv files). Note that
the times express the median and mean of all the repetitions performed (if R=1, then the
median and mean are always the same).

To compute the timing information for table 2 and table 3, you can run the following
command, which combines all test configurations that are associated with the same example
and then takes the mean of all the times:

> python3 ~/artifact/print_table.py -s PATH_TO_CSV_FILE

The printed output shows the timing results for table 2 and table 3. The association between
example names in the tables and the file names in the printed output is mostly
straightforward except for:

RelAcgDblMsgPassSplit_preserving.sil is msg_split_1
RelAcgDblMsgPassSplit_nonpreserving.sil is msg_split_2
RelAcqgRustARCStronger inline.sil is rust_arc

problem1-split.vpr is Icp

The timing information computed in the VM was often larger than what we reported in table 3
(which was computed on a Windows machine and outside of a VM) but surprisingly also
faster for some examples. We have stored the csv file that we obtained by running the test
framework inside the VM in ~/artifact/timing_results_vm.csv (this does not include the 3 files
that we added after the artifact evaluation).

There was one strong outlier in the VM: RSLLockNoSpin-not-in-appendix.sil took 108
seconds on average, while it only took 42 seconds on our Windows machine. We generally
noticed large fluctuations between machines for this example in particular, which points to
some instability in the axiomatization used by RSL-Viper for that example.

Other information in tables 2 and 3

We now give more information on how we obtained the numbers of other columns not yet
discussed in tables 2 and 3.

Lines of code

For tables 2 and 3, we counted only non-empty lines of code that were part of the program
(i.e., no comments) and we also ignored annotations. For Nagini, we considered the Python
files (not the Viper files). For RSL-Viper, we ignored all the macro definitions and background
theory.

Number of annotations
For Nagini, we considered the Python files (not the Viper files).

Spurious errors

To compute the spurious errors for an example in table 2 and table 3, we did the following for
each configuration for that example (which already contains annotations that make the
program verify modularly):



1. Remove all annotations except for the pre- and postcondition of the client
2. Verify the resulting program modularly and manually check which reported errors are
spurious

For a single example, the reported spurious errors number is then given by the average of
the number of spurious errors across all test configurations for that example.

For Nagini, we did the above described process for the Viper encodings.

4. Installing the tools outside the virtual machine

We recorded all the commands that we used to set up the dependencies of the virtual
machine in the file located at “/home/inlining/inlining_tool/etc/vm/setup_vm.sh” in the virtual
machine. It also available outside the virtual machine at:
https://qithub.com/tdardinier/carbon/blob/b314c6e16d202139ad812670b681ecbbbb10cf3f/et
c/lvm/setup_vm.sh

Below we give some details on the main tools that we install. The full details on which
commands were precisely executed are given in the setup_vm.sh file linked above.

Isabelle/HOL 2022

The proof assistant Isabelle can be easily downloaded and installed from
https://isabelle.in.tum.de/installation.html. It can be installed on Linux, Windows 10/11,
MacOS, and it is also available as a Docker image. In this document, we assume that
Isabelle has been installed at the path ~/tools/Isabelle2022, and that ~/tools/Isabelle2022/bin
is in the path.

Note that we have only tested our mechanization with the version 2022. Some proofs might
fail with earlier versions.

VeriFast

We use in this artifact the version 21.04 of VeriFast
(https://qithub.com/verifast/verifast/releases/tag/21.04).

On Ubuntu, it can be installed as follows:

> wget https://github.com/verifast/verifast/releases/download/21.04/verifast-21.04-linux.tar.gz
> tar xzf verifast-21.04-linux.tar.gz

After these commands, VeriFast should be available at verifast-21.04/bin/verifast (and the
GUI at verifast-21.04/bin/vfide). Our artifact assumes that verifast-21.04/bin is in the path.

GRASShopper
Before installing GRASShopper, please install Z3 (see https:/github.com/Z3Prover/z3).


https://github.com/tdardinier/carbon/blob/b314c6e16d202139ad812670b681ecbbbb10cf3f/etc/vm/setup_vm.sh
https://github.com/tdardinier/carbon/blob/b314c6e16d202139ad812670b681ecbbbb10cf3f/etc/vm/setup_vm.sh
https://isabelle.in.tum.de/installation.html
https://github.com/verifast/verifast/releases/tag/21.04
https://github.com/Z3Prover/z3

We use, in this artifact, the commit 108473b0a678f0d93fffec6da2ad6bcdce5bddb9 from
GRASShopper (https://github.com/wies/grasshopper). To clone this repository on Ubuntu:

> git clone https://github.com/wies/grasshopper
> cd grasshopper
> git checkout --quiet 108473b0a678f0d93fffec6da2adbbcdce5bddb9

Next, we need to build GRASShopper. For this, we need to install Opam. On Ubuntu:

> bash -c "sh <(curl -fsSL
https://raw.githubusercontent.com/ocaml/opam/master/shell/install.sh)"

We can then build GRASShopper (from the folder grasshopper we cloned previously):

> opam switch 4.07.0

> opam install -y ocamlfind
> opam install -y ocamlbuild
> eval $(opam config env)
> ./build.sh

GRASShopper should now be available at grasshopper/grasshopper.native. Our artifact
assumes that the folder grasshopper is in the path.

Nagini

We use Nagini version 0.8.5. It can be installed via pip. We use Python 3.7 to install Nagini
(3.8 does not work for Nagini 0.8.5). Our setup_vm.sh file shows how to install Nagini using
Python 3.7 on Ubuntu.


https://github.com/wies/grasshopper
https://raw.githubusercontent.com/ocaml/opam/master/shell/install.sh

