
Co-designed Citizen Observatories Services for the
EOS-Cloud

H2020 programme: Research and Innovation action

Deliverable D4.4 -
Platform for the interactive pre-processing of

camera trap images
27.01.2022, Version 1.2

Project funded by the European Commission within the
Horizon 2020 Programme (2014-2020)

Grant Agreement No. 863463

D4.4 Platform for the interactive pre-processing of camera trap images

Type

R Document, report excluding the periodic and final reports

DEM Demonstrator, pilot, prototype, plan designs X

DEC Websites, patents filing, press & media actions, videos, photos, etc.

SOF Software, technical diagrams, etc.

OTHER Flyers, etc.

Dissemination level

PU Public, fully open. X

CO Confidential, restricted under conditions set out in Model Grant
Agreement

CI Classified

Revision history

R# Date Description/Reason of
change

Deliverable contributors

R0.1 2021.11.12 Create template Stefan Rueger

R1.0 2021.12.23 First draft Kai Waddington

R1.1 2022.01.14 Review Claudia Fabó Cartas and Andreas Matheus

R1.2 2022.01.29 Amendments Stefan Rueger, Frederic Fol Leymarie and Kai
Waddington

Authors

Kai Waddington, Stefan Rueger, Frederic Fol
Leymarie (DynAIkon)

Reviewers:
Claudia Fabó Cartas (ECSA)
Andreas Matheus (Secure Dimensions)

Citation
Cos4Cloud consortium (2022). Kai Waddington, Stefan Rueger and Frederic Fol Leymarie. Platform for the
interactive pre-processing of camera trap images (D4.4)

License and attribution
Copyright. All rights reserved.

2

D4.4 Platform for the interactive pre-processing of camera trap images

Executive Summary

This deliverable is a software platform at TRL 8 that processes observations from camera
traps. It largely automates a major recurring action for Camera Trap Users to work through
thousands of video clips or images that may be empty, filter those observations of interest,
propose species names, and - if wanted - upload them to a chosen biodiversity Citizen
Observatory, e.g. iSpot, with the proposed identification.

The current best practice for automation of this kind is judiciously deploying specifically
trained deep neural networks trained on suitable datasets. We chose the Caltech Camera
Traps dataset (Beery et al., 2018) based on size, availability of bounding box information
and diversity of images, to train and evaluate different neural architectures with a view to
select the best state-of-the-art neural models for species identification. After careful
experimentation we identified the Cascade R-CNN X-101 64x4d FPN model (Cai and
Vasconcelos, 2019) as most suitable for species identification in camera traps.

We developed an API at https://service.fastcat-cloud.org/api for use by machines and
automated workflows to authenticate, upload camera trap images together with a set of
species of interest, and to download corresponding annotations. The API is documented at
https://service.fastcat-cloud.org/api/spec. The API is also used by our dedicated, interactive
web service that allows a user to interactively authenticate, upload camera trap images,
choose a machine learning model, download species identification lists, filter images of
interest and upload a subset of observations to a citizen observatory.

This document gives the necessary background information, user guide and examples on
how to use our deliverable D4.4: Platform for the interactive pre-processing of camera trap
images.

3

https://service.fastcat-cloud.org/api
https://service.fastcat-cloud.org/api/spec

D4.4 Platform for the interactive pre-processing of camera trap images

Table of Contents

Introduction: Processing of Camera Trap Images 5

1. Machine Learning in Camera Trap Images 5
1.1 Data sets 5
1.2 Choosing Machine Learning Models 7
1.3 Training Models for Specific Sets of Animals 10

2. API for Processing Camera Trap Images 11
2.1 Overview 11
2.2 Authentication and Authorisation 12
2.3 Image Storage 13
2.4 Results Storage 14
2.5 Selection of Machine Learning Models 14
2.6 Direct Upload of Camera Trap Images 15
2.7 Processing and Download of Results 15
2.8 Example Usage 16
2.9 Formal API definition 17

3. Web Interface 20
3.1 Relation to our API 20
3.2 Authentication and Authorisation 20
3.3 Interactive Filtering 21
3.4 Upload to Citizen Observatories 21
3.5 Walk-through with examples 22

Conclusion and perspectives 30

Glossary 31

References 33

Annex 1 - Understanding Model Names 35

4

D4.4 Platform for the interactive pre-processing of camera trap images

Introduction: Processing of Camera Trap Images

FASTCAT is a Flexible AI SysTem for CAmera Traps. The aim is to provide state of the art AI
services for communities of users of camera traps, with a focus on citizen scientists as well as
scientists in need of robust, yet affordable solutions for biodiversity monitoring of animal
species. We currently offer two main services: Edge and Cloud. FASTCAT-Edge refers to
functionalities offered on the camera trap itself, while FASTCAT-Cloud offers functionalities on
the cloud where images taken with a camera trap can be uploaded for processing. This
document is concerned with FASTCAT-Cloud. The main functionalities offered are to remove
empty images, add bounding boxes around detected animals, and provide some likely species
identification. The technology used is based on recent developments made in Machine Learning
applied to images.

1. Machine Learning in Camera Trap Images

Current best practice develops Convolutional Neural Network (CNN) models for deriving a
semantic meaning from pixels of an image (Petso et al., 2022). This section surveys the
state of the art in object recognition, i.e. creating bounding boxes around objects in images
and classifying the object within the bounding box. The objects of interest in camera trap
images are animals, which restricts the classes in the classification task to animals at the
granularity of species, genus or family. Ideally, we want an automated system that takes an
image as input and automatically recognises all animals in the image and outputs, for each
animal, its corresponding bounding box, an identification suggestion (species, genus or
family) and a confidence of this prediction.

1.1 Data sets

Training CNNs, a type of feed-forward neural network, requires datasets typically containing
tens of thousands or hundreds of thousands of training examples. The adjustments made to the
model parameters during each training iteration are very small and so a correspondingly large
number of updates are required. It is ideal to base these updates on a large number of varied
training examples to produce a more generalisable model.

When training object detection models, the training data must contain specific annotations:
coordinates, or other representation, of the location of each object within the image; and
corresponding classifications for each of those objects. The addition of bounding box (bbox)
annotations provides a significant increase of the labour and effort cost when annotating an
object detection dataset compared to an image-classification dataset, ergo the datasets that are
publicly available with this style of annotation are usually more difficult to find, especially for
niche themes, as well as containing fewer examples.

5

D4.4 Platform for the interactive pre-processing of camera trap images

We are interested in detecting and identifying animals in images from camera traps and so we
need datasets that contain this style of image. We detail several potential datasets in Table 1.
We initially exclude the iWildCam datasets from consideration as they are composites of other
datasets in the table. We decided to use the Caltech Camera Traps (CCT) dataset (Beery et al.,
2018) to create our original models as it has a relatively large number of training examples, and
it has a high ratio between the number of examples relative to the number of classes. We
decided to also use the Wildlife Conservation Society Camera Traps (WCS) dataset during the
early stages of our experimentation as it contains examples from a large number of classes,
however, we decided to use the CCT dataset going forward as it contains a greater number of
training examples.

Name Classes Examples without
bbox

Examples with bbox

iWildCam 2020 1.7k 1.65M 450k

iWildCam 2021 204 265k 265k

NACTI 28 3.7M 9k

Caltech Camera
Traps

22 245k 66k

Wildlife Conservation
Society

675 1.4M 45k

Snapshot Serengeti 61 7.1M 78k

Table 1: Details about various camera trap image datasets.

The CCT dataset contains roughly 66,000 images with the bounding-box level annotations, with
these images containing examples from 22 classes. These images were collected from camera
traps located in the Caltech region of California. These classes are animal species that are
typical to the Caltech region and include animals such as opossums, racoons, badgers, deers,
and foxes. In addition, the dataset includes classes for vehicles and empty images which are
useful for filtering unwanted images. This dataset contains images captured both during the day,
in full colour mode, as well as during the night using infrared mode. Another reason for choosing
this dataset is because it is popular in recent literature to make the comparison of results easier.

6

D4.4 Platform for the interactive pre-processing of camera trap images

1.2 Choosing Machine Learning Models

CNNs refer collectively to a category of deep learning models that use the convolution
operation. However, there is a large number of different architectures within this category. The
architecture of a CNN refers to how the different layers and operations within the model are
constructed and connected. Slight tweaks to the architecture can have a large impact on how
well the model performs with regards to training as well as speed and generalisability of the
resulting model. Deep learning has increased in popularity over the past decade which has
driven an increase in the number of new architectures being published. As such, there are a
large number of architectures to choose from that have all been shown to provide good results
on their respective datasets. Choosing the model architecture will have a significant effect on
final results and so the process of choosing the architecture must be carefully considered.

When evaluating object detection networks the most popular metric to use is Mean Average
Precision (mAP) (Everingham et al., 2010) and typically the MS COCO (Lin et al., 2014) variant.
This metric is a single numerical value in the interval [0, 1] that attempts to quantify the quality of
both the predicted bounding boxes (with respect to a ground truth bounding box) as well as their
corresponding classifications. The original metric uses a single Intersection over Union (IoU)
threshold to determine whether a bounding box is considered correct, i.e., the predicted
bounding box overlaps well enough with the ground truth. As the MS COCO variant uses a
range of thresholds and averages over each of the resulting mAP scores, this version could be
more accurately named the Mean of Mean Average Precisions. In our use-case it is not critical
that the bounding boxes are accurate down to pixel-perfect granularity. In our experience it is
the classification of the bounding boxes that offers the most room for improvement, with
bounding boxes starting to look good at a mAP score of approximately 0.30.

We start by choosing four promising architectures for general image classification tasks and
train two versions each: one on the MS COCO dataset with generic object classes (including
some animal clases) and one on a camera trap dataset, for which we selected the Wildlife
Conservation Society dataset (WCS). The four architectures that we chose were: Fast R-CNN
(Girshick, 2015), Faster R-CNN (Ren et al., 2015), RetinaNet (Lin et al., 2017a), and SSD (Liu
et al., 2016). Our reason for choosing these architectures was that they were, at the time of the
experiment, providing state-of-the-art results for object detection on the MS COCO dataset. We
used the same training configuration intra-architecture for both datasets. This experiment was to
find a baseline of what kind of performance we could expect on a camera trap dataset, and also
to provide some level of insight into how well the performance of models devised for general
object detection being trained on the MS COCO dataset transfers to camera trap datasets.

The results in Table 2 show a consistently worse performance when models are trained on the
WCS dataset compared to when models are trained on the MS COCO dataset. One cannot
compare results from different datasets directly. However, considering several models that use a
variety of techniques displayed the same pattern of a worse performance on the WCS dataset,

7

D4.4 Platform for the interactive pre-processing of camera trap images

suggesting that species prediction is more difficult on this particular dataset. The experiment
outlined above constitutes our preliminary set of experimentation. Based on this we devised a
more useful experiment.

Architecture MS COCO 2017 WCS

mAP mAP50 mAP75 mAP mAP50 mAP75

Fast R-CNN 0.359 0.557 0.390 0.246 0.354 0.265

Faster R-CNN 0.330 0.515 0.358 0.235 0.346 0.259

RetinaNet 0.343 0.516 0.366 0.301 0.431 0.353

SSD 0.189 0.349 0.186 0.211 0.360 0.252

Table 2: Results from evaluating models trained on the MS COCO and WCS datasets.

For this next experiment we identified seven architectures that currently provide state-of-the-art
results for object detection tasks. They are represented in Table 3. Our intentions for this
experiment are to find out:

● To what extent model performances drop on camera trap datasets compared to the
generic MS COCO dataset.

● If there is an intrinsic property of images of animals that causes this performance
degradation.

● What the maximum performance is that we can achieve using so-called off the shelf
techniques.

To achieve these goals we trained the architectures on the MS COCO dataset and evaluated
them on the dataset as a whole, and on the subset of the dataset that contains only animal
classes . We also trained and evaluated separate instances of the architectures on the CCT1

dataset.

Implementing all of these architectures ourselves would take a lot of time, and so would setting
up the experiment multiple times for each different platform that open-source implementations
might use. Our solution to this is to use the MMDetection library (Chen et al., 2019).
MMDetection is a framework built on top of the MMCV library (MMCV, 2018) created by the
same group, which in turn is built on top of Python and PyTorch. It is a competitor to Facebook’s
Detectron (Girshick et al., 2018; Wu et al., 2019) and provides implementations for many
modern architectures to which the community actively contributes — making it a good

1 This subset of the MS COCO dataset fits nicely with our intentions to focus on animal detection, and we
believe it to be a good candidate for a high-quality animal dataset that is readily available.

8

D4.4 Platform for the interactive pre-processing of camera trap images

framework to use. Using this framework saves us the time of implementing many of these
architectures ourselves and allows us to use a consistent system of pipelines for data
processing. We can set up the data ingestion pipelines once and it will work for the training of
the various different architectures.

In addition, MMDetection provides pre-trained models which are trained on the MS COCO
dataset, alongside the corresponding configuration files to reproduce these models. In our
experience these configurations have been useful to correctly reproduce the models that they
provide, and so for this experiment we use the pre-trained models provided by MMDetection
when evaluating on the MS COCO dataset. When we trained the architectures on the CCT
dataset we tried to keep the training configurations as similar as possible to the architectures
trained on the MS COCO dataset, but in some instances we had to reduce the learning rate as
training was unstable. We compared the mAP scores (Everingham et al., 2010; Lin et al., 2014)
that we achieved using the seven chosen architectures on the CCT dataset to the mAP score
that each paper reports for the architecture on the MS COCO dataset as well as to the subset of
the MS COCO dataset that contains only animal images.

Architecture MS COCO mAP MS COCO mAP
(animals only)

CCT mAP

GFL X-101 32x4d Dconv2 (Li et al., 2020;
Zhu et al., 2019)

0.481 0.671 0.173

Deformable DETR R-50 (Zhu et al., 2020) 0.468 0.661 0.343

ResNeSt Cascade R-CNN S-101 FPN
(Zhang et al., 2020)

0.468 0.644 0.366

DCN Cascade R-CNN R-101 FPN
Dconv(c3-c5) (Dai et al., 2017; Zhu et al.,
2019)

0.450 0.641 0.385

Cascade R-CNN X-101 64x4d FPN (Cai et
al., 2019)

0.447 0.632 0.394

RepPoints X-101 FPN DCN (Yang et al.,
2019)

0.442 0.627 0.180

GA Faster R-CNN X-101 64x4d FPN
(Wang ey al., 2019)

0.439 0.621 0.379

Table 3: Results from evaluating state-of-the-art architectures on the MS COCO dataset, the
animals-only subset of the MS COCO dataset, and the CCT dataset.

9

D4.4 Platform for the interactive pre-processing of camera trap images

Contrary to the results obtained on the WCS dataset we notice an improvement from Column 1
to Column 2, i.e., when evaluated on the MS COCO animal subset compared to the dataset as
a whole. We suspect that this might be because all the images in the MS COCO dataset are
high-quality, high-resolution, full-colour and sharp, with the subject of the image, in this case the
animal, centred and mostly fully-contained in the image, while also being in focus. These are
properties that are rarely observed in camera trap datasets such as the CCT or WCS datasets.

In Table 3 we see that the Cascade R-CNN X-101 64x4d FPN is the best performing
architecture on the CCT dataset when comparing the models using the mAP metric. As we are
primarily interested in good performance on camera trap datasets, we decided to use this
architecture and model as one of the models available in the FASTCAT-Cloud service.

1.3 Training Models for Specific Sets of Animals

If we provided only models trained on the CCT dataset then those models would be limited to
detecting only the 22 species in the CCT dataset. This would exclude a significant number of
users from finding the service useful and thus limit the size on the market for such a service.
Ideally, we want to be able to detect every possible species set that a user may be interested in,
and at the same time do not want to offer a generic one-model-identifies-all-species network for
fear of reduced precision that normally comes with a large number of classes.

The sheer number of possible sets of interest is forbidding, and it is clearly infeasible to
proactively create bespoke models in advance. Our approach is to generate these models
just-in-time. We contemplate as part of our business model to create bespoke models with the
users semi-automatically. This involves allowing a user to specify which species they are
interested in, upon which we source training examples from the GBIF dataset to create2

bespoke models for that set of species. Where needed, we plan using the MegaDetector (Beery
et al., 2018) or a similar service to generate bounding boxes for the images from GBIF to
provide us with the necessary annotations for training an object detection model. We do not
train a new model from scratch at this point. Instead, we fine-tune a model that we previously
trained on over 1M images collected from GBIF.

Training models requires expensive hardware and takes a long time. If we could only train and
evaluate a single model at a time progress would be stifled. To combat this compute constraint
we decided to train models using the AWS infrastructure (from Amazon). We use the
MMDetection framework to perform model training and have this software setup inside Docker
containers making it easy to transfer to a cloud service, such as AWS EC2. Doing our training3

in AWS allows us to access better hardware as well as to run multiple instances of the same
hardware in parallel, greatly decreasing the time taken to train multiple models.

3 https://aws.amazon.com/ec2/
2 https://www.gbif.org/

10

https://www.gbif.org/
https://aws.amazon.com/ec2/
https://www.gbif.org/

D4.4 Platform for the interactive pre-processing of camera trap images

2. API for Processing Camera Trap Images

This deliverable is a web-based service that provides functionality for pre-processing and
filtering of camera trap images being able to reduce batches of observations to contain only
species that the user is interested in, or to simply alert the user to the different species present.
We offer this ability through a RESTful API running on our own servers, with a no-fee and
no-user-account required approach, and also use this API as the backend to our web-interface
for the service.

2.1 Overview

The overall approach of our API is one of providing key functionality of uploading visual material
to the site, have it processed by AI species ID classification programs, offer to store the
uploaded images to enable the generation of persistent URLs of the observations, and
potentially share their observations with other services. The key design concept is one of
modularity so that other sites can utilise our API within their workflows for powerful
enhancements.

Figure 1: Overview diagram

Figure 1 visualises the different components of our API and how they interact with each other;
the prediction service is responsible for all incoming requests pertaining to retrieving results of
already processed media as well as handling the setup of the necessary workflows for new
media; the storage service handles access to media files on disk, as well as generating public

11

D4.4 Platform for the interactive pre-processing of camera trap images

URLs for media items shared to citizen observatories; the ML Model Queue service manages
the compute-intensive task of processing media with any ML models deemed necessary; and
finally the Citizen Observatory process is responsible for the integration between our data
models and any APIs used to post observations to other citizen observatories.

2.2 Authentication and Authorisation

While we allow users to use the FASTCAT-Cloud API without authentication, when doing so we
restrict functionality to fewer observations uploaded in each batch and to more restrictive rate
limits when interacting with the API. If a user is authenticated then we relax these restrictions;
this functionality allows us to identify and block users abusing our system.

We offer multiple methods of authentication as the API can either be directly used, or it can be
accessed via our own web interface. If used via the web interface, we adopt an OAuth2
workflow to authenticate users with either Authenix or Google as the identity providers. The
authentication information is stored in a browser session which is included with subsequent API
requests. If the API is instead directly used, then we authenticate a user by means of a unique
key, generated through the web interface, as a URL query parameter on all requests. The
OAuth2 authentication workflow will be discussed further in Section 3.2.

After a user has created their account through the web interface they will have access to a4

page where they can view, create, and delete API keys associated with their user account.
These keys are unique to them and there is no limit to how many they can create or have
existing at any time. There is a many-to-one relationship between API keys and user accounts.
This allows users to have multiple applications/devices submitting data to their account each
using a separate key making their account more secure: if an API key is compromised then the
user needs only to delete, regenerate, and replace the details for that single key.

Once a user has obtained an API key they can directly use the API with the same lessened5

restrictions that they would have access to through the browser. They do this by appending
apiKey=<my key> and userId=<user ID> as a query parameter to any subsequent API requests
that they need to be authenticated for, where <my key> is their API key. When a request that
requires authentication is received by the API, we look for this query parameter and, if present,
we attempt to match the API key to an existing user account. If a corresponding user account is
found then this user object is added to the request internally and can be used by any
subsequent business logic. If no matching user account is found we return an error response to
the user after a small delay.

5 More details at https://service.fastcat-cloud.org/api/spec and in sections below

4 A user registers an account with us through Google or Authenix, from which we use the name and email
address to create a browser session tying it to our user record. That session is short-lived and included in
subsequent requests from the browser to our API. We store an account for users saving elements such
as iSpot User ID and API keys. When a user logs on via Authenix they are shown an authorisation screen
from Authenix that clearly states what information will be provided to FASTCAT-Cloud.

12

https://service.fastcat-cloud.org/api/spec

D4.4 Platform for the interactive pre-processing of camera trap images

2.3 Image Storage

Users upload media associated with their account and run compute-intensive operations, i.e.
deep learning models, against these media items, both requiring consideration to protect the
system from unfair-usage-behaviours or abuse. If a user is allowed to upload an unlimited
number of media items then they could crash the application by occupying all storage space on
the hardware, and if they were allowed to trigger an unlimited amount of predictions against
their media then they could make the system essentially unusable by hogging all available
compute resources, thus not allowing other users to use the system in the intended way.

Another important consideration is being able to mitigate the potential to store adverse or
unwanted media items on our hardware. In this scenario unwanted refers to such items that
might be violations of the law or cause distress to those who view them.

When a user uploads media to our API we first detect the filetype of all items and return an error
to requests that contain file types that are not on our list of approved types or that are above a
certain size. All media items that pass this check are stored in a temporary storage directory.
Some actions only require the media to be there for a very short time, for example when the
user only intends to run a species ID classification. They might later decide to upload a subset
of the provided media to a Citizen Observatory (CO) as a nature observation upon which the
temporarily stored media will need to be stored persistently. There is a job that automatically
runs periodically that attempts to clean this temporary storage directory by deleting any items
that are above a certain age; it is then assumed that they are safe to be deleted.

The next step of the media storage process is to attempt to move media items to a more
permanent storage location when needed. Media items arrive at the API through a request and
a later part of that same request handles this storage process. The locations of the files at their
temporary storage location are handed-off to our storage service. This service retrieves each of
the files and creates records in the database for them, which are tied to a user account ID, and
moves them to a /YYYY/MM directory structure for performance benefits. The new locations of
the files are also stored in a database with a numeric reference created for each media item.

There is also a job that runs periodically to delete old otherwise unused media items as we do
not intend to act as a permanent media storage service for all uploads; we intend to store media
only long enough for the results to be beneficial to users.

So far we have covered storage of media items that are accessible only within the application
itself, however, we also offer the functionality to registered users wishing to post their
observations to iSpot, to create permanent externally-accessible URLs for media items. Users
may wish to submit media and classification results to 3rd-party COs. However, many of the
COs that we may integrate do not accept media items directly; instead they accept URLs to
media items which they will download themselves. If a user wishes to submit their results to a

13

D4.4 Platform for the interactive pre-processing of camera trap images

CO then we will generate a permanent URL for that item and provide it to the user and the CO.
To do this we have another service that serves files from a particular location. When we want to
generate a public URL to a media file we copy that file to this other location and add a record in
the database to signify that we have done so. We can deduce the public URL for this media item
based on the location the file was copied to.

2.4 Results Storage

Media items are uploaded with the intention of being processed by our deep learning models
which produce information about the media. The output of these models, and the type of data
that they produce, varies greatly and does not conform to a fixed schema. We reformat such
information into a flexible JSON structure and store the entire JSON string in a single record in a
database. That record is related to a media item with a many-to-one relationship which allows
for multiple model classifications for each single media item; this is important as it allows us to
let users re-process observations with different or newer models without losing the data
produced by previous models.

We chose this approach as it is likely that when adding more models in the future, or updating
models, the format of the output will vary by too much to be able to account for this now and
produce a fixed schema. We instead delegate the responsibility of parsing the data to the
consumer of the data.

2.5 Selection of Machine Learning Models

As previously mentioned we can provide access to multiple models through our API. The
current state of the FASTCAT-Cloud service allows users to choose from our selection of
models at the time of upload. This method of letting the user choose the model to run is based
on information about what the model does. In the future we intend to allow different methods of
model selection such as choosing species of interest and automatically decide which best
models to run to achieve those results.

As we are working on methods to automatically generate new models, we will also make these
available through our service as and when they are generated.

2.6 Direct Upload of Camera Trap Images

With camera trapping there is a delay in accessing data and the details about the data: there is
the delay of deploying the camera trap and leaving it deployed for an extended period of time
before it is retrieved and the observations downloaded from its internal memory, and then there
is another delay from when the observations are processed. FASTCAT-Cloud already helps with
minimising that second delay, but what if you could access results about the data in almost
real-time? We created an integration between our own smart video camera trap,
FASTCAT-Edge, and this service, FASTCAT-Cloud.

14

D4.4 Platform for the interactive pre-processing of camera trap images

Our smart video camera trap can automatically upload collected observations directly to an
account on FASTCAT-Cloud should the user want to. To do this they would need to register an
account, create an API key, and then include this API key and their user ID in the
FASTCAT-Edge configuration on the smart camera trap.

If the user sets up this integration then the collected observations will be uploaded from our
smart camera trap to our web service, at which point our model pipeline will run on the
observations, and the species detections will be almost-immediately available in the user area.6

This allows users of our smart camera trap to access species information about detections far
sooner than other methods allow. In the future we may offer the ability to receive a notification of
various types that can be triggered by detection of specific species.

2.7 Processing and Download of Results

Deep learning models are compute intensive and can be relatively slow, taking more than 0.5 s
to process each image, even on the high-end consumer-grade hardware that we have. This is
problematic as users typically demand a responsive experience with a fast turn around. To
address this we created the API with a batch-processing mode.

The batch-processing mode is the default mode and adds all incoming uploads and requests to
the end of a queue, returning a unique ID for this request to the user. The user can use this ID in
a later request to retrieve the results when they are ready. We have a separate process on the
server that monitors the database for new requests and actions them accordingly. This allows us
to provide both a responsive experience to the user as well as making us more resilient to
system failures enabling us to more easily resume service in the event of such a scenario. Once
a record in the request queue has been processed with all of the models required, the results
are stored with a relation to the media items and are now able to be retrieved using the ID
returned to the user at the time of upload.

We plan to add a real-time mode to the API where requests are added to the top of the queue
and results are returned directly to that request rather than an ID which can be used to retrieve
results in a subsequent request. We will have to consider how to stop this mode being abused.

2.8 Example Usage

Let us go through an example of a usage story to illustrate the benefits of using the
FASCAT-Cloud service. Let’s assume that our user is someone that has an interest in the
wildlife at some specific location, and to monitor it they decide to deploy a camera trap. After
two weeks, they collect the camera trap and copy all of the recordings to their computer. They
now have a directory of 30,000 images. If we consider the Snapshot Serengeti dataset as a
reference (Swanson et al., 2015), then we can expect that about 70% of those 30,000 images

6 Delay between the time of the upload and the time until results are available depends on how busy the
service is at the time of the upload; observations will be added to the request queue to be processed.

15

D4.4 Platform for the interactive pre-processing of camera trap images

will be empty of any animals, i.e. 21,000 images are of no interest. If one could then somehow
iterate through all of the images and sort them manually as empty vs not-empty at a rate of 1
second per image, assuming no breaks, this will take over 8 hours of cleanup. At this point you
still need to go through the remaining 9,000 images and add bounding boxes as well as species
labels. This boils down to a tedious and prone-to-errors process; adding the species information
requires enough expert knowledge of the expected species to be able to distinguish them.

An alternative to processing all of these images manually would be to use the FASTCAT-Cloud
API. The user can for example write a simple script to iterate over all of the images and submit
them to our API to get results back. The results that we return will indicate if the image is empty,
in which case the user can discard it, or it will return the species that it contains, in which case
the user can organise the images into different folders. We also provide the bounding box
information and so the user can have boxes drawn onto the images as well. We provide an
example of NodeJS code to do this below in Code Sample 1.

import { readdir, readFile } from 'fs/promises';
// Where are the images stored
const imageDirectory = '/User/Pictures/Camera-Trap-1/images/';
let fastcatCloudResults;

try {
// Get a list of all of the images
const imageNames = await readdir(imageDirectory);

// Send each image individually to FASTCAT-Cloud
fastcatCloudResults = await Promise.all(imageNames.map((imageName) => {

// Read the image file
const image = await readFile(`${imageDirectory}${imageName}`)

// Construct the data to send to the API
const formData = new FormData()
formData.append('image', image)

// Make the HTTP request
const response = await

fetch(`https://backend.fastcat-cloud.org/api/v2/predictions/demo`, {
method: 'POST',
headers: new Headers(),
body: formData,

})

// Parse the response
if (response.ok) {

const jsonResponse = response.json();
const results = JSON.parse(jsonResponse.body.results)

16

D4.4 Platform for the interactive pre-processing of camera trap images

return results
}
return undefined

}));
} catch (err) {

console.log(`There was an error: ${err}`)
}

Code Sample 1: Example NodeJS code that could be used to submit images to the
FASTCAT-Cloud API. This should be considered as pseudo-code.

The NodeJS sample above should be considered as pseudo-code and used as a guideline
rather than an actual script to run. Some improvements would be to batch multiple images into
the same request. In the unauthenticated mode users can add 10 images in a single request. In
addition, better response and error handling should be added so that the script does not exit
because of an error.

The exact specification of request and response formats can be found in our format API
specification which is described in more detail next.

2.9 Formal API definition

The FASTCAT-Cloud API is designed to be mostly RESTful, meaning that the HTTP methods
used for each request influence what that request does. There can be different implementations
for different request methods to the same endpoint to achieve different results. An example
could be a GET and a DELETE request to the same endpoint to either retrieve or delete that
user information.

As APIs can be large it is important to document their format, what each endpoint is, what each
endpoint should do, the HTTP methods that are accepted, the request formats, and required
data for the request, the different response codes, the different response formats,
authentication, etc. This is important so that any user can develop their application using our
API, and they can be sure that they have handled all of the possible scenarios that our API will
present to them.

We use the OpenAPI format for documentation. It defines a consistent format that can be used7

to describe an API. Moreover, there are tools available that will take this specification document
and present it nicely, as well as allowing users to test out the API directly in the browser without
having to write any code. An example of the visualisation of this formatted specification can be
seen below (Figure 2). Clicking on any of the boxes for an endpoint will give the user more
information about that endpoint, such as any properties or parameters that it expects or
requires, as well as the various response codes and formats that the user can expect.

7 https://swagger.io/specification/

17

https://swagger.io/specification/
https://swagger.io/specification/

D4.4 Platform for the interactive pre-processing of camera trap images

Figure 2: This figure shows an overview of the visualisation of our public API specification.
Each API endpoint with its corresponding HTTP request method can be seen, as well as
whether authentication is required for that specific endpoint or not. See
https://service.fastcat-cloud.org/api/spec/ for the most up-to-date version of the API
specification.

18

https://service.fastcat-cloud.org/api/spec/

D4.4 Platform for the interactive pre-processing of camera trap images

Figure 3: This figure shows more information about the /predictions/results endpoint.

The latest version of our API specification can be found on the FASTCAT-Cloud website at
https://service.fastcat-cloud.org/api/spec, which will be displayed in the format shown in Figures
2 and 3, or the YAML file for the specification can be retrieved directly from the API by sending a
GET request to https://backend.fastcat-cloud.org/api/v2/spec (opening this URL in your browser
will achieve this) which can be viewed in an online viewer such as the one found at
https://editor.swagger.io/.8

8 Our specification may display some errors if viewed in an online viewer such as the one at
https://editor.swagger.io/; however, these are not indicative of mistakes in the specification or our
implementation of the specification and instead are attributed to limitations of the specification format.

19

https://service.fastcat-cloud.org/api/spec
https://backend.fastcat-cloud.org/api/v2/spec
https://editor.swagger.io/
https://editor.swagger.io/

D4.4 Platform for the interactive pre-processing of camera trap images

Our entire FASTCAT-Cloud API is actually significantly larger than what is described in the
specification; we have excluded endpoints that a user does not need to use, such as those used
for authentication only by the FASTCAT-Cloud web interface.

3. Web Interface

3.1 Relation to our API

Using an API directly, programmatically, requires an above average amount of technical
knowledge. If we were to limit interaction with our system through offering only the API, we
would exclude a large number of potential users. To address this, we created a user-friendly
web interface that permits access to the same functionality provided by our API, but without
requiring that technical know-how. If a user wants to process only a few images occasionally
then it is probably not worth their time to write the code to do so using the API; instead they
would likely prefer to use the web interface.

At a technical level the web interface uses the exact same API under-the-hood and so it merely
serves as a way to access the API functionality through a graphical interface.

3.2 Authentication and Authorisation

As the API restricts usage heavily for users that are not authenticated, we provide the ability to
authenticate a user through the browser. We do this using the OAuth2 protocol and offer this
ability using two identity providers: Google and Authenix . A user can navigate to the login page9

and use either of the identity providers to login, one button each for Google and Authenix
authentication modes, and will have to then follow the prompts from the respective identity
providers to provide authentication using their existing user accounts with those services.

During this authentication process we receive some information about the user, such as their
name and email address, and store this information in our database thus creating a user
account for that user. A user account is uniquely identified by its email address and so if a user
logs in once using their Google account, and then logs in another time using Authenix with the
same email address, we will match those two authentications to the same user account that we
have on record.

After a user has been authenticated using this method a unique ID for that user is stored in the
browser session storage and this session is attached to any subsequent requests to the API
from the web application. The API decodes this session data and attempts to match the user ID
to a user record in our database which can be used later by other business logic on our server.

9 Authenix is a project partner part of the Cos4Cloud project. One of their deliverables is a single
authentication provider service that can be used commonly amongst all of the other project partners so
that users of any of the project deliverables can be granted access to their information in a single location.

20

D4.4 Platform for the interactive pre-processing of camera trap images

3.3 Interactive Filtering

After we have applied our species detection models to media observations we have the
opportunity to perform further processing of the images. For example, a user might only be
interested in images that contain species A, B, and C.

This can be achieved in a few ways. The first way is for the user to download a JSON file
containing the species’ information for all observations. This puts the burden of the
filtering/sorting of observations on the user, but it is the simplest to achieve. The user can later
decide to filter on different species as they would have the useful data on all observations.

Another option is for the user to download a JSON results file containing only the relevant
detections. This provides a smaller, and thus more manageable file for the user which they can
use to organise their media observations. Similar to above, the burden of sorting would still be
on the user, however, in this scenario they can iterate through all of the images referenced in
the results file and organise them accordingly.

3.4 Upload to Citizen Observatories

As part of our deliverable we integrate with other Citizen Observatories (COs) and partners of
the project. Our first integration with a CO that we offer is with iSpot,
https://www.ispotnature.org/. iSpot is a social platform designed around the sharing of wildlife
observations. Members of the platform can submit observations, as well as suggest species
classification for their own, and other peoples’, observations. Users can also open discussion
with other users, in the form of comments on observations. If they do not wish to register they
are still free to search their database of observations.

When a user has uploaded observations to FASTCAT-Cloud, and receives back the results for
them, we allow a user the ability to post these media items as well as the
deep-learning-generated species classifications to their iSpot account. The user can select
which observations to include, as well as which classifications to include, and then we post
these to their account on iSpot. In order to delegate this functionality (and this functionality only)
to FASTCAT-Cloud the user must add the user ID of their iSpot account to their FASTCAT-Cloud
account. This is an integration that the iSpot team has developed alongside us, as this
functionality did not exist with them prior to this.

We plan to develop integrations with other project partners in the coming months, for example
through upload mechanisms with STAplus.

3.5 Walk-through with examples

1. User goes to the website: https://service.fastcat-cloud.org/

21

https://www.ispotnature.org/
https://service.fastcat-cloud.org/

D4.4 Platform for the interactive pre-processing of camera trap images

22

D4.4 Platform for the interactive pre-processing of camera trap images

2. User navigates to the main app page using the navigation in the website header:
https://service.fastcat-cloud.org/app

23

https://service.fastcat-cloud.org/app

D4.4 Platform for the interactive pre-processing of camera trap images

3. User selects (uploads) images on their computer, and then clicks the submit button.

24

D4.4 Platform for the interactive pre-processing of camera trap images

As can be seen above the images that the user submitted are displayed on the webpage, and the
results from the FASTCAT-Cloud API are returned to the user and displayed alongside the
images. In addition, the bounding boxes produced by the FASTCAT-Cloud API are drawn onto
the images to make it easier to locate the animals. Above the images the user is presented with a
summary of observations as well as a button to download the results in JSON format for
convenience or integration into their other data processing needs.

4. User navigates to the Account page: https://service.fastcat-cloud.org/account

5. User sees two options to login, either with Google or Authenix. User logs in with an
option.

After the user has logged in they can see options to manage API keys associated with

25

https://service.fastcat-cloud.org/account

D4.4 Platform for the interactive pre-processing of camera trap images

their account. These keys can be used when authenticating with the API
programmatically such as through a data processing script or through a smart camera
trap such as our own DynAikonTrap/FASTCAT-Edge.

6. The user wants to use the FASTCAT-Cloud API directly and so they navigate to the API
page: https://service.fastcat-cloud.org/api . User sees getting started examples.

26

https://service.fastcat-cloud.org/api

D4.4 Platform for the interactive pre-processing of camera trap images

27

D4.4 Platform for the interactive pre-processing of camera trap images

28

D4.4 Platform for the interactive pre-processing of camera trap images

7. The user wants detailed technical information about the API and so they navigate to the
specification page: https://service.fastcat-cloud.org/api/spec

29

https://service.fastcat-cloud.org/api/spec

D4.4 Platform for the interactive pre-processing of camera trap images

Conclusion and perspectives

Although we have achieved with this deliverable our initial objectives, we have plans to keep
improving the potential of the FASTCAT-Cloud service.

In the next phase, we will provide a larger range of different models that are capable of
detecting different sets of species, with models that are well suited for different geographical
regions, models that are well suited to specific species families, or models that are particularly
good at processing given specific environmental conditions, such as night-time, or under-water
capture of videos.

We will also keep increasing the number of integrations with Citizen Observatories. In particular
we are in the process of getting our service offered on the EOSC platform.

30

D4.4 Platform for the interactive pre-processing of camera trap images

Glossary

Abbreviation / key Description

AI Artificial Intelligence

API Application Programming Interface. A set of defined methods that
allows programs to interact with other programs.

Authenix An authentication provider created by another
part/dyn/projects/cos4cloud/d4.4/caltech-subset of this Cos4Cloud
project.

AWS Amazon Web Services

EC2 Amazon Elastic Compute Cloud

Bbox Bounding box. A rectangular area describing the location of something
in an image or video.

CCT Caltech Camera Traps dataset

CNN Convolutional Neural Network

CO Citizen Observatory

FASTCAT-Cloud Flexible AI SysTem for CAmera Traps in the Cloud

FASTCAT-Edge Flexible AI SysTem for CAmera Traps on the camera trap itself

GBIF Global Biodiversity Information Facility. A large collection/database of
species observations.

IoU Intersection over Union. A metric used to measure the quality of a
predicted bounding box compared to ground-truth data. The area of
intersection of the two boxes divided by the area of the union of the two
boxes.

JSON A standard file format commonly used in programming.

mAP Mean Average Precision. A metric used to measure the quality of a
bounding box and corresponding classification prediction. mAP50 and
mAP75 refer to the 50% and 75% threshold variants of the metric.

MS COCO Common Objects in Context dataset

NN Neural Network

31

D4.4 Platform for the interactive pre-processing of camera trap images

NodeJS A server-side (or general backend) JavaScript runtime environment

OAuth2 An authorization/authentication protocol

OpenAPI
Specification

A popular syntax for describing RESTful APIs. Previously known as a
Swagger specification

STAplus SensorThingsAPI plus (an extension of STA by the consortium)

Swagger
Specification

The old name for an OpenAPI specification

TRL Technology readiness level

WCS Wildlife Conservation Society dataset

YAML A data serialisation language that is commonly used for configuration
files as they are easily readable by humans. Other examples of data
serialisation languages include TEXT, HTML, PHP, JS, C, etc.

32

D4.4 Platform for the interactive pre-processing of camera trap images

References

● Beery, Sara, Grant Van Horn, and Pietro Perona: Recognition in terra incognita.
Proceedings of the European Conference on Computer Vision (ECCV). 2018.

● Beery, Sara, Dan Morris, and Siyu Yang: Efficient pipeline for camera trap image
review. arXiv preprint arXiv:1907.06772 (2019).

● Cai, Zhaowei, and Nuno Vasconcelos. Cascade R-CNN: High Quality Object Detection
and Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence. (2019): 1–1.

● Chen, Kai, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang
Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu,
Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong
Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin: MMDetection:
Open MMLab Detection Toolbox and Benchmark. arXiv preprint arXiv:1906.07155.
(2019).

● Dai, Jifeng, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei:
Deformable Convolutional Networks. Proceedings of the IEEE International
Conference on Computer Vision. (2017).

● Everingham, Mark, Luk Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman: The PASCAL visual object classes (VOC) challenge. International Journal
of Computer Vision, 88 (2), 303–338. (2010).

● Girshick, Ross: Fast R-CNN. Proceedings of the IEEE international Conference on
Computer Vision. (2015).

● Girshick, Ross, et al: Detectron. https://github.com/facebookresearch/detectron.
(2018).

● He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun: Deep residual learning for
image recognition. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. (2016).

● Li, Xiang, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, Jian
Yang: Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes
for Dense Object Detection. Advances in Neural Information Processing Systems 33.
(2020).

● Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick: Microsoft COCO: Common objects in
context. European Conference on Computer Vision. Springer LNCS 8693. (2014).

● Lin, Tsung-Yi, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár: Focal loss for
dense object detection. Proceedings of the IEEE International Conference on
Computer Vision. (2017a).

● Lin, Tsung-Yi, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie: Feature pyramid networks for object detection. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. (2017b).

33

D4.4 Platform for the interactive pre-processing of camera trap images

● Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg: SSD: Single Shot MultiBox Detector.
European Conference on Computer Vision. Springer LNCS 9905. (2016).

● MMCV Contributors: MMCV: OpenMMLab Computer Vision Foundation.
https://github.com/open-mmlab/mmcv. (2018).

● Petso, Tinao, Rodrigo S. Jamisola, and Dimane Mpoeleng: Review on methods used
for wildlife species and individual identification. European Journal of Wildlife
Research 68.1 (2022): 1-18.

● Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun: Faster R-CNN: Towards
real-time object detection with region proposal networks. Advances in Neural
Information Processing Systems 28 (2015): 91-99.

● Swanson, Alexandra, Margaret Kosmala, Chris Lintott, Robert Simpson, Arfon Smith,
and Craig Packer: Snapshot Serengeti, high-frequency annotated camera trap
images of 40 mammalian species in an African savanna. Scientific Data volume 2,
Article number: 150026. (2015).

● Wang, Jiaqi, Kai Chen, Shuo Yang, Chen Change Loy, and Dahua Lin: Region Proposal
by Guided Anchoring. IEEE Conference on Computer Vision and Pattern Recognition.
(2019).

● Wu, Yuxin, et al: Detectron2. https://github.com/facebookresearch/detectron2.
(2019).

● Xie, Saining, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He: Aggregated
residual transformations for deep neural networks. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. (2017).

● Yang, Ze, Shaohui Liu, Han Hu, Liwei Wang, and Stephen Lin: Reppoints: Point set
representation for object detection. Proceedings of the IEEE/CVF International
Conference on Computer Vision. (2019).

● Zhu, Xizhou, Han Hu, Stephen Lin, and Jifeng Dai: Deformable ConvNets v2: More
Deformable, Better Results. IEEE/CVF Conference on Computer Vision and Pattern
Recognition. (2019).

● Zhu, Xizhou, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai: Deformable
DETR: Deformable Transformers for End-to-End Object Detection. International
Conference on Learning Representations. (2020).

● Zhang, Hang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue
Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander Smola: ResNeSt:
Split-Attention Networks. arXiv preprint arXiv:2004.08955. (2020).

34

D4.4 Platform for the interactive pre-processing of camera trap images

Annex 1 - Understanding Model Names

ResNet model variations are indicated with the format A-B where A is a letter representing the
architectural variant and B is a number indicating the number of layers from the model used.

Architecture Letter used to represent the architecture

ResNet (He, 2016) R

ResNeXt (Xie, 2017) X

ResNeSt (Zhang, 2020) S

Examples:

● R-50: uses the ResNet architecture with 50 layers
● X-101: uses the ResNeXt architecture with 101 layers
● S-101 uses the ResNeSt architecture with 101 layers

Further to this ResNeXt architectures offer a further variation given in the form CxDd where C is
the cardinality parameter of the network and D is the width of the network. A deeper explanation
is provided in Sections 3.1 and 5.1 of the architecture paper (Xie et al., 2017). An example of
this would look like X-101 64x4d.

Model names including FPN indicate that they make use of a feature pyramid in their early
layers as per Lin (Lin et al, 2017b).

Model names including DCN indicate that they make use of the deformable technique described
by Zhu et al. (2019).

35

