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This report presents an overview of the state of the art on several approaches to
improve software energy efficiency: code optimisation to speed up execution and to
reduce memory access; parallelisation across multiple hardware cores to speed up
execution; tuning compiler optimisations; code rewrite to target accelerators. Our
recommendations are to invest in experts to assist researchers with those tasks and
to invest in funding for research and development into tools to automate energy
efficiency optimisation.

1 Introduction

1.1 Energy Efficiency and Runtime Efficiency

In all papers surveyed so far where both runtime and energy usage were tracked, there is a
tight correlation between the 2 metrics [29, 30, 1, 50, 49]. So, reducing the runtime of any
given software will improve the energy consumption by roughly the same amount. There
is evidence to suggest that reducing runtime using increased parallelism also reduces energy
consumption [50, 49, 26]. This can be attributed to the following: (1) When executing a
sequential program on one core, other cores still draw power when idling. (2) Some CPUs
will increase power consumption for all cores to speed up execution within one core (such as
Intel Turbo Boost).

The former does not apply to parallelism is achieved by using more than 1 compute node.
For example, [25] shows that speed-up is at best proportional to number of cores on multicore
systems. This is a well-known result: because of communication overheads, speed-up tends
to saturate when more nodes are used. Even with linear speed-ups, using more nodes does
not improve the energy efficiency, because at best, every node will use the same amount of
energy, so there will be no gain; at worst, the interconnect network will on the one hand lead
to less-than-linear speed-up, and on the other hand, it will consume considerable energy in
its own right [13, 4].
Given the above, research which investigates only runtime efficiency (on single compute

nodes) can be used to support arguments for energy efficiency. There is considerable liter-
ature on techniques to optimise runtime performance, e.g. [6, 31, 20, 36], which show that
performance optimisation is still considered of sufficient complexity to warrant academic re-
search.
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Much recent research has focused on algorithms for optimising performance, e.g. [47, 8, 11].
This research shows that it is possible to automate the process of optimisation for a wide
range of software. However, state-of-the-art production compilers do not include this type of
optimisation capability.

1.2 Frequently Used Tools

Many of the papers we have surveyed which consider CPU and DRAM energy usage utilise
Intel’s Running Average Power Limit (RAPL) energy reporting. The accuracy of RAPL for
this purpose was generally within ∼20% of physical measurements [10].

2 Improving Software Energy Efficiency

2.1 Energy Efficiency of Programming Languages

Generally, compiled languages outperform Virtual Machine (VM) languages and interpreted
languages. Furthermore, VM languages outperform interpreted languages [29, 30, 1]. There is
some overlap between these groups of languages for some specific algorithms and problem sizes
[29, 1]. Switching from a solution implemented solely in an interpreted language to a compiled
language can result in drastically lower energy consumption [29, 1]. An important question
here is: how do we use this information in the real world of digital research infrastructure?
Python (an interpreted language) is very popular in many fields, but this is partly because
of the available libraries. These libraries are usually written in a compiled language, and are
already highly optimised. Therefore, unless most of the run time is not spent in calls to such
libraries, energy efficiency gains from rewriting Python code in C, C++, or Rust would be
small; a better approach is to identify the bottleneck using profiling tools and rewrite only
that part of the code as a compiled library.

2.2 Energy Efficiency Gains with Compiler Optimisations

So far, only one of the papers we have surveyed broke down energy efficiency by compiler
flags. In that case, applying flags such as O3 when compiling C/C++ code leads to energy
consumption reductions of 52-73% on QuickSort and Fast Fourier Transform (FFT) [1]. If
there is a lot of C/C++ code being run that has not been compiled with an optimisation flag,
this could result in massive savings. This conclusion also holds for Fortran, as it shares the
compiler back-end with C/C++. However, there is no evidence in the literature of the degree
to which optimisations are applied. From our own practice and experience with students at
different levels, it is clear that very often the chosen compiler optimisations are not the most
effective ones, and that in general, optimisation during compilation requires either expert
knowledge or the use of advanced techniques for iterative compilation [3, 12, 7].

2.3 Energy Efficiency Gains by Refactoring

Similar to how the choice of data structures affect performance, data structures also affect
energy efficiency [23, 15]. For Java collections classes, choosing the worst option could increase
power usage up to 300%, while choosing the best option could decrease power usage by 38%
[17]. However, these results are from looking at collections operations exclusively. When
applied to larger code bases, a tool for automatically improving collections choices was shown
to reduce energy usage by 2-17% [23]. It should be noted that the automatic optimisation
ran between 4-175 wall clock hours, so the expected savings must account for the expense of
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the optimisation [23]. Along with other refactoring options, there is good potential here for
feasible and concrete recommendations to increase energy efficiency.

2.4 Energy Efficiency of Parallelisation Approaches

As discussed above, parallelising code across multiple cores on a manycore processor can
improve energy efficiency. However, depending on the approach to parallelisation, the opposite
can also be true: different parallelisation frameworks perform differently depending on the
type of parallelism in the code (data parallelism, task parallelism). Therefore, a careful
choice of the parallelisation framework is crucial for energy efficiency, as demonstrated in
[39, 38, 35, 14, 24]. From these papers, it is clear that there is no single framework that has
optimal performance across all applications.

2.5 Energy Usage of DRAM

Some papers show DRAM energy usage as comprising nearly 50% of system energy usage.
However, this is only the case for rare or dated hardware (before 2010) [44, 22], or in highly
specific use-cases (memory-intensive computation) [28, 48]. A more general result, performed
on somewhat recent consumer-grade hardware (∼2014) and over a range of different problems,
shows DRAM energy usage as ∼11-12% (19% in one case, with DDR3 [9]) of system energy
usage [29, 5, 2]. Nevertheless, the power consumption of DRAM is not negligible, especially
when compared to energy-efficient accelerators instead of CPUs, and therefore there is ongoing
research into software approaches to reduce DRAM energy consumption. Because memory is
managed by the operating system, this work typically proposes improvements on that level,
which would be transparent to the programmer [51, 46, 18]. However, as shown in [21], despite
the need for constant refreshing, DRAM power consumption is not constant and reducing reads
and writes can significantly affect energy consumption. This implies that techniques to reduce
memory usage such as [37] can also lead to significant reductions in energy consumption.

2.6 Energy Efficiency of Hardware Accelerators

Hardware accelerators have great promise for energy savings when used for a wide range of
applications. In particular, GPUs are increasingly transformative, especially in the field of
machine learning, but also in many other fields [49, 42, 16, 27]. FPGAs have, in principle, even
higher performance per Watt for a more limited, but still very wide, range of applications,
including machine learning and numerical weather simulations [40, 41, 32, 33, 34]. Speed-ups
of an order of magnitude compared to reference CPU implementations are routinely reported.
Most of the literature on GPUs only reports performance gains, whereas FPGA literature
tends to focus more on energy-efficiency gains. The overall picture is that, even compared
with modern GPUs, FPGAs can still offer better energy efficiency, but that it remains harder
(technically challenging) to achieve the optimal performance of a given program on FPGA
than on GPU.
There is also growing interest in compilation for more specialised accelerators such as TPUs

[19, 43] and FFT accelerators [45], both of which show similar order-of-magnitude speed-ups
and even higher energy efficiency savings, but for much more specialised applications (Neural
Networks and Fourier Transforms, respectively).
Overall, from our review, most of the code for accelerators is still written manually by

experts, and research into compilation of generic code to accelerators has not yet been imple-
mented in any state-of-the-art production compilers.
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3 Conclusions

From this literature review, we can conclude that the potential for improving software energy
efficiency is considerable. There are several approaches, and for many use cases there are
examples in the literature of significant improvements in energy efficiency, from several times
to order-of-magnitude, through the use of just a single of the approaches outline below:

• Code optimisation to speed up execution and to reduce memory access.
This requires experts familiar with the programming language, target platform and
application domain. A special case is rewriting code written in inefficient languages
(e.g. R, MatLab, Python etc) into more efficient ones such as C/C++ or Julia.

• Parallelisation across multiple hardware cores to speed up execution.
This requires experts familiar with the programming language, target platform and
application domain, as well as parallelisation frameworks.

• Tuning compiler optimisations.
This requires experts familiar with the programming language and the effect of various
compiler optimisations.

• Code rewrite to target accelerators such as GPUs, FPGAs, TPUs etc.
This is again a very specialised area and requires experts familiar with accelerator ar-
chitectures and programming models, in addition to the above skills and knowledge.

All these approaches can in principle be automated, but the tools to do so are still at the
academic research stage.

4 Recommendations

The above conclusions allow us to formulate the following recommendations:

• Because all approaches to code optimisation for energy efficiency require experts:

– Researchers should have access to software energy efficiency experts.

– Experts should be trained specifically in the approaches outline above.

As noted above: in principle, all approaches to code optimisation for energy efficiency could
be automated and integrated into existing compilers. However, there is a gap in funding for
this kind of activity: it is not considered academically relevant, and thus not eligible for UKRI
funding; it is also not economically viable for start-ups; and it is to far from the market to be
adopted by developers of production compilers.
Nevertheless, availability of automated tools for improving energy efficiency of existing code
could make a significant difference to the UKRI DRI energy consumption.

• Therefore:

– UKRI should encourage reseach into novel approaches to improve energy efficiency
of scientific software.

– UKRI should provide specific funding schemes to develop proof-of-concept tools
for improving energy efficiency into software products usable by non-expert re-
searchers.
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Mutlu, O., and Corporaal, H. Nero: A near high-bandwidth memory stencil ac-
celerator for weather prediction modeling. In 2020 30th International Conference on
Field-Programmable Logic and Applications (FPL) (2020), IEEE, pp. 9–17.
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