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Covering All the Bases: Type-based Verification of Test Input
Generators
ANONYMOUS AUTHOR(S)

Test input generators are an important part of property-based testing (PBT) frameworks. Because PBT is

intended to test deep semantic and structural properties of a program, the outputs produced by these generators

can be complex data structures, constrained to satisfy properties the developer believes is most relevant to

testing the function of interest. An important feature expected of these generators is that they be capable of

producing all acceptable elements that satisfy the function’s input type and generator-provided constraints.

However, it is not readily apparent how we might validate whether a particular generator’s output satisfies

this coverage requirement. Typically, developers must rely on manual inspection and post-mortem analysis of

test runs to determine if the generator is providing sufficient coverage; these approaches are error-prone and

difficult to scale as generators become more complex. To address this important concern, we present a new

refinement type-based verification procedure for validating the coverage provided by input test generators,

based on a novel interpretation of types that embeds “must-style” underapproximate reasoning principles as a

fundamental part of the type system. The types associated with expressions now capture the set of values

guaranteed to be produced by the expression, rather than the typical formulation that uses types to represent

the set of values an expression may produce. Beyond formalizing the notion of coverage types in the context

of a rich core language with higher-order procedures and inductive datatypes, we also present a detailed

evaluation study to justify the utility of our ideas.

1 INTRODUCTION
Property-based testing (PBT) is a popular technique for automatically testing deep semantic and

structural properties of programs. Originally pioneered by the QuickCheck [1] library for Haskell,

PBT frameworks now exist for many programming languages, including JavaScript [8], Rust [32],

Python [15], Scala [33], and Coq [22]. The PBT methodology rests on two key components: ex-
ecutable properties that capture the expected input-output behaviors of the program under test,

and test input generators that generate random values of the input types needed to validate these

behaviors. In contrast to unit tests, which rely on single examples of inputs and outputs, generators

are meant to provide a family of inputs against which programs can be tested, with the goal of

ensuring the set of generated tests provide good coverage of all possible inputs. In order to prune

out irrelevant inputs, PBT frameworks allow users to define custom generators that reflect the

specific shape of data that the developer believes is most likely to trigger interesting (aka faulty)

behavior. As one simple example, to test a tree compression or balancing function, the developer

may want to use a generator that produces 𝑛-ary trees with randomly chosen height and arity but

whose leaves are ordered according to a user-provided ordering relation.

Given the critical role they play in the assurance case provided by PBT frameworks, it is reasonable

to ask what constitutes a “good” specification for a test generator. For our example, one answer could

be that it should only produce ordered trees. Of course, this is not a very satisfactory characterization

of the behavior we desire: the “constant” generator that always produces trees of height one trivially

meets this specification, but it is unlikely to produce useful tests for a compression function! Ideally,

we would like a generator to intelligently enumerate the space of all possible ordered trees, thereby
helping to maximize the likelihood of finding bugs in the function under test. Because defining

such an enumeration procedure for arbitrary datatypes can be hard, PBT frameworks instead give

developers the ability to assemble generators for complex data structures compositionally, building
on generators for simpler types where randomly sampling elements of the type is straightforward
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2 Anon.

and sufficient. For example, we could implement an ordered tree generator in terms of a primitive

random number generator that is used to non-deterministically select the height, arity, and elements

of a candidate tree, checking (or enforcing) the orderness of the tree before returning it as a feasible

test input. However, although the random number generator might provide a guarantee that its

underlying probability density function (PDF) is always non-zero on all elements in its sample space,

determining that a tree generator that is built using it can actually enumerate all the ordered trees

desired is a substantially harder problem. Even if we know the generator is capable of eventually

yielding all trees, proving that any filtering operations it uses do not mistakenly prune out valid

ordered trees or that any transformations it implements over candidate trees preserve the elements

of the random tree being transformed, pose additional challenges. In other words, verifying that

the generator is complete with respect to our desired orderness property entails reasoning that

is independent of the behavior of the primitive generators used to build the tree. Consequently,

we require some alternative mechanism to help qualify the part of the target function’s input

space the generator is actually guaranteed to cover. Devising such a mechanism is challenging

precisely because the properties that need to be tested may impose complex structural and semantic

constraints on the generated output (e.g., requiring that an output tree be a binary search tree, or

that it satisfies a red-black property, etc.); the complexity of these constraints is directly correlated

to the sparseness of the function’s input space preconditions.

type tree =
| Leaf
| Node of (nat * tree * tree)

let rec bst_gen (lo: nat) (hi: nat) : nat tree =
if lo + 1 >= hi then Leaf
else (* Leaf ⊕ *) (

let (x: nat) = nat_range (lo + 1, hi - 1) in
Node (x, bst_gen lo x, bst_gen x hi))

Fig. 1. A BST generator. Failing to uncomment the commented
line results in the generator never producing trees that contain
only a subset of the elements in the interval between lo and
hi, which is inconsistent with the developer’s intent.

To illustrate this distinction more con-

cretely, consider the input test genera-

tor shown in Figure 1 that is intended to

generate all binary search trees (BSTs)

whose elements are between the inter-

val lo and hi. If we ignore the com-

mented line, we can conclude this gener-

ator always produces a non-empty BST

whenever lo < hi. While the genera-

tor is correct - it always generates a

well-formed BST - it is also incomplete;

the call bst_gen 0 10, for example,

will never produce a tree containing just

Leaf or a tree with a shape like Node(1,Leaf,Leaf), even though these instances are valid trees

consistent with the constraints imposed by the generator’s argument bounds. In fact, this implemen-

tation never generates a BST that only contains a proper subset of the elements that reside within

the interval defined by lo and hi. By uncommenting the commented expression, however, we allow

the generator to non-deterministically choose (via operator ⊕) to either return a Leaf or left and
right BST subtrees based on value returned by the nat_range generator, enabling it to potentially

produce BSTs containing all valid subsets of the provided interval, thus satisfying our desired de-

sired completeness behavior. The subtleties involved in reasoning about such coverage properties is

clearly non-trivial. We reiterate that recognizing the distinction between these two implementations

is not merely a matter of providing a precise output type capturing the desired sortedness property

of a BST: for example, the incomplete implementation clearly satisfies such a type! Furthermore,

simply knowing that the underlying nat_range generator used in the implementation samples

all elements within the range of the arguments it is provided is also insufficient to conclude that

the BST generator can yield all possible BSTs within the supplied interval. Similar observations

have led prior work to consider ways to improve a generator’s coverage through mechanisms such

as fuzzing [6, 20], or to automatically generate complete-by-construction generators for certain

classes of datatypes [21].
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In contrast to these approaches, this paper embeds the notion of coverage as an integral part of

a test input generator’s type specification. By doing so, a generator’s type now specifies the set

of behaviors a generator is guaranteed to exhibit; a well-typed generator is thus guaranteed to

produce every possible value satisfying a desired structural property, e.g., that the repaired (complete)

version of bst_gen is capable of producing every valid BST. By framing the notion of coverage

in type-theoretic terms, our approach neither requires instrumentation of the target program to

assess the coverage effectiveness of a candidate generator (as in Lampropoulos et al. [20]) nor does

it depend on a specific compilation strategy for producing generators (as in Lampropoulos et al.

[21]). Instead, our approach can automatically verify the coverage properties of an arbitrary test

input generator, regardless of whether it was hand-written or automatically synthesized.

Key to our approach is a novel formulation of a must-style analysis [11, 12, 16] of a test input
generator’s behavior in type-theoretic terms. In our proposed type system, we say an expression 𝑒

has coverage type 𝜏 if every value contained in 𝜏 must be producible by 𝑒 . Note how this definition

differs from our usual notion of what a type represents: ordinarily, if 𝑒 has type 𝜏 then we are

allowed to conclude only that any value contained in 𝜏 may be produced by 𝑒 . Informally, types

interpreted in this usual way define an overapproximation of the values an expression 𝑒 may yield,

without obligating 𝑒 to produce any specific such value. In contrast, coverage types define an

underapproximation - they characterize the values an expression 𝑒 must produce, potentially eliding

other values that 𝑒 may also evaluate to. In this sense, our solution can be seen a type-theoretic

interpretation of recently developed underapproximate program logics [5, 25], in much the same

way that refinement-type systems like Liquid Types [34] relate to traditional program logics [14].

Stated another way, a coverage type characterizes the subset of values an expression is guaranteed
to generate, while a normal type characterizes the entire set of values an expression may yield.

When the cardinality of an input generator’s (underapproximate) coverage type matches that of its

(overapproximate) normal type, however, we can soundly assert that the generator is complete.

As we illustrate in the remainder of the paper, this characterization allows us to reason about a

program’s coverage behavior on the same formal footing as its safety properties.

This interpretation leads to a fundamental recasting of how types relate to one another: ordinarily,

we are always allowed to assert that 𝜏 <: ⊤. This means that any typing context that admits an

expression with type 𝜏 can also admit that expression at a type with a logically weaker structure. In

contrast, the subtyping relation for coverage types inverts this relation, so that ⊤ <: 𝜏 . Intuitively,

⊤ represents the coverage type that obligates an expression ascribed this type to be capable of

producing all elements in 𝜏 . But, any context that requires an expression to produce all such

elements can always guarantee that the expression will also produce a subset of these elements. In

other words, we are always allowed to weaken an overapproximation (i.e., grow the set of values an

expression may evaluate to), and strengthen an underapproximation (i.e., shrink the set of values

an expression must evaluate to). In our setting, a random number generator over natural numbers

has coverage type ⊤nat under the mild assumption that its underlying PDF provides a non-zero

likelihood of returning every natural number, while a faulty computation like 1 div 0 has coverage
type ⊥ since there are no guarantees provided by the computation on the value(s) it must return.

Here, ⊥ represents a type that defines a degenerate underapproximation, imposing no constraints

on the values an expression ascribed this type must produce.

In summary, this paper makes the following contributions:

(1) It introduces the notion of coverage types, types that characterize the values an input test

generator is guaranteed to (i.e., must) yield.
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4 Anon.

(2) It formalizes the semantics of coverage types in anML-like functional language with support

for higher-order functions and inductive datatypes
1
.

(3) It develops a bi-directional type-checking algorithm for coverage types in this language.

(4) It incorporates these ideas in a tool (Poirot) that operates over OCaml programs equipped

with input generators and typed using coverage types, and presents an extensive empirical

evaluation justifying their utility, by verifying the coverage properties of both hand-written

and automatically synthesized generators for a rich class of datatypes and their structural

properties.

The remainder of the paper is structured as follows. In the next section, we present an informal

overview of the key features of our type system. Section 3 presents the syntax and semantics for

a core call-by-value higher-order functional language with inductive datatypes that we use to

formalize our approach. Section 4 presents a type system for coverage types; a bidirectional typing

algorithm is then given in Section 5. We describe details about the implementation of Poirotand
provide benchmark results in Section 6. Related work and conclusions are given in Sections 7 and 8.

2 OVERVIEW
Before presenting the full details of our type system, we begin with an informal overview of its key

features.

Base types. In the following, we write [𝜈 :𝑏 | 𝜙] to denote the coverage type that qualifies the

base type 𝑏 using the predicate 𝜙 . As described in the previous section, an application of the

primitive built-in generator for random numbers: int_gen : unit� int has the coverage type

int_gen () : [𝜈 :𝑖𝑛𝑡 | ⊤int]. We use brackets [...] to emphasize that a coverage type has a different

meaning from the types typically found in other refinement type systems [17, 34] where a qualified

type𝑏, written as {𝜈 :𝑏 | 𝜙}, uses a predicate𝜙 to constrain the set of values a programmight evaluate
to. To illustrate this distinction, consider the following combinations of expressions and types

2
(the

constant err represents a special error value, that when encountered, causes the program to halt):

int_gen () ⊢ [𝜈 :𝑖𝑛𝑡 | ⊤int] ⊢ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2] ⊢ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1] ⊢ [𝜈 :𝑖𝑛𝑡 | ⊥]
⊢ {𝜈 :𝑖𝑛𝑡 | ⊤int} ⊬ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2} ⊬ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1} ⊬ {𝜈 :𝑖𝑛𝑡 | ⊥}

1 ⊢ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1] ⊢ [𝜈 :𝑖𝑛𝑡 | ⊥] ⊢ {𝜈 :𝑖𝑛𝑡 | ⊤int} ⊢ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2}
⊢ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1} ⊬ [𝜈 :𝑖𝑛𝑡 | ⊤int] ⊬ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2] ⊬ {𝜈 :𝑖𝑛𝑡 | ⊥}

err ⊢ [𝜈 :𝑖𝑛𝑡 | ⊥] ⊬ [𝜈 :𝑖𝑛𝑡 | ⊤int] ⊬ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2] ⊬ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1]
⊬ {𝜈 :𝑖𝑛𝑡 | ⊤int} ⊬ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2} ⊬ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1} ⊬ {𝜈 :𝑖𝑛𝑡 | ⊥}

These examples illustrate the previous observation that it is always possible to strengthen the

refinement predicate used in an underapproximate type and weaken such a predicate in an overap-

proximate type. As a consequence, the bottom type [𝜈 :𝑖𝑛𝑡 | ⊥] is the universal supertype in our

type hierarchy, as it places no restrictions on the values a term must produce. Thus, we sometimes

abbreviate [𝜈 :𝑖𝑛𝑡 | ⊥] as int, since the information provided by both types is the same. Impor-

tantly, the coverage type for the error term (err) can only be qualified with ⊥, since an erroneous

computation is unconstrained with the respect to the values it is obligated to produce.

Coverage types can also qualify inductive datatypes, like lists and trees. In particular, the complete

generator for BSTs presented in the introduction can be successfully type-checked using the

following result type:

[𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ lo < 𝑢 < hi]

1
The formalization of the typing rules and their soundness, is mechanized in Coq and provided in the supplemental material.

2
We use ⊢ and ⊬ marks to indicate whether a term can or cannot be assigned the corresponding type, resp.
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where bst (𝜈) and mem(𝜈,𝑢) are method predicates, i.e., uninterpreted functions used to encode

semantic properties of the datatype. In the type given above, the qualifier requires that bst_gen’s
result is a BST and that every element 𝑢 stored in the tree (as given by predicate mem(𝜈,𝑢)) is
between lo and hi; the coverage type thus constrains the implementation to produce all trees
that satisfy this qualifier predicate. In contrast, the incomplete version of the generator (i.e., the

implementation that does not allow prematurely terminating tree generation with a Leaf node)
could only be type-checked using the following (stronger) type:

[𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) ⇐⇒ lo < 𝑢 < hi]

This signature asserts that all trees produced by the generator are BSTs, that any element contained

in the tree is within the interval bounded by lo and hi, and moreover, any element in that interval

must be included in the tree. The subtle difference between the two implementations, reflected in

the different implication constraints expressed in their respective refinements, precisely captures

how their coverage properties differ.

Control Flow. Just as underapproximate coverage types invert the standard overapproximate sub-

typing relationship, they also invert the standard relationship between a control flow construct and

let even_gen () =
let (n: int) = int_gen () in
let (b: bool) = n mod 2 == 0 in
if b then n else err

its subexpressions. To see how, consider the simple pro-

gram shown on the right that defines an even number

generator in terms of an integer number generator. When

the random number generator yields an odd number, the

program faults; otherwise it simply returns the generated

number. Consider the following type judgment that arises when type checking this program:

n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ 𝑛 mod 2 = 0] ⊢ if b then n else err : [𝜈 :𝑖𝑛𝑡 | 𝜈 mod 2 = 0] (1)

Intuitively, this judgment asserts that the if expression covers all even numbers (i.e., has the

type [𝜈 :𝑖𝑛𝑡 | 𝜈 mod 2 == 0]) assuming that the local variable n can be instantiated with an arbitrary

number, and that the variable b is true precisely when 𝑛 is even. Notice how the typing context

encodes the potential control-flow path that must reach the non-faulting branch of the conditional

expression.

Notably, enforcing the requirement that the conditional be able to return any even number

does not require each of its branches to be a subtype of the expected type, in contrast to standard

type systems. Our type system must instead establish that, in total, the values produced by each

of the branches cover the even numbers. Indeed, because the false branch of the conditional

faults, it is only typeable at the universal supertype, i.e., [𝜈 :𝑖𝑛𝑡 | ⊥]. Thus, if the standard subtyping
relationship between this conditional and its branches held, it could only be typed at [𝜈 :𝑖𝑛𝑡 | ⊥]!
This is not the case, however, in our setting, as the true branch contributes all the desired outputs.

Formally, this property is checked by the following assumption of the coverage typing rule for

conditionals:

n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ 𝑛 mod 2 == 0] ⊢ [𝜈 :𝑖𝑛𝑡 | (𝑏 ∧ 𝜈 = 𝑛) ∨ (¬𝑏 ∧ ⊥)] <: [𝜈 :𝑖𝑛𝑡 | 𝜈 mod 2 == 0]

The 𝑏 ∧ 𝜈 = 𝑛 and ¬𝑏 ∧ ⊥ subformulas correspond to the types of the true and false branches
3
,

respectively. Taking the disjunction of these two formulas describe the set of values produced

by either branch; this subtyping relationship guarantees this type is at least as large as the type

expected by the entire conditional.

To check that this subtyping relationship holds, our type checker generates the following formula:

∀𝜈, (𝜈 mod 2 = 0) =⇒ (∃𝑛,⊤ ∧ ∃𝑏, 𝑏 ⇐⇒ 𝑛 mod 2 = 0 ∧ (𝑏 ∧ 𝜈 = 𝑛) ∨ (¬𝑏 ∧ ⊥)) (2)

3
As is standard in dependent type systems, the types of both branches have been refined to reflect the path conditions under

which they will be executed.

, Vol. 1, No. 1, Article . Publication date: March 2023.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

This formula aligns with the intuitive meaning of (1): in our type system, coverage types of variables

in the typing context tell us what values they must (at least) produce. When checking whether a

particular subtyping or typing relationship holds, we are free to choose any instantiation of the

variables that entails the desired property. Accordingly, in (2), the variables 𝑛 and 𝑏 are existentially
quantified to indicate there exists an execution path that instantiates these local variables in a way

that produces the output 𝜈 , instead of being universally quantified as they would be in a standard

refinement type system.

Function types. To type functions, most refinement type systems add a restricted form of the

dependent function types found in full-spectrum dependent type systems. Such types allow the

qualifiers in the result type of a function to refer to its parameters, allowing the expression of rich

safety conditions governing the arguments that may be supplied to the function. To see how this

capability might be useful in our setting, consider the test generator bst_gen from the introduction.

The complete version of this function produces all BSTs whose elements fall between the range

specified by its two parameters, lo and hi. For the bounds 0 and 3, the application bst_gen 0 3
can be typed as: [𝜈 :𝑖𝑛𝑡 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ 0 < 𝑢 < 3]. Using the standard typing rule for
functions, the only way to encode this relationship in the type of bst_gen is:

[𝜈 :𝑖𝑛𝑡 | 𝜈 = 0]� [𝜈 :𝑖𝑛𝑡 | 𝜈 = 3]� [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ 0 < 𝑢 < 3]

Of course, this specification fails to account for the behaviors of bst_gen when supplied with

different bounds: for example, the application bst_gen 2 7 will fail to typecheck against this type.

Since the desired coverage proprty of bst_gen fundamentally depends on the kinds of inputs

given to it, our type system includes dependent products of the form:

lo:{𝜈 :𝑖𝑛𝑡 | ⊤int}� hi:{𝜈 :𝑖𝑛𝑡 | lo ≤ 𝜈}� [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ lo < 𝑢 < hi]

We use the notation {...} to emphasize that the argument types of a dependent arrow have a similar

purpose and interpretation as in standard refinement type systems. Thus, the above type can be

read as “if the inputs lo and hi are any number such that lo ≤ hi, then the output must cover
all possible BSTs whose elements are between lo and hi”. Using this type for bst_gen allows our

system to seamlessly type-check both (bst_gen 0 3) and (bst_gen 2 7). Our typing algorithm
will furthermore flag the call (bst_gen 3 1) as being ill-typed, since the function’s type dictates
that the generator’s second argument (1) may only be greater than or equal to its first (3).

let bst_gen_low_bound (low: int) =
let (high: int) = int_gen () in
bst_gen low high

Fig. 2. This function generates a BST with
a supplied lower bound, low.

Function Application. Since the type of a function pa-

rameter is interpreted as a normal (overapproximate,

“may”) refinement type, while arguments in an application

may be typed using (underapproximate, “must”) cover-

age types, we need to be able to bridge the gap between

may and must types when typing function applications.

Intuitively, our type system does so by ensuring that the

set of values in the coverage type of the argument has

a nonempty overlap with the set of possible values expected by the function. We establish this

connection by using the fact that the typing context captures the control flow paths that may

and must exist when the function is called. To illustrate this intuition concretely, consider the

function bst_gen_low_bound shown in Figure 2. This function generates all non-empty BSTs

whose elements are numbers with the lower bound given by its parameter. The judgment we need

to check is of the form:

low:{𝜈 :𝑖𝑛𝑡 | ⊤int}, high:[𝜈 :𝑖𝑛𝑡 | ⊤int] ⊢ bst_gen low high : . . .

Note that the type for lo is a normal refinement type that specifies a safety condition for this

function, namely that the lo may be any number. In contrast, the the type for high is a coverage
type, representing the result of int_gen() that indicates that it must (i.e., guaranteed to) be any

, Vol. 1, No. 1, Article . Publication date: March 2023.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Covering All the Bases: Type-based Verification of Test Input Generators 7

possible integer. However, the signature for bst_gen demands that parameter hi only be supplied

values greater than its first argument (lo); we incorporate this requirement by strengthening high’s
type (via a subsumption rule) to reflect this additional constraint when typing the body of the let

expression in which high is bound. This strengthening, which is tantamount to a more refined

underapproximation, allows us to typecheck the application (bst_gen low high) in the following

context:

bst_gen : lo:{𝜈 :𝑖𝑛𝑡 | ⊤int}� hi:{𝜈 :𝑖𝑛𝑡 | lo ≤ 𝜈}� [𝜈 :𝑡 | ...], low:{𝜈 :𝑖𝑛𝑡 | ⊤int}, high:[𝜈 :𝑖𝑛𝑡 | low ≤ 𝜈]

The coverage type associated with high guarantees that int_gen () is guaranteed to produce

values greater than low (along with possibly other values). To ensure that the result type of the

call reflects the underapproximate (coverage) dependences that exist between low and high, we
introduce existential quantifiers in the type’s qualifier:

[𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | bst (𝜈) ∧ ∃high, low ≤ high ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ low < 𝑢 < high]

This type properly captures the behavior of the generator: it is guaranteed to generate all BSTs

characterized by a lower bound given low such that low ≤ hi and in which every element in the

tree is contained within these bounds.

Summary. Coverage types invert many of the expected relationships that are found in a normal

refinement type system. Here, qualifiers provide an underapproximation of the values that an

expression may evaluate to, in contrast to the typically provided overapproximation. This, in turn,

causes the subtyping relation to invert the standard relationship entailed by logical implication

between type qualifiers. Our coverage analysis also considers the disjunction of the coverage

guarantees provided by the branches of control-flow constructs, instead of their conjunction. Finally,
when applying a function with a dependent arrow type to a coverage type, we check semantic

inclusion between the overapproximate and underapproximate constraints provided by the two

types, and manifest the paths that witness the elements guaranteed to be produced by the coverage

type through existentially-quantified variables in the application’s result type.

3 LANGUAGE
In order to formalize our typed-based verification approach of input test generators, we introduce

a language for test generators, 𝝀TG
. The language, whose syntax is summarized in Figure 3, is a

call-by-value lambda-calculus with pattern-matching, inductive datatypes, and well-founded (i.e.,

terminating) recursive functions whose argument must be structurally decreasing in all recur-

sive calls made in the function’s body. The syntax of 𝝀TG
is expressed in monadic normal-form

(MNF) [13], a variant of A-Normal Form (ANF) [10] that allows nested let-bindings. The language

additionally allows faulty programs to be expressed using the error term err. As discussed in Sec-

tion 2, this term is important in our investigation because coverage types capture an expression’s

reachability properties, and we need to ensure the guarantees offered by such types are robust even

in the presence of stuck computations induced by statements like err. The language is also equipped
with primitive operators to generates natural numbers, integers, etc. (nat_gen (), int_gen(), 𝑒𝑡𝑐 .)
that can be used to express various kinds of non-deterministic behavior relevant to test input

generation. As an example, the ⊕ choice operator used in Figure 1 can be defined as:

𝑒1 ⊕ 𝑒2 � let 𝑛 = nat_gen () mod 2 in match 𝑛 with 0→ 𝑒1 | _→ 𝑒2

Note that the primitive generators of 𝝀TG
are completely agnostic to the specific sampling strategy

they employ, as long as they ensure every value in their range has a nonzero likelihood of being

generated. Indeed, 𝝀TG
does not include any operators to bias the frequency at which values are

produced, e.g., QuickCheck’s frequency. While we could include such an operator, it would not
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Variables 𝑥, 𝑓 ,𝑢, ...

Data constructors 𝑑 ::= () | true | false | O | S | Cons | Nil | Leaf | Node
Constants 𝑐 ::= B | N | Z | . . . | 𝑑 𝑐

Operators 𝑜𝑝 ::= 𝑑 | + | == | < | mod | nat_gen | int_gen | ...
Values 𝑣 ::= 𝑐 | 𝑜𝑝 | 𝑥 | 𝜆𝑥 :𝑡 .𝑒 | fix𝑓 :𝑡 .𝜆𝑥 :𝑡 .𝑒
Terms 𝑒 ::= 𝑣 | err | let 𝑥 = 𝑒 in 𝑒 | let 𝑥 = 𝑜𝑝 𝑣 in 𝑒 | let 𝑥 = 𝑣 𝑣 in 𝑒

| match 𝑣 with 𝑑 𝑦 → 𝑒

Base Types 𝑏 ::= 𝑢𝑛𝑖𝑡 | 𝑏𝑜𝑜𝑙 | 𝑛𝑎𝑡 | 𝑖𝑛𝑡 | 𝑏 𝑙𝑖𝑠𝑡 | 𝑏 𝑡𝑟𝑒𝑒 | . . .
Basic Types 𝑡 ::= 𝑏 | 𝑡 � 𝑡

Method Predicates 𝑚𝑝 ::= emp | hd | mem | ...
Literals 𝑙 ::= 𝑐 | 𝑥

Propositions 𝜙 ::= 𝑙 | ⊥ | ⊤𝑏 | 𝑜𝑝 (𝑙) |𝑚𝑝 (𝑥) | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | 𝜙 =⇒ 𝜙 | ∀𝑢:𝑏. 𝜙 | ∃𝑢:𝑏. 𝜙
Refinement Types 𝜏 ::= [𝜈 :b | 𝜙] | {𝜈 :b | 𝜙} | 𝑥 :𝜏�𝜏

Type Contexts Γ ::= ∅ | Γ, 𝑥 :𝜏

Fig. 3. 𝝀TG syntax.

change anything fundamentally about our type system or its guarantees. The operational semantics

of 𝝀TG
is otherwise standard and can be found in the supplementary material.

3.1 Types
Like other refinement type systems [17, 34], 𝝀TG

supports three classes of types: base types, basic
types, and refinement types. Base types (𝑏) include primitive types such as unit, bool, nat, etc., and
inductive datatypes (e.g., int list, bool tree, int list list, etc.). Basic types (𝑡 ) extend base

types with function types. Refinement types (𝜏 ) qualify base types with both underapproximate and

overapproximate propositions, expressed as predicates defined in first-order logic (FOL). Function

parameters can also be qualified with overapproximate refinements that specify when it is safe

to apply this function. In contrast, the return type of a function can only be qualified using an

underapproximate refinement, reflecting the coverage property of the function’s result and thus

characterizing the values the function is guaranteed to produce. The erasure of a type 𝜏 , ⌊𝜏⌋, is the
type that results from erasing all qualifiers in 𝜏 .

Refinements and Logic. To express rich shape properties over inductive datatypes, we allow propo-

sitions to reference method predicates, as it is straightforward to generate verification conditions

using these uninterpreted functions that can be handled by an off-the-shelf theorem prover like

Z3 [4]. As we describe in Section 5, our typechecking algorithm imposes additional constraints on

the form propositions can take, in order to ensure that its validity is decidable. In particular, we

ensure that Z3 queries generated by our typechecker to check refinement validity are always over

effectively propositional (EPR) sentences (i.e., prenex-quantified formulae of the form ∃∗∀∗𝜑 where

𝜑 is a quantifier-free sentence).

4 TYPE SYSTEM
Despite superficial similarities to other contemporary type systems (e.g., [17, 34]), the typing rules

of 𝝀TG
differ in significant ways from those of its peers, due to the fundamental semantic distinction
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Well-Formedness Γ ⊢WF 𝜏

Γ ≡ 𝑥𝑖 :{𝜈 :𝑏𝑥𝑖 | 𝜙𝑥𝑖 }, 𝑦 𝑗 :[𝜈 :𝑏𝑦 𝑗
| 𝜙𝑦 𝑗

], 𝑧:(𝑎:𝜏𝑎�𝜏𝑏 )
(∀𝑥𝑖 :𝑏𝑥𝑖 , ∃𝑦 𝑗 :𝑏𝑦𝑖 ,∀𝜈 :𝑏, 𝜙) is a Boolean predicate ∀𝑗, err ∉ J[𝜈 :𝑏𝑦 𝑗

| 𝜙𝑦 𝑗
]KΓ

WfBase

Γ ⊢WF [𝜈 :𝑏 | 𝜙]

Γ, 𝑥 :{𝜈 :𝑏 | 𝜙} ⊢WF 𝜏
WfArg

Γ ⊢WF 𝑥 :{𝜈 :𝑏 | 𝜙}�𝜏

Γ ⊢WF (𝑎:𝜏𝑎�𝜏𝑏 ) Γ ⊢WF 𝜏
WfRes

Γ ⊢WF (𝑎:𝜏𝑎�𝜏𝑏 )�𝜏

Subtyping Γ ⊢ 𝜏1 <: 𝜏2
J[𝜈 :𝑏 | 𝜙1]KΓ ⊆ J[𝜈 :𝑏 | 𝜙2]KΓ

SubUBase

Γ ⊢ [𝜈 :𝑏 | 𝜙1] <: [𝜈 :𝑏 | 𝜙2]
J{𝜈 :𝑏 | 𝜙1}KΓ ⊆ J{𝜈 :𝑏 | 𝜙2}KΓ

SubOBase

Γ ⊢ {𝜈 :𝑏 | 𝜙1} <: {𝜈 :𝑏 | 𝜙2}

Γ ⊢ 𝜏21 <: 𝜏11 Γ, 𝑥 :𝜏21 ⊢ 𝜏12 <: 𝜏22
SubArr

Γ ⊢ 𝑥 :𝜏11�𝜏12 <: 𝑥 :𝜏21�𝜏22

Disjunction Γ ⊢ 𝜏1 ∨ 𝜏2 = 𝜏3

J𝜏1KΓ ∩ J𝜏2KΓ = J𝜏3KΓ
Disjunction

Γ ⊢ 𝜏1 ∨ 𝜏2 = 𝜏3

Fig. 4. Auxillary typing relations

that arises when viewing types as an underapproximation and not overapproximation of program

behavior.

Our type system depends on three auxiliary relations shown in Figure 4. The first group defines

well-formedness conditions on a type under a particular type context, i.e., a sequence of variable-

type bindings consisting of overapproximate refinement types, underapproximate coverage types,

and arrow (function) types. A type 𝜏 that is well-formed under a type context Γ needs to meet three

criteria: (1) the qualifier in 𝜏 need to be closed in the current typing context, and the denotation4 of all

the coverage types ([𝜈 :𝑏𝑦 𝑗
| 𝜙𝑦 𝑗

]) found in Γ should not include err (WfBase); (2) overapproximate

types may only appear in the domain of a function type (WfArg); and, (3) underapproximate

coverage types may only appear in the range of a function type (WfRes). To understand the

motivation for the first criterion, observe that a type context in our setting provides a witness to

feasible execution paths in the form of bindings to local variables. Accordingly, no type is well
formed under the type context 𝑥 :[𝜈 :𝑛𝑎𝑡 | ⊥] or under 𝑥 :{𝜈 :𝑛𝑎𝑡 | 𝜈 > 0}, 𝑦:[𝜈 :𝑛𝑎𝑡 | 𝑥 = 0 ∧ 𝜈 = 2],
as neither context corresponds to a valid manifest execution path. On the other hand, a well-formed

type is allowed to include an error term in its denotation, e.g., type [𝜈 :𝑛𝑎𝑡 | ⊥] is well-formed under

type context 𝑥 :{𝜈 :𝑛𝑎𝑡 | 𝜈 > 0} as it always corresponds to a valid underapproximation.

Our second set of judgments defines a largely standard subtyping relation based on the underlying

denotation of the types being related. Note also that over- and under-approximate types are

incomparable– our typing rules tightly control when one can be treated as another.

The disjunction rule (Disjunction), which was informally introduced in Section 2, merges the

coverage types found along distinct control paths. Intuitively, the type [𝜈 :𝑛𝑎𝑡 | 𝜈 = 1 ∨ 𝜈 = 2] is
the disjunction of the types [𝜈 :𝑛𝑎𝑡 | 𝜈 = 1] and [𝜈 :𝑛𝑎𝑡 | 𝜈 = 2]. Notice that only an inhabitant of

both [𝜈 :𝑛𝑎𝑡 | 𝜈 = 1] and [𝜈 :𝑛𝑎𝑡 | 𝜈 = 2] should be included in their disjunction: e.g., the term 1 ⊕ 2

4
The definition of a type’s denotation is given in subsection 4.1.
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10 Anon.

is one such inhabitant. Thus, we formally define this relation as the intersection of the denotations

of two types.

Typing Γ ⊢ 𝑒 : 𝜏
Γ ⊢WF Ty(𝑐)

TConst

Γ ⊢ 𝑐 : Ty(𝑐)
Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏 Γ ⊢WF 𝑥 :𝜏𝑥�𝜏

TFun

Γ ⊢ 𝜆𝑥 :⌊𝜏𝑥 ⌋ .𝑒 : (𝑥 :𝜏𝑥�𝜏)
Γ ⊢WF [𝜈 :𝑏 | ⊥]

TErr

Γ ⊢ err : [𝜈 :𝑏 | ⊥]

Γ ⊢WF [𝜈 :𝑏 | 𝜈 = 𝑥]
TVarBase

Γ ⊢ 𝑥 : [𝜈 :𝑏 | 𝜈 = 𝑥]

Γ(𝑥) = (𝑎:𝜏𝑎�𝜏𝑏 ) Γ ⊢WF 𝑎:𝜏𝑎�𝜏𝑏
TVarFun

Γ ⊢ 𝑥 : (𝑎:𝜏𝑎�𝜏𝑏 )

Γ ⊢ 𝑣1 : 𝑎:{𝜈 :𝑏 | 𝜙}�𝜏𝑥
Γ ⊢ 𝑣2 : [𝜈 :𝑏 | 𝜙]

Γ, 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑣2] ⊢ 𝑒 : 𝜏
Γ ⊢WF 𝜏

TApp

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 : 𝜏

∅ ⊢ 𝜏 <: 𝜏 ′ ∅ ⊢ 𝑒 : 𝜏
Γ ⊢WF 𝜏 ′

TSub

Γ ⊢ 𝑒 : 𝜏 ′

Γ ⊢ 𝜏 ′ <: 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′

Γ ⊢ 𝑒 : 𝜏 Γ ⊢WF 𝜏 ′
TEq

Γ ⊢ 𝑒 : 𝜏 ′

Γ ⊢ 𝑣 : 𝜏𝑣 Γ ⊢WF 𝜏 Γ, 𝑦:𝜏𝑦 ⊢ 𝑑𝑖 (𝑦) : 𝜏𝑣
Γ, 𝑦:𝜏𝑦 ⊢ 𝑒𝑖 : 𝜏

TMatch

Γ ⊢ (match 𝑣 with 𝑑𝑖 𝑦 → 𝑒𝑖 ) : 𝜏

Γ ⊢ 𝑒 : 𝜏1 Γ ⊢ 𝑒 : 𝜏2
Γ ⊢ 𝜏1 ∨ 𝜏2 = 𝜏 Γ ⊢WF 𝜏

TMerge

Γ ⊢ 𝑒 : 𝜏

Γ ⊢ 𝜆𝑥 :𝑏.𝜆𝑓 :(𝑏�⌊𝜏⌋).𝑒 : (𝑥 :{𝜈 :𝑏 | 𝜙}�𝑓 :(𝑥 :{𝜈 :𝑏 | 𝜈≺𝑥 ∧ 𝜙}�𝜏)�𝜏) Γ ⊢WF 𝑥 :{𝜈 :𝑏 | 𝜙}�𝜏
TFix

Γ ⊢ fix𝑓 :(𝑏�⌊𝜏⌋).𝜆𝑥 :𝑏.𝑒 : (𝑥 :{𝜈 :𝑏 | 𝜙}�𝜏)

Fig. 5. Selected typing rules

The salient rules of our type system are defined in Figure 5
5
. The rules collectively maintain the

invariant that terms can only be assigned a well-formed type. The rule for constants (TConst)

is straightforward. It relies on an auxiliary function, Ty, to assign types to the primitives of 𝝀TG
.

Figure 6 presents some examples of the typings provided by Ty. We use method predicates in the

types of constructors: the types for list constructors, for example, use emp, hd and tl, to precisely

capture that [] constructs an empty list, and that (Cons𝑥 𝑦) builds a list containing 𝑥 as its head

and 𝑦 as its tail.
6

The typing rules for function abstraction (TFun) and error (TErr) are similarly straightforward.

The type of the function’s argument 𝜏 should be consistent with the type of the argument’s erasure

(⌊𝜏𝑥 ⌋) specified by the 𝜆-abstraction. The error term can have arbitrary bottom coverage base type.

The variable rule (TVarBase) establishes that the variable 𝑥 in the type context with a base type

can also be typed with the tautological qualifier 𝜈 = 𝑥 (the well-formedness guarantee ensures that

𝑥 is not free here). This judgment allows us to, for example, type the function 𝜆𝑥 : nat .𝑥 with the

type 𝑥 :{𝜈 :𝑛𝑎𝑡 | ⊤nat}� [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥], indicating that the return value is guaranteed to be exactly

equal to the input 𝑥 . Observe that the type of 𝑥 under the type context 𝑥 :{𝜈 :𝑛𝑎𝑡 | ⊤nat} (generated
by the function rule TFun) is not [𝜈 :𝑛𝑎𝑡 | ⊤nat]. We cannot simply duplicate the qualifier for 𝑥

from the type context here, as this is only sound when types characterize an overapproximation

of program behavior. As an example, {𝜈 :𝑛𝑎𝑡 | ⊤nat} is a subtype of {𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥} under the type

5
The full set of rules can be found in the supplementary material.

6
The auxiliary function Ty also provides a type for operators, thus the rule for operators is the same as TConst.
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Constants Ty(true) = [𝜈 :𝑏𝑜𝑜𝑙 | 𝜈] Ty(8) = [𝜈 :𝑛𝑎𝑡 | 𝜈 = 8]...
Data Constructors Ty( []) = [𝜈 :𝑏 𝑙𝑖𝑠𝑡 | emp(𝜈)]

Ty(Cons) = 𝑥 :{𝜈 :𝑏 | ⊤b}�𝑦:{𝜈 :𝑡 𝑙𝑖𝑠𝑡 | ⊤t list}� [𝜈 :𝑏 𝑙𝑖𝑠𝑡 | hd (𝜈, 𝑥) ∧ tl(𝜈,𝑦)]...
Operators Ty(nat_gen) = {𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑛𝑎𝑡 | ⊤nat]

Ty(+) = 𝑥 :{𝜈 :𝑛𝑎𝑡 | ⊤unit}�𝑦:{𝜈 :𝑛𝑎𝑡 | ⊤nat}� [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥 + 𝑦]...

Fig. 6. Example typings for 𝝀TG primitives.

context 𝑥 :{𝜈 :𝑛𝑎𝑡 | ⊤nat}). In contrast, in our underapproximate coverage type system, [𝜈 :𝑛𝑎𝑡 | ⊤nat]
is not a subtype of [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥] under the type context 𝑥 :{𝜈 :𝑛𝑎𝑡 | ⊤nat} .
The typing rule for application TApp requires both its underapproximate argument type and

the overapproximate parameter type to have the same qualifier, and furthermore requires that the

type of the body (𝜏) is well-formed under the original type context Γ, enforcing 𝑥 (the result of

the application) to not appear free in 𝜏 . When argument and parameter qualifiers are not identical,

a subsumption rule is typically used to bring the two types into alignment. Recall the following

example from Section 2, suitably modified to conform to 𝝀TG
’s syntax:

bst_gen : lo:{𝜈 :𝑛𝑎𝑡 | ⊤int}� hi:{𝜈 :𝑛𝑎𝑡 | lo ≤ 𝜈}� [𝜈 :𝑛𝑎𝑡 𝑙𝑖𝑠𝑡 | ...], low : {𝜈 :𝑛𝑎𝑡 | ⊤nat} ⊢
let (g: unit -> nat) = nat_gen in let (x: unit) = () in
let (high: nat) = g x in let (y: nat) = bst_gen low high in y

Here, the type of high, [𝜈 :𝑛𝑎𝑡 | ⊤nat] is stronger than the type expected for the second parameter

of bst_gen, [𝜈 :𝑛𝑎𝑡 | lo ≤ 𝜈]. The subsumption rule (TSub), that would normally allows us to

strengthen the type of high to align with the required parameter type, is applicable to only closed

terms, which high is not. For the same reason, we cannot use TSub to strengthen the type of high
when it is bound to g x. Thankfully, we can strengthen g when it is bound to nat_gen: According
to Figure 6, the operator nat_gen has type {𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑛𝑎𝑡 | ⊤nat] and is also closed, and

can thus be strengthened via TSub, allowing us to type the call to bst_gen under the following,
stronger type context:

bst_gen : lo:{𝜈 :𝑛𝑎𝑡 | ⊤nat}� hi:{𝜈 :𝑛𝑎𝑡 | lo ≤ 𝜈}� [𝜈 :𝑛𝑎𝑡 𝑙𝑖𝑠𝑡 | ...], low : {𝜈 :𝑛𝑎𝑡 | ⊤nat},
g : {𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑛𝑎𝑡 | low ≤ 𝜈], x : [𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit], high : [𝜈 :𝑛𝑎𝑡 | low ≤ 𝜈] ⊢
let (y: nat) = bst_gen low high in y

The subsumption rule allows us to use nat_gen in a context that requires fewer guarantees than
nat_gen () actually provides, namely those values of high required by the signature of bst_gen.
Intuitively, since our notion of coverage types records feasible executions in the type context in the

form of existentials that serve as witnesses to an underapproximation, the strengthening provided

by the subsumption rule establishes an invariant that all bindings introduced into a type context

only characterize valid behaviors in a program execution. When coupled with TMerge, this allows

us to split a typing derivation into multiple plausible strengthenings when a variable is introduced

into the typing context and then combine the resulting types to reason about multiple feasible

paths.

Now, applying TApp to type the application, and TVarBase to type the body of the let gives us:
bst_gen : lo:{𝜈 :𝑛𝑎𝑡 | ⊤nat}� hi:{𝜈 :𝑛𝑎𝑡 | lo ≤ 𝜈}� [𝜈 :𝑛𝑎𝑡 𝑙𝑖𝑠𝑡 | ...], low : {𝜈 :𝑛𝑎𝑡 | ⊤nat}, high : [𝜈 :𝑛𝑎𝑡 | low ≤ 𝜈],

y : [𝜈 :𝑛𝑎𝑡 𝑙𝑖𝑠𝑡 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ lo < 𝑢 < hi][lo ↦→ low] [hi ↦→ high] ⊢
y : [𝜈 :𝑛𝑎𝑡 𝑙𝑖𝑠𝑡 | 𝜈 = y]

Observe that TVarBase types the body as: [𝜈 :𝑛𝑎𝑡 𝑙𝑖𝑠𝑡 | 𝜈 = 𝑦], which is not closed. To construct a

well-formed term, we need a formula equivalent to this type that accounts for the type of y in the

current type context. The TEq rule allows us to interchange formulae that are equivalent under a

given type context to ensure the well-formedness of the types constructed. Unlike TSub, it simply
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12 Anon.

changes the form of a type’s qualifiers, without altering the scope of feasible behaviors under the

current context. In this example, such a closed equivalent type, given the binding for y in the type

context under which the expression is being type-checked, would be:

let (y: nat) = bst_gen low high in y :
[𝜈 :𝑛𝑎𝑡 𝑙𝑖𝑠𝑡 | ∃𝑦, (bst (𝑦) ∧ ∀𝑢,mem(𝑦,𝑢) =⇒ low < 𝑢 < high) ∧ 𝜈 = 𝑦]

With these pieces in hand, we can see that the typing rule for match is a straightforward adaptation
of the components we have already seen, where the type of matched variable 𝑣 is assumed to have

been strengthened by the rule TSub to fit the type required to take the 𝑖th branch Γ, 𝑦:𝜏𝑦 ⊢ 𝑑𝑖 (𝑦) : 𝜏𝑣 .
We can also safely assume the type of the branch 𝜏𝑖 is closed under original type context Γ, relying
on TEq to meet this requirement. While TMatch only allows for a single branch to be typechecked,

applying TMerge allows us to reason about the coverage provided by multiple branches, which

have all been typed according to this rule.

The typing rule for recursive functions is similarly standard,
7
with the caveat that it can only

type terminating functions; since types in our language serve as witnesses to feasible executions,

the result type of any recursive procedure must characterize the set of values the procedure can

plausibly return. Thus, the TFix rule forces its first argument to always decrease according to some

well-founded relation ≺. To see why we impose this restriction, consider the function loop:
let rec loop (n: nat) = loop n

Without our termination check, this function can be assigned the type {𝜈 :𝑛𝑎𝑡 | ⊤nat}� [𝜈 :𝑛𝑎𝑡 | 𝜈 = 3],
despite the fact that this function never returns 3– or any value at all! The body of this expression

can be type-checked under the following type context (via TFix and TFun):

n:{𝜈 :𝑛𝑎𝑡 | ⊤nat}, loop:(n:{𝜈 :𝑛𝑎𝑡 | ⊤nat}� [𝜈 :𝑛𝑎𝑡 | 𝜈 = 3]) ⊢ loop n : [𝜈 :𝑛𝑎𝑡 | 𝜈 = 3]

This judgment reflects an infinitely looping execution, however. Indeed, the same reasoning allows

us to type this function with any result type. Constraining loop’s argument type to be decreasing

according to ≺ yields the following typing obligation:

n:{𝜈 :𝑛𝑎𝑡 | ⊤nat}, loop:(n:{𝜈 :𝑛𝑎𝑡 | 𝜈 ≺ n}� [𝜈 :𝑛𝑎𝑡 | 𝜈 = 3]) ⊢ n : [𝜈 :𝑛𝑎𝑡 | 𝜈 = n]

where the qualifiers 𝜈 ≺ n and 𝜈 = n conflict, raising a type error, and preventing loop from being

recursively applied to n.

4.1 Soundness
Type Denotations. Assuming a standard typing judgement for basic types, ∅ ⊢t 𝑒 : t,8 a type

denotation for a type 𝜏 , J𝜏K, is a set of closed expressions:

J{𝜈 :𝑏 | 𝜙}K � {𝑣 | ∅ ⊢t 𝑣 : 𝑏 ∧ 𝜙 [𝜈 ↦→ 𝑣]}
J[𝜈 :𝑏 | 𝜙]K � {𝑒 | ∅ ⊢t 𝑒 : 𝑏 ∧ ∀𝑣 :𝑏, 𝜙 [𝜈 ↦→ 𝑣] =⇒ 𝑒 ↩→∗ 𝑣}
J𝑥 :𝜏𝑥�𝜏K � {𝑓 | ∅ ⊢t 𝑓 : ⌊𝜏𝑥�𝜏⌋ ∧ ∀𝑣𝑥 ∈ J𝜏𝑥K =⇒ 𝑓 𝑣𝑥 ∈ J𝜏 [𝑥 ↦→ 𝑣𝑥 ]K}

In the case of an overapproximate refinement type, {𝜈 :𝑏 | 𝜙}, the denotation is simply the set of all

values of type 𝑏 whose elements satisfy the type’s refinement predicate (𝜙), when substituted for

all free occurrences of 𝜈 in 𝜙 .9 Dually, the denotation of an underapproximate coverage type is the

set of expressions that evaluate to 𝑣 whenever 𝜙 [𝜈 ↦→ 𝑣] holds, where 𝜙 is the type’s refinement

predicate. Thus, every expression in such a denotation serves as a witness to a feasible, type-correct,

7
As in TFun, the self-reference to 𝑓 and the parameter of the lambda abstraction 𝑥 in the recursive function body must

have type annotations consistent with the basic type of the fix expression.

8
The typing rules for basic types are provided in the supplemental material.

9
The denotation of an overapproximate refinement type is more generally {𝑒 :𝑏 | ∅ ⊢ 𝑒 : 𝑏 ∧ ∀𝑣:𝑏, 𝑒 ↩→∗ 𝑣 =⇒ 𝜙 [𝑥 ↦→ 𝑣 ] }.
However, because such types are only used for function parameters, and our language syntax only admits values as

arguments, our denotation uses the simpler form.
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execution. The denotation for a function type is defined in terms of the denotations of the function’s

argument and result in the usual way, ensuring that our type denotation is a logical predicate.

Type Denotation under Type Context. The denotation of a refinement types 𝜏 under a type context

Γ (written J𝜏KΓ) is10,11:

J𝜏K∅ � J𝜏K
J𝜏K𝑥 :𝜏𝑥 ,Γ � {𝑒 | ∀𝑣𝑥 ∈ J𝜏𝑥K, let 𝑥 = 𝑣𝑥 in 𝑒 ∈ J𝜏 [𝑥 ↦→ 𝑣𝑥 ]KΓ [𝑥 ↦→𝑣𝑥 ]} if 𝜏 ≡ {𝜈 :𝑏 | 𝜙}

J𝜏K𝑥 :𝜏𝑥 ,Γ � {𝑒 | ∃𝑒𝑥 ∈ J𝜏𝑥K,∀𝑒𝑥 ∈ J𝜏𝑥K, let 𝑥 = 𝑒𝑥 in 𝑒 ∈
⋂

𝑒𝑥 ↩→∗𝑣𝑥
J𝜏 [𝑥 ↦→ 𝑣𝑥 ]KΓ [𝑥 ↦→𝑣𝑥 ]} otherwise

The denotation of an overapproximate refinement type under a type context is mostly unsurprising,

other than our presentation choice to use a let-binding, rather than substitution, to construct the

expressions included in the denotations. For a coverage type, however, the definition precisely

captures our notion of a reachability witness by explicitly constructing an execution path as a

sequence of let-bindings that justifies the inhabitant of the target type 𝜏 . Using let-bindings
forces expressions in the denotation to make consistent choices when evaluated. The existential

introduced in the definition captures the notion of an underapproximation, while the use of set

intersection allows us to reason about non-determinism introduced by primitive generators like

nat_gen().

Example 4.1. The term𝑥+1 is included in the denotation of the type [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥 + 1 ∨ 𝜈 = 𝑥 + 𝑥]
under the type context 𝑥 : [𝜈 :𝑛𝑎𝑡 | 𝜈 = 1]. This is justified by picking 1 for 𝑒𝑥 , which yields a set

intersection that is equivalent to J[𝜈 :𝑛𝑎𝑡 | 𝜈 = 2]K. Observe that any expression in J[𝜈 :𝑛𝑎𝑡 | 𝜈 = 1]K,
e.g. 0 ⊕ 1 and 1 ⊕ 2, yields an expression, let 𝑥 = 0 ⊕ 1 in 𝑥 + 1 or let 𝑥 = 1 ⊕ 2 in 𝑥 + 1, included
in this intersection.

On the other hand, the term 𝑥 is not a member of this denotation. To see why, let us pick

nat_gen() for 𝑒𝑥 . This yields a set intersection that is equivalent to J[𝜈 :𝑛𝑎𝑡 | ⊤nat]K. While specific

choices for 𝑒𝑥 , e.g., nat_gen(), are included in this denotation, it does not work for all terms

𝑒𝑥 ∈ J[𝜈 :𝑛𝑎𝑡 | 𝜈 = 1]K. As one example, 0⊕ 1⊕ 2 is an element of this set, but let 𝑥 = 0 ⊕ 1 ⊕ 2 in 𝑥
is clearly not a member of J[𝜈 :𝑛𝑎𝑡 | ⊤nat]K. Suppose instead that we picked a more restrictive

expression for 𝑒𝑥 , like the literal 1 from the previous example. Here, it is easy to choose 𝑒𝑥 ∈
J[𝜈 :𝑛𝑎𝑡 | 𝜈 = 1]K (e.g., the literal 1) such that let 𝑥 = 𝑒𝑥 in 𝑥 ∉ J[𝜈 :𝑛𝑎𝑡 | 𝜈 = 2]K.

Our main soundness result establishes the correctness of type-checking in the presence of

coverage types with respect to a type’s denotation:

Theorem 4.2 (Soundness of typing rules). For all type contexts Γ, terms 𝑒 and coverage types 𝜏 ,
Γ ⊢ 𝑒 : 𝜏 =⇒ 𝑒 ∈ J𝜏KΓ .

It immediately follows that a closed input generator e with coverage type [𝜈 :𝑏 | 𝜙] must produce

every value satisfying 𝜙 , as desired.

5 TYPING ALGORITHM
The declarative typing rules are highly nondeterministic, relying on a combination of the TMerge

and TSub rules to both explore and combine the executions needed to establish the desired coverage

properties. In addition, each of the auxillary typing relations depend on logical properties of the

10
In the last case, since 𝑒𝑥 may non-determistically reduce to multiple values, we employ intersection (not union), similar

to the Disjunction rule.

11
In reasoning about the subset relation of the denotations of two types under a type context J[𝜈 :𝑏 | 𝜙1]KΓ ⊆ J[𝜈 :𝑏 | 𝜙2]KΓ

we require that the denotations be computed using the same Γ; details are provided in the supplemental material.
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semantic interpretation of types. Any effective type checking algorithm based on these rules must

address both of these issues. Our solution to the first problem is to implement a bidirectional

type checker [7] whose type synthesis phase characterizes a set of feasible paths and whose type

checking phase ensures those paths produce the desired results. Our solution to the second is to

encode the logical properties into a decidable fragment of first order logic that can be effectively

discharged by an SMT solver.

5.1 Bidirectional Typing Algorithm

Type Synthesis Γ ⊢ 𝑒 ⇒ 𝜏 Type Check Γ ⊢ 𝑒 ⇐ 𝜏

∀𝑖, Ty(𝑑𝑖 ) = 𝑦:{𝜈 :𝑏𝑦 | 𝜃𝑦 }�[𝜈 :𝑏 | 𝜓𝑖] Γ′
𝑖
= 𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦], 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣𝑎 ∧𝜓𝑖]

Γ, Γ′
𝑖
⊢ 𝑒𝑖 ⇒ 𝜏𝑖 𝜏 ′

𝑖
= Ex(Γ′

𝑖
, 𝜏𝑖 ) Γ ⊢ Disj(𝜏 ′

𝑖
) <: 𝜏 ′ Γ ⊢WF 𝜏 ′

ChkMatch

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 ⇐ 𝜏 ′

Γ ⊢ 𝑣1⇒ (𝑎:𝜏𝑎�𝜏𝑏 )�𝜏𝑥
Γ ⊢ 𝑣2⇐ 𝑎:𝜏𝑎�𝜏𝑏 Γ′ = 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynAppFun

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 ⇒ 𝜏 ′

Γ ⊢ 𝑣1⇒ 𝑎:{𝜈 :𝑏 | 𝜙}�𝜏𝑥
Γ′ = 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣2 ∧ 𝜙], 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynAppBase

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 ⇒ 𝜏 ′

Fig. 7. Selected Bidirectional Typing Rules

As is standard in bidirectional type systems, our typing algorithm consists of a type synthesis

judgement (Γ ⊢ 𝑒 ⇒ 𝜏) and a type checking judgment (Γ ⊢ 𝑒 ⇐ 𝜏). Figure 7 presents the key rules

for both.

Typing match. As we saw in Section 4, applying the declarative typing rule for match expressions
typically requires first using several other rules to get things into the right form: TMerge is required

to analyze and combine the types of each branch, TSub is used to equip each branch with the

right typing context, and TEq is used to remove any local or pattern variables from the type of a

branch. Our bidirectional type system combines all of these into the single ChkMatch rule shown

in Figure 7. At a high level, this rule synthesize a type for all the branches and then ensures that, in

combination, they cover the desired type.

Similarly to other refinement type systems, when synthesizing the type for the branch for

constructor 𝑑𝑖 , we use a ghost variable 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣𝑎 ∧𝜓𝑖] to ensure that the types of any pattern

variables 𝑦 are consistent with the parameters of 𝑑𝑖 . This strategy allows us to avoid having to

apply TSub to focus on a particular branch: instead, we simply infer a type for each branch, and

then combine them using our disjunction operation. In order for the inferred type of a branch to

make sense, we need to remove any occurrences of pattern variables or the ghost variable 𝑎. To do,

we use the Ex function, which intuitively allows us to embed information from the typing context

into a type.
12
This function takes as input a typing context Γ and type 𝜏 and produces an equivalent

type 𝜏 <: 𝜏 ′ <: 𝜏 in which pattern and ghost variables do not appear free. Finally, ChkMatch

uses Disj to ensure that the combination of the types of all the branches cover the required type

Γ ⊢ Disj(𝜏 ′
𝑖
) <: 𝜏 .

12
The definition of Ex can be found in the appendix.
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Example 5.1. Consider how we might check that the body of the generator for natural numbers

introduced in Section 2 has the expected type [𝜈 :𝑖𝑛𝑡 | 𝜈 ≥ 0]:13

int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | ⊤int] ⊢
let (n: int) = int_gen() in let (b: bool) = n < 0 in
match b with true -> err | false -> n ⇐ [𝜈 :𝑖𝑛𝑡 | 𝜈 ≥ 0]

Our typing algorithm first adds the local variable n and b to the type context, and then checks the

pattern-matching expression against the given type:

int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | ⊤int], n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ 𝑛 < 0] ⊢
match b with true -> err | false -> n ⇐ [𝜈 :𝑖𝑛𝑡 | 𝜈 ≥ 0]

The ChkMatch rule first synthesizes types for the two branches separately. Inferring a type of the

first branch using the existing type context:

..., n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ n < 0], b′:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 = b ∧ 𝜈] ⊢ err ⇒ [𝜈 :𝑖𝑛𝑡 | ⊥]
adds a ghost variable b′ to reflect the fact that nmust be less than 0 in this branch. By next applying

the TErr rule, our algorithm infers the type [𝜈 :𝑖𝑛𝑡 | ⊥] for this branch. The rule next uses Ex to
manifest b′ in the inferred type, encoding the path constraints under which this type holds (i.e. 𝑏 is

true).

..., n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ 𝑛 < 0], b′:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 = b ∧ 𝜈] ⊢ err ⇒ [𝜈 :𝑖𝑛𝑡 | ∃b′, b′ = b ∧ b′ ∧ ⊥]
Thus, the synthesized type for the first branch is [𝜈 :𝑖𝑛𝑡 | b ∧ ⊥] after trivial simplification. The

type of the second branch provides a better demonstration of why Ex is needed:
..., n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ n < 0], b′:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 = b ∧ ¬𝜈] ⊢ n ⇒ [𝜈 :𝑖𝑛𝑡 | 𝜈 = n]

After applying this operator, the inferred type is [𝜈 :𝑖𝑛𝑡 | ∃b′, b′ = b ∧ ¬b′ ∧ 𝜈 = n]; after simplifi-

cation, this becomes [𝜈 :𝑖𝑛𝑡 | ¬b ∧ 𝜈 = n]. The disjunction of these two types:

Disj([𝜈 :𝑖𝑛𝑡 | b ∧ ⊥], [𝜈 :𝑖𝑛𝑡 | ¬b ∧ 𝜈 = n]) = [𝜈 :𝑖𝑛𝑡 | (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)]
results in exactly the type shown in the Section 2 that can be then successfully checked against the

target type [𝜈 :𝑛𝑎𝑡 | 𝜈 ≥ 0].

Application. Our type synthesis rules for function application adopt a strategy similar to Chk-

Match’s, trying to infer the strongest type possible for an expression that uses the result of a

function application. The rule for a function whose parameter is an overapproximate refinement

type (SynAppBase) is most interesting, since it has to bridge the gap with an argument that has

an underappproximate coverage type. When typing 𝑒 , the expression that uses the result of the

function call, the rule augments the typing context with a ghost variable 𝑎. This variable records

that the coverage type of the argument must overlap with the type expected by the function (both

must satisfy the refinement predicate 𝜙): if this intersection is empty, i.e., the type of 𝑎 is equivalent

to ⊥, we will fail to infer a type for 𝑒 , as no type will be well-formed in this context. As with

ChkMatch, SynAppBase uses Ex to ensure that it does not infer a type that depends on 𝑎.

5.2 Auxiliary Typing Functions
The disjunction operation is a straightforward syntactic transformation; its full definition can be

found in the appendix. More interesting are our implementation of the two other relations. Our type

checking algorithm translates well-formedness and subtyping obligations into logical formulae that

can be discharged by a SMT solver. Both obligations are encoded by theQuery subroutine shown in

Algorithm 1.Query(Γ, [𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2]) encodes the bindings in Γ in the typing context from

right to left, before checking whether 𝜙1 implies 𝜙2. Variables with function types, on the other

13
We have replaced the if expression from the original example with a match expression to be consistent with the language

syntax (Figure 3).
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Auxillary Typing Functions
̸ |= Query(Γ, [𝜈 :𝑏 | ⊥], [𝜈 :𝑏 | 𝜙])

WfCtx

err ∉ J[𝜈 :𝑏 | 𝜙]KΓ

|= Query(Γ, [𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2])
SubQuery

Γ ⊢ [𝜈 :𝑏 | 𝜙1] <: [𝜈 :𝑏 | 𝜙2]

Fig. 8. Auxillary Typing Algorithm

Algorithm 1: Subtyping Query

1 ProcedureQuery((Γ, [𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2]) :=
2 match Γ:
3 case ∅ do
4 return ∀𝜈 :𝑏, 𝜙2 =⇒ 𝜙1;

5 case Γ, 𝑥 :(𝑎:𝜏𝑎�𝜏) do
6 𝜙 ←Query((Γ, [𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2]);
7 return 𝜙 ;

8 case Γ, 𝑥 :{𝜈 :𝑏𝑥 | 𝜙𝑥 } do
9 𝜏1 ← [𝜈 :𝑏 | ∀𝑥 :𝑏𝑥 , 𝜙𝑥 [𝜈 ↦→ 𝑥] =⇒ 𝜙1];

10 𝜏2 ← [𝜈 :𝑏 | ∀𝑥 :𝑏𝑥 , 𝜙𝑥 [𝜈 ↦→ 𝑥] =⇒ 𝜙2];
11 return Query(Γ, [𝜈 :𝑏 | 𝜏1], [𝜈 :𝑏 | 𝜏2]);
12 case Γ, 𝑥 :[𝜈 :𝑏𝑥 | 𝜙𝑥 ] do
13 𝜏1 ← [𝜈 :𝑏 | ∃𝑥 :𝑏𝑥 , 𝜙𝑥 [𝜈 ↦→ 𝑥] ∧ 𝜙1];
14 𝜏2 ← [𝜈 :𝑏 | ∃𝑥 :𝑏𝑥 , 𝜙𝑥 [𝜈 ↦→ 𝑥] ∧ 𝜙2];
15 return Query(Γ, [𝜈 :𝑏 | 𝜏1], [𝜈 :𝑏 | 𝜏2]);

hand, are omitted entirely, as qualifiers cannot have function variables in FOL. Variables with an

overapproximate (underapproximate) type are translated as a universally (existential) quantified

variable, and are encoded into the refinement of both coverage types.

Example 5.2. Consider the subtyping obligation generated by Example 5.1 above:

int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | ⊤int], n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ 𝑛 < 0] ⊢
[𝜈 :𝑖𝑛𝑡 | (𝑏 ∧ ⊥) ∨ (¬𝑏 ∧ 𝜈 = 𝑛)] <: [𝜈 :𝑖𝑛𝑡 | 𝜈 ≥ 0]

This obligation is encoded by the following call to Query

Query(int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | ⊤int], n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ n < 0])
[𝜈 :𝑖𝑛𝑡 | (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)], [𝜈 :𝑖𝑛𝑡 | 𝜈 ≥ 0]) ≡

Query(int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | ⊤int], n:[𝜈 :𝑖𝑛𝑡 | ⊤int],
[𝜈 :𝑖𝑛𝑡 | ∃b, b⇐⇒ n < 0 ∧ (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)], [𝜈 :𝑖𝑛𝑡 | ∃b, b⇐⇒ n < 0 ∧ 𝜈 ≥ 0]) ≡

Query(int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤}� [𝜈 :𝑖𝑛𝑡 | ⊤int],
[𝜈 :𝑖𝑛𝑡 | ∃n,⊤int ∧ ∃b, b⇐⇒ n < 0 ∧ (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)], [𝜈 :𝑖𝑛𝑡 | ∃n,⊤int ∧ ∃b, b⇐⇒ n < 0 ∧ 𝜈 ≥ 0]) ≡

Query(∅,
[𝜈 :𝑖𝑛𝑡 | ∃n,⊤int ∧ ∃b, 𝑏 ⇐⇒ n < 0 ∧ (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)], [𝜈 :𝑖𝑛𝑡 | ∃n,⊤int ∧ ∃b, b⇐⇒ n < 0 ∧ 𝜈 ≥ 0]) ≡
∀𝜈, ∃n,⊤int ∧ ∃b, b⇐⇒ n < 0 ∧ 𝜈 ≥ 0) =⇒ ∃n,⊤int ∧ ∃b, b⇐⇒ n < 0 ∧ (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)

This is equivalent to the formula shown in Section 2:

∀𝜈, (𝜈 ≥ 0) =⇒ (∃n, ∃b, 𝑏 ⇐⇒ n < 0 ∧ (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n))

UsingQuery, it is straightforward to discharge well-formedness and subtyping obligations using

the rules shown in Figure 8. In the case of WfBase, observe that the error term err is always an
inhabitant of the type [𝜈 :𝑏 | ⊥] for arbitrary base type 𝑏. Thus, to check the last assumption of

WfBase, it suffices to iteratively check if any coverage types in the type context are a supertype of

their associated bottom type.

Discharging subtyping obligations is slightly more involved, as we need to ensure that the

formulas sent to the SMT solver are decidable. Observe that in order to produce effectively decidable

, Vol. 1, No. 1, Article . Publication date: March 2023.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Covering All the Bases: Type-based Verification of Test Input Generators 17

formulas, the encoding strategy realized byQuery always generates a formula of the form ∀𝑥 .∃𝑦.𝜙 ,
i.e. it does not allow for arbitrary quantifier alternations. To ensure that this is sound strategy, we

restrict all overapproximate refinement types in a type contexts to not have any free variables that

have a coverage type. This constraint allows us to safely lift all universal quantifiers to the top

level, thus avoiding arbitrary quantifier alternations.

As an example of a scenario disallowed by this restriction, consider the following type checking

judgment:

𝑥 :[𝜈 :𝑛𝑎𝑡 | 𝜈 > 0] fun (y: nat) -> x + y ⇐ 𝑦:{𝜈 :𝑛𝑎𝑡 | 𝜈 > 𝑥 + 1}�[𝜈 :𝑛𝑎𝑡 | 𝜙]
This judgment produces the following subtyping check:

𝑥 :[𝜈 :𝑛𝑎𝑡 | 𝜈 > 0], 𝑦:{𝜈 :𝑛𝑎𝑡 | 𝜈 > 𝑥 + 1} ⊢ [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥 + 𝑦] <: [𝜈 :𝑛𝑎𝑡 | 𝜙]
where the normal refinement type {𝜈 :𝑛𝑎𝑡 | 𝜈 > 𝑥 + 1} in the type context has free variable 𝑥 that

has coverage type. Evaluating this judgment entails solving the formula:

∀𝜈, (∃𝑥, 𝑥 > 0 ∧ (∀𝑦,𝑦 > 𝑥 + 1 =⇒ 𝜙)) =⇒ (∃𝑥, 𝑥 > 0 ∧ (∀𝑦,𝑦 > 𝑥 + 1 =⇒ 𝜈 = 𝑥 + 𝑦))
which is not decidable due to the quantifier alternation ∀𝜈∃𝑥∀𝑦.

Theorem 5.3. [Soundness of typing algorithm] For all type context Γ, term 𝑒 and coverage type 𝜏 ,
Γ ⊢ 𝑒 ⇐ 𝜏 =⇒ Γ ⊢ 𝑒 : 𝜏

6 EVALUATION
Implementation. We have implemented a coverage type checker, called Poirot, based on the above

approach. Poirot targets OCaml programs that rely on libraries to manipulate algebraic data types;

it consists of approximately 11K lines of OCaml code and uses Z3 [4] as its backend solver.

Poirot takes as input an Ocaml program representing a test input generator and a user-supplied

coverage type for that generator. After basic type-checking and translation into MNF form, Poirot
applies bi-directional type inference and checking to validate that the program satisfies the require-

ments specified by the type. Our implementation provides built-in coverage types for a number of

OCaml primitives, including constants, various arithmetic operators, and data constructors for a

range of datatypes. Refinements defined in coverage types can also use predefined (polymorphic)

method predicates that capture non-trivial datatype shape properties. For example, the method

predicatemem(𝑡,𝑢) indicates the element u:b is contained in the data type instance 𝑡 :b T; the method

predicate len(𝑙, 3) indicates the list 𝑙 has length 3, or the tree 𝑙 has depth 3. The semantics of these

method predicates are defined as a set of FOL-encoded lemmas and axioms to facilitate automated

verification; e.g., the lemma len(𝑙, 0) =⇒ ∀𝑢,¬mem(𝑙, 𝑢) indicates that the empty datatype instance

contains no element.

Benchmarks. We have evaluated Poirot on a corpus
14

of hand-written non-trivial test input

generators drawn from a variety of sources (see Table 1), including the Coq PBT framework

QuickChick [22] (annotated with *), the Haskell PBT framework QuickCheck [3] (annotated with
◦
),

and bespoke test input generators collected from selected papers [20, 38] (annotated with
⋄
).

These benchmarks provide test input generators over a diverse range of datatypes, including

various kinds of lists, trees, queues, streams, heaps, and sets. For each datatype implementation,

Poirot type checks the provided implementation against its supplied coverage type to verify that

the generator is able to generate all possible datatype instances consistent with this type. The

properties that we check are non-trivial. For example, to check soundness of a red-black tree

generator, we use the predicate black_height (𝜈, 𝑛) to indicate that all branches of the tree 𝜈 have

exactly 𝑛 black nodes, the predicate no_red_red (𝜈) to indicates 𝜈 contains no red node with red

14
All benchmarks and the coverage types used to validate them are provided in the supplemental material.

, Vol. 1, No. 1, Article . Publication date: March 2023.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

Table 1. Experimental results.

#Branch #LocalVar #MP #Query (max. #∀,#∃) total (avg. time)(s)

SizedList* 4
†

12 2 11 (7, 9) 0.35(0.03)
SortedList* 4

†
11 4 13 (9, 9) 6.77(0.52)

UniqueList⋄ 3
†

8 3 10 (7, 7) 0.64(0.06)

SizedTree* 4
†

13 2 14 (9, 12) 0.48(0.03)
CompleteTree★ 3

†
10 2 13 (8, 10) 0.38(0.03)

RedBlackTree* 6
†

36 3 70 (16, 53) 6.69(0.10)
SizedBST★ 5

†
20 4 29 (17, 18) 12.20(0.42)

BatchedQueue⋄ 2 6 1 9 (8, 8) 0.52(0.06)
BankersQueue⋄ 2 6 1 11 (8, 8) 0.46(0.04)

Stream⋄ 4 13 2 13 (9, 11) 0.44(0.03)

SizedHeap◦ 5
†

16 4 18 (12, 15) 3.89(0.22)
LeftistHeap⋄ 3

†
11 1 16 (9, 11) 0.54(0.03)

SizedSet◦ 4
†

16 4 23 (14, 15) 4.66(0.20)
UnbalanceSet⋄ 5

†
20 4 29 (17, 18) 9.32(0.32)

children, and the predicate root_color (𝜈, 𝑏) to indicate the root of the tree 𝜈 has the red (black) color

when the boolean value 𝑏 is true (false).
15

Given this rich set of predicates, it is straightforward to express interesting coverage types. For

example, given size s and lower bound lo, we can express the property that a sorted list generator

sorted_list_gen must generate all possible sorted lists with the length s and in which all elements

are greater than or equal to lo, as the following type:

s:{𝜈 :𝑖𝑛𝑡 | 𝜈 ≤ 0}� lo:{𝜈 :𝑖𝑛𝑡 | ⊤}� [𝜈 :𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 | len(𝜈, 𝑠) ∧ sorted (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ lo ≤ 𝑢]

Notice that this type is similar to a normal refinement type:

s:{𝜈 :𝑖𝑛𝑡 | 𝜈 ≤ 0}� lo:{𝜈 :𝑖𝑛𝑡 | ⊤}� {𝜈 :𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 | len(𝜈, 𝑠) ∧ sorted (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ lo ≤ 𝑢}

with the return type marked as a coverage type to capture our desired must-property.

The first group of columns in Table 1 describes the salient features of our benchmarks. Each

benchmark exhibits non-trivial control-flow, containing anywhere from 2 to 6 nested branches;

a number of the benchmarks are also recursive (annotated with a
†
). The number of local (i.e.,

let-bound) variables (column #LocalVars) is a proxy for path lengths that must be encoded within

the types inferred by our type-checker; column #MP indicates the number of method predicates

found in the benchmark’s type specification.

The second group of columns presents type checking results. Column #Query indicates the

number of SMT queries that are triggered during type checking. Column #(∀, ∃) indicates the
maximum number of universal and existential quantifiers in these queries, respectively. The ∃
column is a direct reflection of control-flow (path) complexity - complex generators with deeply

nested match-expressions like RedBlackTree result in queries with over 50 existential quantifiers.

These numbers broadly track with the values in columns #Branch and #LocalVar. Despite the

complexity of some of these queries, as evidenced by the number of their quantifiers, overall

verification time, shown in the last column, is quite reasonable, with times ranging from .35 to

12.20 seconds, with seven of the 13 benchmarks verified in less than a second.

15
These method predicates can be found in the implementation of the red-black tree generator given in [22].
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1 let rec sized_list_gen
2 (size : int) : (int list) =
3 if (size == 0) then []
4 else
5 if (bool_gen ()) then
6 sized_list_gen (size - 1)
7 else
8 int_gen () ::
9 (sized_list_gen (size - 1))

(a) A complete generator validated by
Poirot.

let rec sized_list_gen
(size : int) : (int list) =

if (size == 0) then []
else
int_gen () ::
(sized_list_gen (size - 1))

(b) A safe but incomplete generator.

let rec sized_list_gen
(size : int) : (int list) =

if (size == 0) then []
else
if (bool_gen ()) then
sized_list_gen (size - 1)

else
size ::
(sized_list_gen (size - 1))

(c) Another safe but incomplete generator.

Fig. 10. Three example generators that generate size-bounded lists.

6.1 Coverage Validation on Synthesized Generators
An underlying hypothesis motivating our work is that writing sound and complete test input

generators can be subtle and tricky, as demonstrated by our motivating example (Figure 1). To justify

this hypothesis, we repurposed an existing deductive component-based program synthesizer [24] to

automatically synthesize correct (albeit possibly incomplete) generators that satisfy a specification

given as an overapproximate refinement type; these generators are then fed to Poirot to validate their

Benchmark #Total #Complete

UniqueList 284 10

SizedList 126 28

SortedList 30 8

SizedTree 103 2

SizedBST 229 54

Fig. 9. Quantifying the space of
safe and complete test input gen-
erators constructed using an au-
tomated program synthesis tool.

completeness. We provided the synthesizer with a datatype def-

inition and a set of specifications describing constraints on that

datatype the synthesized generator should use, along with a library

of functions, including primitive generators such as nat_gen, avail-
able to the synthesizer for construction. A refinement type-guided

enumeration is performed to find all correct programs consistent

with the specification. Since the space of these programs is poten-

tially quite large (possibly infinite), we constrain the synthesizer to

only generate programs with bounded function call depths; in our

experiments, this bound was set to three. The generator outputs all

programs that are safe with respect to the specification. Figure 9

shows results of this experiment for five of the benchmarks given

in Table 1. We report the total number of synthesized generators (#Total) constructed and the

number of those that are correct and complete as verified by Poirot (#Complete). The table con-

firms our hypothesis that the space of complete generators with respect to the supplied coverage

type is significantly smaller than the space of safe generators, as defined by the corresponding

overapproximate refinement type specification.

More concretely, Figure 10 shows three synthesized generators that satisfy the following specifi-

cation of a list generate that is meant to generate all lists no longer than some provided bound:

size:{𝜈 :𝑖𝑛𝑡 | 𝜈 ≤ 0}� [𝜈 :𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 | ∀𝑢, len(𝜈, 𝑠) =⇒ (0 ≤ 𝑢 ∧ 𝑢 ≤ size)]

Figure 10b is incomplete because it never generates an empty list when the size parameter size is

greater than 0. On the other hand, while Figure 10c does generate empty lists, the else branch of its

second conditional has a fixed first element, and will therefore never generate lists with distinct

elements. The complete generator shown in Figure 10a incorporates a control-flow path (line 5)

that can non-deterministically choose to make a recursive call to sized_list_gen with a smaller

size, thereby allowing it to generate lists of variable size upto the size bound, including the empty

list; another conditional branch uses int_gen() to generate a new randomly selected list element,

thereby allowing the implementation to generate lists containing distinct elements. We emphasize

again that Poirot was able to verify the correct generator and discard the two incorrect generators

automatically, without any user involvement.
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7 RELATEDWORK
The effectiveness of PBT suffers when the property of interest has a strict precondition [18], because

most of the inputs produced by a purely random test generation strategy will be simply discarded.

Accordingly, there has been much recent interest on improving the coverage of test generators

with respect to a particular precondition. Proposed solutions range from adopting ideas from

fuzzing [6, 37] to intelligently mutate the outputs produced by the generator [20, 27], to focusing

on generators for particular classes of inputs (e.g., well-typed programs) [9, 28, 36], to automatically

building complete-by-construction generators [2, 19, 21]. While sharing broadly similar goals with

these proposals, our approach differs significantly in its framing of coverage in purely type-theoretic

terms. This fundamental change in perspective allows us to statically and compositionally verify

coverage properties of a generator without the need for any form of instrumentation on, or runtime

monitoring of, the program under test (as in [6, 20]). Expressing coverage as part of a type system

also allows us to be agnostic to how generators are constructed, particulars of the application

domain [9, 28, 36], and to the specific structure of the properties being tested [19, 21]. Poirot’s
ability to specify and type-check a complex coverage property depends only on whether we can

express a desired specification using available method predicates.

A number of logics have been proposed for reasoning about underapproximations of program

behavior, including the recently developed incorrectness logic (IL) [26, 30], reverse Hoare logic

(RHL) [5], and dynamic logic (DL) [29]. Both IL and RHL are formalisms similar to Hoare logic, but

support composable specifications that assert underapproximate postconditions, with IL adding

special post-assertions for error states. IL was originally proposed as a way of formalizing the

conditions under which a particular program point (say an error state) is guaranteed to be reachable,

and has recently been used in program analyses that discover memory errors [23]. DL, in contrast,

reinterprets Hoare logic as a multi-modal logic equipped with operators for reasoning about the

existence of executions that end in a state satisfying some desired postcondition. In contrast to

these logics, this paper provides the first development that interprets these notions in the context

of a type system for a rich functional language. While our ideas are formulated in the context of

verifying coverage properties for test input generators, we believe our framework can also help

express type-based program analyses for bug finding or compiler optimizations.

Our approach shares similar goals with other refinement type systems for functional pro-

grams [34, 35], insofar as we encode verification conditions in a logic for which efficient solvers exist

(e.g. SMT). Indeed, our setup follows exactly the same verification playbook as Liquid Types [31] -

our underapproximate specifications are exactly the same as their overapproximate counterpart,

except that our syntactically distinguished return types for functions reflects their expected under-

approximate (rather than overapproximate) behavior. An important consequence of this design is

that the burden of specifying and checking underapproximate (coverage) behavior of a program is

no greater than in the overapproximate (safety) case.

8 CONCLUSIONS
This paper adapts principles of underapproximate reasoning found in recent work on Incorrectness

Logic to the specification and automated verification of test input generators used in modern PBT

systems. Specifications are expressed in the language of refinement types, augmented with coverage

types, types that reflect underapproximate constraints on program behavior. A novel bi-directional

type-checking algorithm enables an expressive form of inference over these types. Our experimental

results demonstrate that our approach is capable of verifying both sophisticated hand-written

generators, as well as being able to successfully identify type-correct (in an overapproximate sense)

but coverage-incomplete generators produced from a deductive refinement type-aware synthesizer.
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Operational Semantics 𝑒 ↩→ 𝑒

𝑜𝑝 𝑣 ≡ 𝑣𝑦
StAppOp

let 𝑦 = 𝑜𝑝 𝑣 in 𝑒 ↩→ 𝑒 [𝑦 ↦→ 𝑣𝑦]

𝑒1 ↩→ 𝑒′
1

StLetE1

let 𝑦 = 𝑒1 in 𝑒2 ↩→ let 𝑦 = 𝑒′
1
in 𝑒2

StLetE2

let 𝑦 = 𝑣 in 𝑒 ↩→ 𝑒 [𝑦 ↦→ 𝑣]

StLetAppLam

let 𝑦 = 𝜆𝑥 :𝑡 .𝑒1 𝑣𝑥 in 𝑒2 ↩→ let 𝑦 = 𝑒1 [𝑥 ↦→ 𝑣𝑥 ] in 𝑒2

StLetAppFix

let 𝑦 = fix𝑓 :𝑡 .𝜆𝑥 :𝑡𝑥 .𝑒1 𝑣𝑥 in 𝑒2 ↩→ let 𝑦 = (𝜆𝑓 :𝑡 .𝑒1 [𝑥 ↦→ 𝑣𝑥 ]) (fix𝑓 :𝑡 .𝜆𝑥 :𝑡𝑥 .𝑒1) in 𝑒2

StMatch

match 𝑑𝑖 𝑣 𝑗 with 𝑑𝑖 𝑦 𝑗 → 𝑒𝑖 ↩→ 𝑒𝑖 [𝑦 𝑗 ↦→ 𝑣 𝑗 ]

Fig. 11. Small Step Operational Semantics

Basic Typing Γ ⊢t 𝑒 : 𝑡

BtErr

Γ ⊢t err : 𝑡
BtConst

Γ ⊢t 𝑐 : Ty(𝑐)
BtOp

Γ ⊢t 𝑜𝑝 : Ty(𝑜𝑝)
Γ(𝑥) = 𝑡

BtVar

Γ ⊢t 𝑥 : 𝑡

Γ, 𝑥 :𝑡1 ⊢t 𝑒 : 𝑡2
BtFun

Γ ⊢t 𝜆𝑥 :𝑡1 .𝑒 : 𝑡1�𝑡2

Γ, 𝑓 :𝑡1�𝑡2 ⊢t 𝜆𝑥 :𝑡1 .𝑒 : 𝑡1�𝑡2
BtFix

Γ ⊢t fix𝑓 :(𝑡1�𝑡2)𝜆𝑥 :𝑡1 .𝑒 : 𝑡1�𝑡2

∅ ⊢t 𝑒1 : 𝑡𝑥 Γ, 𝑥 :𝑡𝑥 ⊢t 𝑒2 : 𝑡
BtLetE

Γ ⊢t let 𝑥 = 𝑒1 in 𝑒2 : 𝑡

Ty(𝑜𝑝) = 𝑡𝑖�𝑡𝑥 Γ ⊢t 𝑣𝑖 : 𝑡𝑖 Γ, 𝑥 :𝑡𝑥 ⊢t 𝑒 : 𝑡
BtAppOp

Γ ⊢t let 𝑥 = 𝑜𝑝 𝑣𝑖 in 𝑒 : 𝑡

Γ ⊢t 𝑣1 : 𝑡2�𝑡𝑥 Γ ⊢t 𝑣2 : 𝑡2 Γ, 𝑥 :𝑡𝑥 ⊢t 𝑒 : 𝑡
BtApp

Γ ⊢t let 𝑥 = 𝑣1 𝑣2 in 𝑒 : 𝑡

Γ ⊢t 𝑣 : 𝑡𝑣 ∀𝑖, Ty(𝑑𝑖 ) = 𝑡 𝑗�𝑡𝑣 Γ, 𝑦 𝑗 :𝑡 𝑗 ⊢t 𝑒𝑖 : 𝑡
BtMatch

Γ ⊢t match 𝑣 with 𝑑𝑖 𝑦 𝑗 → 𝑒𝑖 : 𝑡

Fig. 12. Basic Typing Rules

A OPERATIONAL SEMANTICS
The operational semantics of our core language is shown in Figure 11, which is a standard small

step semantics.

B BASIC TYPING RULES
The basic typing rules of our core language is shown in Figure 12.
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Typing Γ ⊢ 𝑒 : 𝜏

Γ ⊢WF [𝜈 :𝑏 | ⊥]
TErr

Γ ⊢ err : [𝜈 :𝑏 | ⊥]
Γ ⊢WF Ty(𝑐)

TConst

Γ ⊢ 𝑐 : Ty(𝑐)
Γ ⊢WF Ty(𝑜𝑝)

TOp

Γ ⊢ 𝑜𝑝 : Ty(𝑜𝑝)

Γ ⊢WF [𝜈 :𝑏 | 𝜈 = 𝑥]
TVarBase

Γ ⊢ 𝑥 : [𝜈 :𝑏 | 𝜈 = 𝑥]

Γ(𝑥) = (𝑎:𝜏𝑎�𝜏𝑏 ) Γ ⊢WF 𝑎:𝜏𝑎�𝜏𝑏
TVarFun

Γ ⊢ 𝑥 : (𝑎:𝜏𝑎�𝜏𝑏 )

Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏 Γ ⊢WF 𝑥 :𝜏𝑥�𝜏
TFun

Γ ⊢ 𝜆𝑥 :⌊𝜏𝑥 ⌋ .𝑒 : (𝑥 :𝜏𝑥�𝜏)

Γ ⊢ 𝜆𝑥 :𝑏.𝜆𝑓 :(𝑏�⌊𝜏⌋).𝑒 : (𝑥 :{𝜈 :𝑏 | 𝜙}�𝑓 :(𝑥 :{𝜈 :𝑏 | 𝜈≺𝑥 ∧ 𝜙}�𝜏)�𝜏) Γ ⊢WF 𝑥 :{𝜈 :𝑏 | 𝜙}�𝜏
TFix

Γ ⊢ fix𝑓 :(𝑏�⌊𝜏⌋).𝜆𝑥 :𝑏.𝑒 : (𝑥 :{𝜈 :𝑏 | 𝜙}�𝜏)

∅ ⊢ 𝜏 <: 𝜏 ′ ∅ ⊢ 𝑒 : 𝜏
Γ ⊢WF 𝜏 ′

TSub

Γ ⊢ 𝑒 : 𝜏 ′

Γ ⊢ 𝜏 ′ <: 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′

Γ ⊢ 𝑒 : 𝜏 Γ ⊢WF 𝜏 ′
TEq

Γ ⊢ 𝑒 : 𝜏 ′

Γ ⊢ 𝑒 : 𝜏1 Γ ⊢ 𝑒 : 𝜏2
Γ ⊢ 𝜏1 ∨ 𝜏2 = 𝜏 Γ ⊢WF 𝜏

TMerge

Γ ⊢ 𝑒 : 𝜏

Γ ⊢ 𝑒𝑥 : 𝜏𝑥 Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏
Γ ⊢WF 𝜏

TLetE

Γ ⊢ let 𝑥 = 𝑒𝑥 in 𝑒 : 𝜏

Γ ⊢ 𝑜𝑝 : 𝑎𝑖 :{𝜈 :𝑏𝑖 | 𝜙𝑖 }�𝜏𝑥
∀𝑖, Γ ⊢ 𝑣𝑖 : [𝜈 :𝑏𝑖 | [𝜙𝑖]
Γ, 𝑥 :𝜏𝑥 [𝑎𝑖 ↦→ 𝑣𝑖 ] ⊢ 𝑒 : 𝜏

Γ ⊢WF 𝜏
TAppOp

Γ ⊢ let 𝑥 = 𝑜𝑝 𝑣𝑖 in 𝑒 : 𝜏

Γ ⊢ 𝑣1 : (𝜏1�𝜏2)�𝜏𝑥
Γ ⊢ 𝑣2 : 𝜏1�𝜏2 Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏

Γ ⊢WF 𝜏
TAppFun

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 : 𝜏

Γ ⊢ 𝑣1 : 𝑎:{𝜈 :𝑏 | 𝜙}�𝜏𝑥
Γ ⊢ 𝑣2 : [𝜈 :𝑏 | 𝜙]

Γ, 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑣2] ⊢ 𝑒 : 𝜏
Γ ⊢WF 𝜏

TApp

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 : 𝜏

Γ ⊢ 𝑣 : 𝜏𝑣 Γ ⊢WF 𝜏 Γ, 𝑦:𝜏𝑦 ⊢ 𝑑𝑖 (𝑦) : 𝜏𝑣
Γ, 𝑦:𝜏𝑦 ⊢ 𝑒𝑖 : 𝜏

TMatch

Γ ⊢ (match 𝑣 with 𝑑𝑖 𝑦 → 𝑒𝑖 ) : 𝜏

Fig. 13. Full Typing Rules

C COVERAGE TYPING RULES
The full set of coverage typing rules of our core language is shown in Figure 13. The rule TOp

(which is similar with TConst), TAppFun and TAppOp (which is similar with TApp) are not shown

in Section 4.
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Algorithm 2: Disjunction and Conjunction

1 i Procedure Disj(𝜏1, 𝜏2) :=
2 match 𝜏1, 𝜏2:
3 case [𝜈 :𝑡 | 𝜙1], [𝜈 :𝑡 | 𝜙2] do
4 return [𝜈 :𝑡 | 𝜙1 ∨ 𝜙2];
5 case {𝜈 :𝑡 | 𝜙1}, {𝜈 :𝑡 | 𝜙2} do
6 return [𝜈 :𝑡 | 𝜙1 ∧ 𝜙2];
7 case 𝑎:𝜏𝑎1�𝜏1, 𝑎:𝜏𝑎2�𝜏2 do
8 𝜏𝑎 ← Conj(𝜏𝑎1 , 𝜏𝑎2 );
9 return 𝑎:𝜏𝑎�Disj(𝜏1, 𝜏2);

10 Procedure Conj(𝜏1, 𝜏2) :=
11 match 𝜏1, 𝜏2:
12 case [𝜈 :𝑡 | 𝜙1], [𝜈 :𝑡 | 𝜙2] do
13 return [𝜈 :𝑡 | 𝜙1 ∧ 𝜙2];
14 case {𝜈 :𝑡 | 𝜙1}, {𝜈 :𝑡 | 𝜙2} do
15 return [𝜈 :𝑡 | 𝜙1 ∨ 𝜙2];
16 case 𝑎:𝜏𝑎1�𝜏1, 𝑎:𝜏𝑎2�𝜏2 do
17 𝜏𝑎 ← Disj(𝜏𝑎1 , 𝜏𝑎2 );
18 return 𝑎:𝜏𝑎�Conj(𝜏1, 𝜏2);

D SUBSET RELATION OF DENOTATION UNDER TYPE CONTEXT
The subset relation between the denotation of two refinement types 𝜏1 and 𝜏2 under a type context

Γ (written J𝜏1KΓ ⊆ J𝜏1KΓ) is:

J𝜏1K∅ ⊆ J𝜏2K∅ � J𝜏1K ⊆ J𝜏2K
J𝜏1K𝑥 :𝜏𝑥 ,Γ ⊆ J𝜏1K𝑥 :𝜏𝑥 ,Γ � ∀𝑣𝑥 ∈ J𝜏𝑥K,

J𝜏1 [𝑥 ↦→ 𝑣𝑥 ]KΓ[𝑥 ↦→𝑣𝑥 ] ⊆ J𝜏2 [𝑥 ↦→ 𝑣𝑥 ]KΓ [𝑥 ↦→𝑣𝑥 ] if 𝜏 ≡ {𝜈 :𝑏 | 𝜙}
J𝜏1K𝑥 :𝜏𝑥 Γ ⊆ J𝜏2K𝑥 :𝜏𝑥 Γ � ∃𝑒𝑥 ∈ J𝜏𝑥K,∀𝑣𝑥 , 𝑒𝑥 ↩→∗ 𝑣𝑥 =⇒

J𝜏1 [𝑥 ↦→ 𝑣𝑥 ]KΓ [𝑥 ↦→𝑣𝑥 ] ⊆ J𝜏2 [𝑥 ↦→ 𝑣𝑥 ]KΓ [𝑥 ↦→𝑣𝑥 ] otherwise

The way we interpret the type context Γ here is the same as the definition of the type denotation

under the type context, but we keep the denotation of 𝜏1 and 𝜏2 as the subset relation under the

same interpretation of Γ, that is under the same substitution [𝑥 ↦→ 𝑣𝑥 ]. This constraint is also
required by other refinement type systems, which define the denotation of the type context Γ as

a set of substitutions, with the subset relation of the denotation of two types holding under the

same substitution. However, our type context is more complicated, since it has both under- and

overapproximate types that are interpreted via existential and universal quantifiers, and cannot

simply be denoted as a set of substitution. Thus, we define a subset relation over denotations under

a type context to ensure the ame substitution is applied to both types.

E BIDIRECTIONAL TYPING RULES
The full set of bidirectional typing rules of our core language is shown in Figure 14 and Figure 15.

Similar to other refinement type systems, there are no synthesis rules for functions which require

synthesis of a refinement type for the input argument. The user can only type check functions

against given types (ChkFun and ChkFix).

F ALGORITHM DETAILS
Disjunction Function. We implement our disjunction function Disj as a function with type Disj :

𝜏 → 𝜏 → 𝜏 . The disjunction of multiple types is equal to defined compositionally:

Disj(𝜏1, 𝜏2, ..., 𝜏𝑛−1, 𝜏𝑛) � Disj(𝜏1,Disj(𝜏2, ...,Disj(𝜏𝑛−1, 𝜏𝑛)))
As shown in Algorithm 2, the Disj and Conj functions call each other recursively. As discussed

in Section 4, the disjunction of two base coverage type (underapproximate type) [𝜈 :𝑡 | 𝜈 = 1]
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Type Synthesis Γ ⊢ 𝑒 ⇒ 𝜏

Γ ⊢WF Ty(𝑐)
SynConst

Γ ⊢ 𝑐 ⇒ Ty(𝑐)
Γ ⊢WF Ty(𝑜𝑝)

SynOp

Γ ⊢ 𝑜𝑝 ⇒ Ty(𝑜𝑝)
Γ ⊢WF [𝜈 :𝑏 | ⊥]

SynErr

Γ ⊢ err⇒ [𝜈 :𝑏 | ⊥]

Γ ⊢WF [𝜈 :𝑏 | 𝜈 = 𝑥]
SynVarBase

Γ ⊢ 𝑥 ⇒ [𝜈 :𝑏 | 𝜈 = 𝑥]

Γ(𝑥) = (𝑎:𝜏𝑎�𝜏𝑏 ) Γ ⊢WF 𝑎:𝜏𝑎�𝜏𝑏
SynVarFun

Γ ⊢ 𝑥 ⇒ (𝑎:𝜏𝑎�𝜏𝑏 )

Γ ⊢ 𝑣1⇒ (𝑎:𝜏𝑎�𝜏𝑏 )�𝜏𝑥
Γ ⊢ 𝑣2⇐ 𝑎:𝜏𝑎�𝜏𝑏 Γ′ = 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynAppFun

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 ⇒ 𝜏 ′

Γ ⊢ 𝑣1⇒ 𝑎:{𝜈 :𝑏 | 𝜙}�𝜏𝑥
Γ′ = 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣2 ∧ 𝜙], 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynAppBase

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 ⇒ 𝜏 ′

Γ ⊢ 𝑜𝑝 ⇒ 𝑎𝑖 :{𝜈 :𝑏𝑖 | 𝜙𝑖 }�𝜏𝑥

Γ′ = 𝑎𝑖 :[𝜈 :𝑏𝑖 | 𝜈 = 𝑣𝑖 ∧ 𝜙𝑖], 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynAppOp

Γ ⊢ let 𝑥 = 𝑜𝑝 𝑣𝑖 in 𝑒 ⇒ 𝜏 ′

Γ ⊢ 𝑒𝑥 ⇒ 𝜏𝑥 Γ′ = 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynLetE

Γ ⊢ let 𝑥 = 𝑒𝑥 in 𝑒 ⇒ 𝜏

∀𝑖, Ty(𝑑𝑖 ) = 𝑦:{𝜈 :𝑏𝑦 | 𝜃𝑦 }�[𝜈 :𝑏 | 𝜓𝑖] Γ′
𝑖
= 𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦], 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣𝑎 ∧𝜓𝑖]

Γ, Γ′
𝑖
⊢ 𝑒𝑖 ⇒ 𝜏𝑖 𝜏 ′

𝑖
= Ex(Γ′

𝑖
, 𝜏𝑖 ) Γ ⊢WF Disj(𝜏 ′

𝑖
)

SynMatch

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 ⇒ Disj(𝜏 ′
𝑖
)

Fig. 14. Typing Synthesis Rules

Type Check Γ ⊢ 𝑒 ⇐ 𝜏

∅ ⊢ 𝑒 ⇒ 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′ Γ ⊢WF 𝜏 ′
ChkSub

Γ ⊢ 𝑒 ⇐ 𝜏 ′
Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 ⇐ 𝜏 Γ ⊢WF 𝑥 :𝜏𝑥�𝜏

ChkFun

Γ ⊢ 𝜆𝑥 :⌊𝜏𝑥 ⌋ .𝑒 ⇐ (𝑥 :𝜏𝑥�𝜏)

∀𝑖, Ty(𝑑𝑖 ) = 𝑦:{𝜈 :𝑏𝑦 | 𝜃𝑦 }�[𝜈 :𝑏 | 𝜓𝑖] Γ′
𝑖
= 𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦], 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣𝑎 ∧𝜓𝑖]

Γ, Γ′
𝑖
⊢ 𝑒𝑖 ⇒ 𝜏𝑖 𝜏 ′

𝑖
= Ex(Γ′

𝑖
, 𝜏𝑖 ) Γ ⊢ Disj(𝜏 ′

𝑖
) <: 𝜏 ′ Γ ⊢WF 𝜏 ′

ChkMatch

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 ⇐ 𝜏 ′

Γ ⊢ 𝜆𝑥 :𝑏.𝜆𝑓 :(𝑏�⌊𝜏⌋).𝑒 ⇐ (𝑥 :{𝜈 :𝑏 | 𝜙}�𝑓 :(𝑥 :{𝜈 :𝑏 | 𝜈≺𝑥 ∧ 𝜙}�𝜏)�𝜏) Γ ⊢WF 𝑥 :{𝜈 :𝑏 | 𝜙}�𝜏
ChkFix

Γ ⊢ fix𝑓 :(𝑏�⌊𝜏⌋).𝜆𝑥 :𝑏.𝑒 ⇐ (𝑥 :{𝜈 :𝑏 | 𝜙}�𝜏)

Fig. 15. Typing Synthesis Rules

and [𝜈 :𝑡 | 𝜈 = 2] takes the disjunction of their qualifiers: [𝜈 :𝑡 | 𝜈 = 1 ∨ 𝜈 = 2]. On the other hand,

the disjunction of normal refinement types (overapproximate types) is the conjunction of their

corresponding qualifiers. The disjunction of function types conjuncts their argument type and

disjuncts their return type.

, Vol. 1, No. 1, Article . Publication date: March 2023.



1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Covering All the Bases: Type-based Verification of Test Input Generators 27

Algorithm 3: Exists and Forall

1 Procedure Ex(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏) :=
2 match 𝜏 :
3 case [𝜈 :𝑡 | 𝜙] do
4 return [𝜈 :𝑡 | ∃𝑥 :𝑡, 𝜙𝑥 [𝜈 ↦→ 𝑥] ∧ 𝜙];
5 case {𝜈 :𝑡 | 𝜙} do
6 return {𝜈 :𝑡 | ∀𝑥 :𝑡, 𝜙𝑥 [𝜈 ↦→ 𝑥] =⇒ 𝜙};

7 case 𝑎:𝜏𝑎�𝜏 do
8 𝜏 ′𝑎 ← Fa(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏𝑎);
9 return 𝑎:𝜏 ′𝑎�Ex(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏);

10 Procedure Fa(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏) :=
11 match 𝜏 :
12 case [𝜈 :𝑡 | 𝜙] do
13 return [𝜈 :𝑡 | ∀𝑥 :𝑡, 𝜙𝑥 [𝜈 ↦→ 𝑥] =⇒ 𝜙];

14 case {𝜈 :𝑡 | 𝜙} do
15 return {𝜈 :𝑡 | ∃𝑥 :𝑡, 𝜙𝑥 [𝜈 ↦→ 𝑥] ∧ 𝜙};
16 case 𝑎:𝜏𝑎�𝜏 do
17 𝜏 ′𝑎 ← Ex(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏𝑎);
18 return 𝑎:𝜏 ′𝑎�Fa(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏);

"Exists" Function. We implement our "Exists" function Ex as a function with type Ex(𝑥, 𝜏𝑥 , 𝜏) :
𝑉𝑎𝑟 → 𝜏 → 𝜏 → 𝜏 , where 𝑥 and 𝜏𝑥 is a variable and corresponding binding type that we want

to existentialize into the type 𝜏 , thus it can also be notated as Ex(𝑥 :𝜏𝑥 , 𝜏). Existentializing a type
context 𝑥1:𝜏1, 𝑥2:𝜏2, ...𝑥𝑛 :𝜏𝑛 into a type 𝜏 is equal to existentializing each binding consecutively:

Ex(𝑥1:𝜏1, 𝑥2:𝜏2, ...𝑥𝑛 :𝜏𝑛, 𝜏) � Ex(𝑥1:𝜏1, Ex(𝑥1:𝜏1, ..., Ex(𝑥𝑛 :𝜏𝑛, 𝜏)))
As shown in Algorithm 2, the Ex function relys on the Fa function. More specifically, as we

mentioned in Section 5, existentializing a binding 𝑥 :[𝜈 :𝑛𝑎𝑡 | 𝜈 > 0] into type [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥 + 1]
will derive the type [𝜈 :𝑛𝑎𝑡 | ∃𝑥, 𝑥 > 0 ∧ 𝜈 = 𝑥 + 1] which has an existentially-quantified qualifier;

the function type is contravariant in its argument types and covariant in its return types.

SMT Query Encoding for data types. In order to reason over data types, we allow the user to specify

refinement types with method predicates (e.g., mem) and quantifiers (𝑒.𝑔.,∀𝑢,¬mem(𝜈,𝑢)). These
method predicates are encoded as uninterpreted functions. In order to ensure the query is an EPR

sentence, we require that a normal refinement type (overapproximate types) can only use universal

quantifiers. In addition, as shown in Figure 3, we disallow nested method predicate application

(e.g., mem(𝜈,mem(𝜈,𝑢))) and can only apply a method predicate over constants mem(𝜈, 3) (it can
be encoded as ∀𝑢,𝑢 = 3 =⇒ mem(𝜈,𝑢)).
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G SOUNDNESS PROOF
Soundness of the Type Rules. The Coq formalization of our core language and typing rules can be

found at the following anonymous link:

https://anonymous.4open.science/r/Poirot-Supplementary-Material-C4FF
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Soundness of the Type Algorithm. We present the proof for Theorem 5.3 from Section 5. The proof

requires the following lemmas about the Ex and Disj functions.

Lemma G.1 (The Disj Function implies disjunction judgement). For all type context Γ, type
𝜏1 and 𝜏2, Γ ⊢ 𝜏1 ∨ 𝜏2 = Disj(𝜏1, 𝜏2).

Lemma G.2 (The Ex Function implies type judgement transformation). For all type context
Γ, Γ′, term 𝑒 , and type 𝜏 ,

Γ, Γ′ ⊢ 𝑒 : 𝜏 =⇒ Γ, Γ′ ⊢ 𝑒 : Ex(Γ′, 𝜏) ∧ Γ ⊢WF Ex(Γ′, 𝜏)

We also lift the subtyping relation to type contexts.

Definition G.3 (Subtyping relation over Type Contexts). As in the subtyping relation between

types, the subtyping relation between two type context Γ1 ⊑ Γ2 means that if a term have type 𝜏

under one context, it should also have the same type in the second context.

Γ1 ⊑ Γ2 � ∀𝜏,∀𝑒, 𝑒 ∈ J𝜏KΓ1 =⇒ 𝑒 ∈ J𝜏KΓ2

Lemma G.4. [Sub Type Context Implies Type Judgement Transformation] For two type context
Γ1 ⊑ Γ2, term 𝑒 and coverage type 𝜏 ,

Γ1 ⊢ 𝑒 : 𝜏 =⇒ Γ2 ⊢ 𝑒 : 𝜏

Intuitively, modifying a type binding in a type context is equivalent to applying the subsumption

rule before we introduce this binding into the type context. This sub type context relation allows

us to prove the correctness of the typing algorithm, which lazily strengthen the types in the type

context by need.

Now we can prove the soundness theorem of our typing algorithm with respect to our declarative

type system. As the type synthesis rules are defined mutually recursively, we simultaneously prove

both are correct:

Theorem G.5. [Soundness of the type synthesis and type check algorithm] For all type context Γ,
term 𝑒 and coverage type 𝜏 ,

Γ ⊢ 𝑒 ⇒ 𝜏 =⇒ Γ ⊢ 𝑒 : 𝜏
Γ ⊢ 𝑒 ⇐ 𝜏 =⇒ Γ ⊢ 𝑒 : 𝜏

Proof. We proceed by induction of the mutual recursive structure of Γ ⊢ 𝑒 ⇒ 𝜏 and Γ ⊢ 𝑒 ⇐ 𝜏 .

In the cases for; synthesis and checking rules of rule SynConst, SynOp, SynErr, SynVarBase,

SynVarFun, ChkSub,ChkFun, and ChkFix, the coverage typing rulesin Figure 13 aligns exactly

with these rules, thus the soundness is immediate in these cases.

In addtion, the rule SynAppOp is similar to SynAppBase, but has multiple arguments; the rule

SynLetE is the same as SynAppFun but has no application; the rule SynMatch is similar with

the ChkMatch, thus we discuss one rule in each of these pairs while the second one follows in a

similar fashion. Consequently, there are three interesting cases, corresponding to the rules shown

in Figure 7.

Case SynAppFun: This rule can be treated as a combination of TAppFun and TEq. From the

induction hypothesis and the precondition of SynAppFun, we know

Γ ⊢ 𝑣1 : (𝑎:𝜏𝑎�𝜏𝑏)�𝜏𝑥 since Γ ⊢ 𝑣1⇒ (𝑎:𝜏𝑎�𝜏𝑏)�𝜏𝑥

Γ ⊢ 𝑣2 : 𝑎:𝜏𝑎�𝜏𝑏 since Γ ⊢ 𝑣2⇐ 𝑎:𝜏𝑎�𝜏𝑏

Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏 since Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 ⇒ 𝜏
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30 Anon.

For the 𝜏 ′ = Ex(𝑥 :𝜏𝑥 , 𝜏), according to Lemma G.2, we know

Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏 ′ ∧ Γ ⊢WF 𝜏 ′

Using the above conclusions, Since all the preconditions of TAppFun hold, applying the

rule TAppFun, we have Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 : 𝜏
′
.

Case SynAppBase: Notice that the value 𝑣2 has the base type 𝑡 , and can only be a constant or a

variable, doing a case split on this:

(a) If 𝑣2 is a constant 𝑐2, notice that 𝜙 [𝜈 ↦→ 𝑐2] has to be true, otherwise the binding

𝑎:[𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙] has the bottom type, and the type context contains it is not well

formed. Thus using the well formedness of the context, it follows that

𝜈 = 𝑐2 ∧ 𝜙 ≡ 𝜈 = 𝑐2

Thus again using the Induction Hypothesis on the antecedents of the rule we have:

Γ ⊢ 𝑣1 : 𝑎:{𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙}�𝜏𝑥 [𝑎 ↦→ 𝑐2] since Γ ⊢ 𝑣1⇒ 𝑎:{𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙}�𝜏𝑥 and TSub

Γ ⊢ 𝑐2 : [𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙] since TConst and 𝜈 = 𝑐2 ≡ 𝜈 = 𝑐2 ∧ 𝜙
Γ, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙], 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2] ⊢ 𝑒 : 𝜏 [𝑎 ↦→ 𝑐2] since Γ, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙], 𝑥 :𝜏𝑥 ⊢ 𝑒 ⇒ 𝜏

Since variable 𝑎 is not free in the type judgement, we can drop it from the type context

Γ, 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2] ⊢ 𝑒 : 𝜏 [𝑎 ↦→ 𝑐2]
According to Lemma G.2, we know that

Γ, 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2] ⊢ 𝑒 : Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2], 𝜏 [𝑎 ↦→ 𝑐2])
The type Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2], 𝜏) is well formed under the type context Γ, and all precon-

ditions of the rule TApp are satisfied, so we can conclude

Γ ⊢ 𝑒 : let 𝑥 = 𝑣1 𝑐2 in 𝑒 : Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2], 𝜏 [𝑎 ↦→ 𝑐2])
Notice that, 𝜙 [𝜈 ↦→ 𝑐2] is true, thus we have

Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2], 𝜏 [𝑎 ↦→ 𝑐2])
≡ Ex(𝑎:[𝜈 :𝑏 | 𝜈 = 𝑐2], 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑎], 𝜏 [𝑎 ↦→ 𝑎])
≡ Ex(𝑎:[𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙], 𝑥 :𝜏𝑥 , 𝜏)
≡ 𝜏 ′

Thus, we can conclude Γ ⊢ 𝑒 : let 𝑥 = 𝑣1 𝑐2 in 𝑒 : 𝜏
′
.

(b) If 𝑣2 is a variable 𝑥2, we first construct a subcontext of Γ where we modify the type of

𝑥2 in the type context Γ. Since the variable 𝑥2 has a type in the context Γ, then16

Γ ≡ Γ1, 𝑥2:[𝜈 :𝑡2 | 𝜙2], Γ2
we build a type context Γ∗

Γ ≡ Γ1, 𝑥2:[𝜈 :𝑡2 | 𝜙2 ∧ 𝜙], Γ2
Intuitively, this new context gives us a similar assumption to the constant case above:

𝜈 = 𝑥2 ∧ 𝜙 ⇐⇒ 𝜈 = 𝑥2

In fact, the new context Γ∗ implies two subtyping relation over the context:

Γ∗ ⊑ Γ

Γ, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙] ⊑ Γ∗, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙]
16
We use the same way when the variable 𝑥2 having a normal refinement type {𝜈 :𝑡2 | 𝜙2}, thus we omitted this situation.
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The first one is obvious, since we only add a conjunction into the type of 𝑥2. On

the other hand, Γ, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙] is a subtype of Γ∗, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙] reversely,
since we strengthen the coverage type of 𝑥2 in the last binding 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙].
Then, according to the second sub type context relation, we have

Γ∗ ⊢ 𝑣1 : 𝑎:{𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙}�𝜏𝑥 since Γ ⊢ 𝑣1⇒ 𝑎:{𝜈 :𝑏 | 𝜙}�𝜏𝑥 and TSub

According to the fact 𝜈 = 𝑥2 ∧ 𝜙 ⇐⇒ 𝜈 = 𝑥2, we have

Γ∗ ⊢ 𝑣2 : [𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙] According to the rule TVar

According to the second sub type context relation, we have

Γ∗, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙], 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑥2] ⊢ 𝑒 : 𝜏 [𝑎 ↦→ 𝑥2] since Γ, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙], 𝑥 :𝜏𝑥 ⊢ 𝑒 ⇒ 𝜏

Again, since the variable 𝑎 is not free, we can also drop it. Moreover, according to the

typing rule TApp and the Lemma G.2, we know

Γ∗ ⊢ let 𝑥 = 𝑣1 𝑥2 in 𝑒 : Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑥2], 𝜏 [𝑎 ↦→ 𝑥2])
Again we have

Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑥2], 𝜏 [𝑎 ↦→ 𝑥2])
≡ Ex(𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2], 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑎], 𝜏 [𝑎 ↦→ 𝑎])
≡ Ex(𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙], 𝑥 :𝜏𝑥 , 𝜏)
≡ 𝜏 ′

Then we have

Γ∗ ⊢ let 𝑥 = 𝑣1 𝑥2 in 𝑒 : 𝜏
′

Finally, by combining Lemma G.4 and Γ∗ ⊑ Γ, we have

Γ ⊢ let 𝑥 = 𝑣1 𝑥2 in 𝑒 : 𝜏
′

Case ChkMatch: The rule is a combination of the TMatch and TMerge. For the 𝑖𝑡ℎ branch of

the pattern matching branch, we have the following judgement after unfolding Γ′𝑖

Γ, 𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦], 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣𝑎 ∧𝜓𝑖] ⊢ 𝑒𝑖 : 𝜏𝑖 since Γ, Γ′𝑖 ⊢ 𝑒𝑖 ⇒ 𝜏𝑖

Similar to the approach we used for the SynAppBase case, since 𝑣𝑎 is a value that has base

type, it can only be a constant or a variable. Then we can derive the following judgement

without the variable 𝑎:

Γ, 𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦] ⊢ 𝑒𝑖 : Ex(𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦], 𝜏𝑖 [𝑎 ↦→ 𝑣𝑎]) ≡ 𝜏 ′𝑖
According to the rule TMatch, we have the following judgement for all branches

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 : 𝜏
′
𝑖

Then according to Lemma G.1, we have

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 : Disj(𝜏 ′𝑖 )

Finally, according to TSub, for a type 𝜏 ′ that Γ ⊢ Disj(𝜏 ′
𝑖
) <: 𝜏 ′, we have

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 : 𝜏
′

which is exactly what we needed to prove for this case.

□
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32 Anon.

H BENCHMARKS
Our benchmark suite are available on the following anonymous link:

https://anonymous.4open.science/r/Poirot-Supplementary-Material-C4FF
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