
Artifact Guide: Covering All the Bases: Type-based Verification of Test
Input Generators
This is the accompanying artifact for the PLDI 2023 submission Covering All the Bases: Type-based Verification of Test Input Generators by Zhou et al. This artifact
consists of both the OCaml impelementation (Poirot) and the Coq formalization of the type system or our core language λTG introduced in the paper.

Getting Started Guide

We recommend machines have at least 8 GB of memory and 8 GB of hard disk space available when building and running Docker images. All benchmarks were
tested on MacBook Pro 14-inc, 2021, that has an Apple M1 Pro CPU with 16 GB RAM. The estimated execition time in the rest of document also fits this setting.

Requirements

This artifact is built as a Docker image. Before proceeding, ensure Docker is installed. (On *nix, sudo docker run hello-world will test your installation.) If Docker
is not installed, install it via the official installation guide. This guide was tested using Docker version 20.10.23 , but any contemporary Docker version is expected to
work.

Using the Pre-Built Docker Image

You may fetch the pre-built Docker image from Docker Hub:

$ docker pull poirot23/poirot:pldi-2023

Building the Docker Image (Optional)

Alternately, to build the Docker image yourself, navigate to the directory containing the Dockerfile and tell Docker to build:

$ docker build . --tag poirot23/poirot:pldi-2023

Resource Requirements: Although our tool Poirot and the Coq formalization doesn't have large memory usage, building the docker image needs more than 32GB
RAM available. This memory usage requirement comes from the then installation of the SMT solver z3 (https://github.com/Z3Prover/z3). When the RAM limit of the
Docker (by default, it is 8GB on Mac, no limit on Linux machine) is lower than 32GB , the installation of z3 will be killed and the docker build will fail. The memory
error can be fixed by increasing the RAM limit in Docker; you can find instructions for doing so on Mac here:
(https://docs.docker.com/desktop/settings/mac/#resources), for Windows here: (https://docs.docker.com/desktop/settings/windows/#resources), and for Linux
here: (https://docs.docker.com/desktop/settings/linux/#resources). The pre-built docker image is built on a Linux machine having Intel i7-8700 CPU @ 3.20GHz with
64GB of RAM, it took 30 min to build.

Running the Docker Image

To launch a shell in the Docker image, say:

$ docker run -it -m="8g" poirot23/poirot:pldi-2023

To compile Poirot, say:

$ dune build && cp _build/default/bin/main.exe main.exe

The compliation result of Poirot is an executable _build/default/bin/main.exe . For the sake of convenience, we copy it under the current directory. You can run
Poirot by excuting main.exe <args> directly, or excuting it via dune , that is dune exec -- bin/main.exe <args> .

You can print Poirot's help message to verify the tool is operating successfully:

$./main.exe --help

You can print the refinement type used in the SizedList benchmark:

$./main.exe print-coverage-types meta-config.json data/benchmark/quickchick/sizedlist/_under.ml

The expected output is:

Types to Check:

⊢ sized_list_gen : s:{v:int | (0 <= v)}→[v:int list | (∀ u, ((len v u) => ((0 <= u) ∧ (u <= s))))]

Coq proofs in the Docker Image

https://docs.docker.com/get-docker/
https://github.com/Z3Prover/z3
https://docs.docker.com/desktop/settings/mac/#resources
https://docs.docker.com/desktop/settings/windows/#resources
https://docs.docker.com/desktop/settings/linux/#resources

The Coq proofs of our core language λTG are located in the coq_proof directory. These proofs may be executed by running make , which may take about 10 min.

$ cd coq_proof && make

Step-by-Step Instructions

In this section, we provides the instructions to evaluate our artifact. The first half of this section describes installation and use of Poirot, an OCaml impelementation of
the refinement type checker that verifies the coverage property of the test input generators written in OCaml. The rest of this section describes the Coq formalization
of the core language λTG in the paper and the corresponding soundness theorem.

Artifact Structure

This section gives a brief overview of the files in this artifact.

abstraction/ : the abstract domain built from the method predicates.
ast/ and language/ : the AST of the languages used in Poirot.
autoverificaiton/ : the Z3 (SMT solver) wrapper.
bin/main.ml : the main entry point of Poirot.
config/ : the configuration files.

coq_proof/ : the Coq proofs of our core language λTG.
doc/ : our submitted papers.

poirot.pdf : the original submission.
poirot-full-version.pdf : the original submission with supplemental materials.

data/ : the predefined types and the benchmark input files.
data/predefined/ : the predefined types.
data/benchmark/SOURCE/NAME/ : the benchmark input files. The benchmarks are group by thier SOURCE . Typically the input source files have name
data/benchmark/SOURCE/NAME/prog.ml , and the refinement type files have name data/benchmark/SOURCE/NAME/_under.ml .

The benchmarks of the synthesized results (see more in section Running Benchmarks of Poirot) are saved in the folders that have name with prefix
synth . For example, data/benchmark/quickchick/_synth_sizedlist/prog.ml contains all sized list generators that are synthesized by

Cobalt.
driver : the IO of Poirot.
env/ : the univerail environment of Poirot which is load from the configuration files.
frontend/ : the Poirot parser, a modified OCaml parser.
meta-config.json : the main configuration file, the details can be found in Configuration of Poirot.
scripts/ : various Python scripts for collecting and displaying experimental results.
translate/ : normalization procedure that normalize the code into the Monadic Normal Form (a variant of the A-Normal form).
typecheck/ : type check.

typecheck/termcheck.ml : basic type inference and check.
typecheck/undercheck.ml : refinement type check.

Running Benchmarks of Poirot

In this section, we discuss the scripts that displayes the tables in the paper.

Comprehensive Scripts

The following scripts run the benchmark suite displayed in Table 1 of the paper, it will take about 50 second:

$ python3 scripts/get_table1.py

Notice: in order to solve the new STLC Benchmark, we optimized the implementation of the SMT qeuries (remove unsued quantified variables in the queries),
thus the numbers in the (max. #∀,#∃) columns would slight different from the table shown in the paper. The execution time total (avg. time)(s) may
also be various depending on your machine. Readers can check the claims in the paper (line 865 to 880) with respect to the displayed results.

The following scripts run the benchmark suite displayed in Table 2 of the paper, it will take about 60 mins. It runs Poirot for the programs synthesized using Cobalt
deductive synthesis tool.

$ python3 scripts/get_table2.py

Notice: the synthesizer uses random choices internally while synthesizing these programs, therefore the programs synthesized in each run of the synthesizer
are different and may vary minutely in numbers. This may cause minute differences in the table generated by the above script from what is reported in the paper.
However, in each case, the numbers generated will be close and corroborate our claims in the paper that the space of the complete generators is significantly
smaller than the space of the safe generators. (line 914)

The following scripts run the STLC benchmark suite that asked by the reviewers, it will take about 200 second. The details about this new benchmarks can be found
in section STLC Benchmark.

$ python3 scripts/run_stlc.py

Detailed Steps

By add command line argument verbose , the all scripts above will show the actual command sent to Poirot on each benchmark. For example, by runing:

$ python3 scripts/get_table1.py verbose

The script will print the following commands:

Running Poirot on data/benchmark/quickchick/sizedlist/prog.ml

dune exec -- bin/main.exe coverage-type-check meta-config.json data/benchmark/quickchick/sizedlist/prog.ml data/benchmark/quickchick/sizedlist/_under.ml

Running Poirot on data/benchmark/quickchick/sortedlist/prog.ml

dune exec -- bin/main.exe coverage-type-check meta-config.json data/benchmark/quickchick/sortedlist/prog.ml data/benchmark/quickchick/sortedlist/_under.ml

...

Readers can try these commands which will take shorter time.

STLC Benchmark

The STLC is a new benchmarks suggested by the reviewers whose setting is not shown in the original version of the paper, thus we provide a details explanation in
this section. In this benchmark, Poirot will verify the coverage property of a hand-written non-trivial test input generator of the simply typed lambda-calculus (STLC)
term written in Coq from the QuickChick. The STLC generator gen_term_size will generate well-typed terms of the given type under the given type context with a
upper bound of the the number of applications in the term. Besides the main funtion gen_term_size , this benchmarks consists of 12 helper functions, which are
also traslated from the original implementations (e.g., gen_term_no_app , vars_with_typ , ...), or the built-in library function in the QuickChick.

The expected expiroment result is shown in the following table. The meaning of the table is the same with the Table 1 in the paper (see "benchmarks" paragraph from
line 822), where we use "▲" indicates these functions are from the STLC benchmark.

#Branch #LocalVar #MP #Query (max.
#∀,#∃)

total (avg. time)
(s)

nonderter_dec ▲ 2 4 1 5 (4,2) 0.10(0.02)

gen_const ▲ 2 5 2 3 (4,2) 0.05(0.02)

type_eq_size ▲ 6† 7 5 9 (10,9) 35.93(3.99)

type_eq ▲ 2 6 2 5 (5,2) 0.10(0.02)

gen_type_size ▲ 3† 10 1 15 (10,12) 0.48(0.03)

gen_type ▲ 2 5 1 3 (4,2) 0.05(0.02)

vars_with_type_size ▲ 5† 12 7 13 (12,8) 7.44(0.57)

vars_with_type ▲ 2 6 3 6 (5,2) 0.48(0.08)

or_var_in_typectx ▲ 3 7 4 4 (5,2) 0.05(0.01)

combine_terms ▲ 3 9 6 8 (6,5) 0.14(0.02)

gen_term_no_app_size ▲ 3† 13 10 20 (14,15) 4.35(0.22)

gen_term_no_app ▲ 2† 6 3 5 (5,2) 0.06(0.01)

gen_term_size ▲ 4† 24 9 50 (27,27) 142.93(2.86)

Detail Usage of Poirot

Commands of Poirot

Using Poirot, you can

Print the refinement types (we called coverage refinement types in the paper) that encodes the coverage property from the given file:

$./main.exe print-coverage-types <config_file> <refinement_type_file>

For example,

$./main.exe print-coverage-types meta-config.json data/benchmark/quickchick/sizedlist/_under.ml

https://github.com/QuickChick/QuickChick
https://github.com/QuickChick/QuickChick/blob/8.12/examples/stlc/lambda.v#L249
https://github.com/QuickChick/QuickChick/blob/8.12/examples/stlc/lambda.v#L230
https://github.com/QuickChick/QuickChick/blob/8.12/examples/stlc/lambda.v#L211

will print

Types to Check:

⊢ sized_list_gen : s:{v:int | (0 <= v)}→[v:int list | (∀ u, ((len v u) => ((0 <= u) ∧ (u <= s))))]

Print the source code from the given file in given format . Before the refinement type check, Poirot (line 811 in the paper) would load the OCaml code (raw
format), performs the basic type inference (typed format), then translate the code in to the Monadic Normal Form (mnf format).

$./main.exe print-source-code [raw | typed | mnf] <config_file> <source_code_file> <refinement_type_file>

For example,

$./main.exe print-source-code typed meta-config.json data/benchmark/quickchick/sizedlist/prog.ml data/benchmark/quickchick/sizedlist/_under.ml

will print

[(Basic) Typed]:

let rec sized_list_gen = (fun (size : int) ->

 (let ((b : bool)) = ((size : int) == (0 : int) : bool) in

 (if (b : bool)

 then ((nil : int list) : int list)

 else

 ((let ((b1 : bool)) =

 ((bool_gen : unit -> bool) ((tt : unit) : unit) : bool) in

 (if (b1 : bool)

 then ((nil : int list) : int list)

 else

 ((let ((size1 : int)) = ((size : int) - (1 : int) : int) in

 (let ((l : int list)) =

 ((sized_list_gen : int -> int list) (size1 : int) :

 int list) in

 (let ((n : int)) =

 ((int_gen : unit -> int) ((tt : unit) : unit) : int) in

 ((cons : int -> int list -> int list) (n : int)

 (l : int list) : int list) : int list) : int list)) :

 int list) : int list)) : int list) : int list) : int list) :

int -> int list)

Type check the given source code is type safe with respect to the given refinement type (line 810 in the paper):

$./main.exe coverage-type-check <config_file> <source_code_file> <refinement_type_file>

The result of type check is saved in the file .result by default. The first word of .result indicates if the code is type safe.

< true | false > & <statistics information>

For example,

$./main.exe coverage-type-check meta-config.json data/benchmark/quickchick/sizedlist/prog.ml data/benchmark/quickchick/sizedlist/_under.ml

The content of .result would be:

true & sized_list_gen & 4 & 12 & 2 & 11 & $(7, 9)$ & $0.38(0.03)$

You can also turn on the debug_info.show_typing in the configuration file (meta-config.json) to show the each step of type check. The details about the
configuration file is the section Configuration of Poirot.

...

Subtyping Check:

size!0:{v:int | (0 <= v)},sized_list_gen:s:{v:int | (0 <= v)}→[v:int list | ((s < size!0) ∧ (s >= 0) ∧ (∀ u, ((len v u) => ((0 <= u) ∧ (u <= s)))))],b:[v:bool | ((v => (size!0 == 0)) ∧ ((size!0 == 0) => v))],
⊢ [v:int list | (∃ b!14, (∃ x!8, (∃ b!15, (∃ x!9, (∃ b1!7, (∃ a!15, (∃ b!16, (∃ x!10, (∃ b!17, (∃ size1!6, (∃ l!5, (∃ x!11, (∃ n!2, (∃ a!16, (∃ x!12, (∃ a!17, (∃ a!18, ((b ∧ (len x!8 0) ∧ (len v 0)) ∨ ((¬ b) ∧ ((b1!7 ∧ (len x!10 0) ∧ (len v 0)) ∨ ((¬ b1!7) ∧ ((size!0 - 1) == size1!6) ∧ (size1!6 < size!0) ∧ (size1!6 >= 0) ∧ (∀ u, ((len l!5 u) => ((0 <= u) ∧ (u <= size1!6)))) ∧ (len l!5 a!17) ∧ (∀ u, (((1 + a!17) == u) => (len x!12 u))) ∧ (len l!5 a!18) ∧ (∀ u, (((1 + a!18) == u) => (len v u))))))))))))))))))))))))] <: [v:int list | (∀ u, ((len v u) => ((0 <= u) ∧ (u <= size!0))))]

Task 1, type check succeeded

Configuration of Poirot

All commnads of Poirot will take a universial configuration file (meta-config.json) in JSON format as its first argument. Precisely, the JSON file outputs results in
JSON format to some output directory.

the debug_info field controls the debug information output. Precisely, we have the following options:
if the show_preprocess field is true, Poirot will print the preprocess result (line 811 in the paper). It will print the given source code, type code, and
the code in Monadic Normal Form.
if the show_typing field is set as true, Poirot will print the type judgement of each step in the type check.
if the show_queries field is set as true, Poirot will print the queries that need to by checked by the SMT solver.
if the show_stat field is set as true, Poirot will print statistics information.
if the show_others field is set as true, Poirot will print any other information (this is for debugging).

the resfile field indicates the path of the output file of type check.
the logfile field indicates the path of the log file of type check.
the benchmark_table_file field indicates the path of benchmarks.
the prim_path field indicates the predefined coverage types for a number of OCaml primitives, including constants, various arithmetic operators, and data
constructors for a range of datatypes(line 813 to 815 in the paper).

Input File Formats

The source code file expected by Poirot is simply a OCaml functions listing. Currently, Poirot handles only a subset of OCaml, it does not handle features involving
references and effects, parametric polymorphism, or concurrency. Additionally, all functions should be annotated with precise input and output type; all left-hand-side
variable in the let binding should be annotated with its precise type.

The refinement type file expected by Poirot is also a OCaml source code file with specially formatted:

(* The method predicates used in the current benchmark *)

external method_predicates : t = "NAME" "NAME" "NAME" ...

(* The refinement type of the library function NAME, which doesn't need to be type check *)

let[@library] NAME = UNDER_APPR_RTY

...

(* The refinement type of the function NAME, which needs to be type check *)

let NAME = UNDER_APPR_RTY

...

where NAME is simply a string.

The method predicates are predefined uninterrupted functions that capture non-trivial datatype shape properties (see line 815 to 821 in the paper). The semantics
of the method predicates are define in the file data/predefined/axioms_of_predicates.ml .

The syntax of the UNDER_APPR_RTY (underapproximate refinement type, a synonyms of coverage type) is similar with the OCaml let expression but with attributes:

https://v2.ocaml.org/manual/attributes.html

VAR := string

OCAML_TYPE:= the OCmal type

METHOD_PREDICATE := the method predicate

OP := "==" | "!=" | "+" | "-" | "<" | ">"

TYPED_QUANTIFIER := "[%forall: OCAML_TYPE]" | "[%exists: OCAML_TYPE]"

LIT :=

| "true"

| "false"

| VAR

| "VAR OP VAR"

PROP :=

| LIT

| "METHOD_PREDICATE LIT ..."

| "implies PROP PROP"

| "iff PROP PROP"

| "PROP && PROP"

| "PROP || PROP"

| "not PROP"

| "fun (VAR : TYPED_QUANTIFIER) -> PROP"

UNDER_APPR_BASE_RTY := "(PROP : [%VAR: OCAML_TYPE]) [@under]"

OVER_APPR_BASE_RTY := "(PROP : [%VAR: OCAML_TYPE]) [@over]"

UNDER_APPR_RTY :=

| UNDER_APPR_BASE_RTY

| "let VAR = OVER_APPR_BASE_RTY in UNDER_APPR_RTY"

| "let VAR = UNDER_APPR_BASE_RTY in UNDER_APPR_RTY"

where the METHOD_PREDICATE is the method predcicates introduced in the first line of the file; the quantifers in the first-order logic (FOL) proposition PROP is typed
(TYPED_QUANTIFIER).

Currently, the OCAML_TYPE supported by the Poirot is fixed, which is defined in the file data/predefined/data_type_decls.ml .

The defintion of the coverage type is consistent of the Figure 3 (line 359), which consists of both "overapproximated-style" refinement type and the
"overapproximated-style" refinement type. Precisely,

the overapproximate refinement type {v:b | φ} in the paper is defined as OVER_APPR_BASE_RTY .
the underapproximate refinement type [v:b | φ] in the paper is defined as UNDER_APPR_BASE_RTY .
the function type is defined as let expression. We use the let binding to represent the argument type and use the body of the let expression to represent the
return type. For example, let x = t_x in t represents the type x:t_x→t . Here we syntactically disallow the underapproximate base refinement type to be
the agrument type following the constraints in the paper (line 422 to 426).

Proof Readme of λTG

Proof File Structures

The files are structured as follows:

Definitions and proofs of our core language λTG that are independent of Poirot's type system.
Atom.v : Definitions and notations of atoms (variables) in λTG.
Tactics.v : Some auxiliary tactics.

CoreLang.v : Definitions and notations of λTG.
NamelessTactics.v : Auxiliary tactics for the locally nameless representation.

CoreLangProp.v : Lemmas for our core language λTG.

OperationalSemantics.v : Definitions and notations of the small-step operational semantics of λTG.

OperationalSemanticsProp.v : Lemmas for the small-step operational semantics of λTG.
ListCtx.v : Definitions and notations for reasoning about polymorphic contexts.
BasicTyping.v : Definitions and notations for the basic typing.
BasicTypingProp.v : Lemmas for the basic typing rules.
SyntaxSugar.v : Definitions and notations of the syntax sugar.
TermOrdering.v : Auxiliary definitions and notations of the partial order relation over terms.
RefinementType.v : Definitions and notations of coverage types.
RefinementTypeTac.v : Auxiliary tactics for coverage types.
RefinementTypeDenotation.v : Definitions and notations of the type denotation (without type context).

RefinementTypeDenotationTac.v : Auxiliary tactics for the type denotation (without type context).
RefinementTypeDenotationProp.v : Lemmas for the type denotation (without type context).
WFCtxDenotation.v : Auxiliary definitions and notations of the denotation of well-formed type context.
WFCtxDenotationProp.v : Lemmas for the denotation of well-formed type context.
InvDenotation.v : Auxiliary definitions and notations of the invariant denotation.
InvDenotationProp1.v ... InvDenotationProp4.v : Lemmas fpr the invariant denotation.
CtxDenotation.v : Definitions and notations of the type denotation under type context.
CtxDenotationProp.v : Lemmas for the type denotation under type context.
Typing.v : Definitions and notations used in the typing rules.
Soundness.v : Statement and proof of the soundness theorem.

Compilation and Dependencies

The Coq proofs of our core language λTG are located in the coq_proof directory.

$ cd coq_proof

The project is organized by the coq make file _CoqProject , which may be executed by running make (about 10 min).

$ make

Our formalization is tested against Coq 8.14.1 . We also rely on the library coq-stdpp 1.7.0 .

Our formalization takes inspiration and ideas from the following work, though does not directly depend on them:

Software Foundations: a lot of our formalization is inspired by the style used in Software Foundations.
The Locally Nameless Representation: we use locally nameless representation for variable bindings.

Paper-to-artifact Correspondence

Definition/Theorems Paper Definition Notation

Syntax Figure 3 mutual recursive defined as value and tm in file
CoreLang.v (line 42)

Operational
semantics

Figure 11 (supplementary
materials) step in file OperationalSemantics.v (line 23) e ↪ e'

Basic typing rules Figure 12 (supplementary
materials)

mutual recursive definition of tm_has_type and
value_hsa_type in file BasicTyping.v (line 56)

Γ ⊢t e ⋮t T
and Γ ⊢t v ⋮v
T

Well-formedness
typing rules Figure 4 wf_typing in file Typing (line 44) Γ ⊢WF τ

Subtyping rules Figure 4 subtyping in file Typing (line 97) Γ ⊢ τ1 � τ2

Disjunction typing
rules Figure 4 disjunction in file Typing (line 92) Γ ⊢ τ1 � τ2 �

τ3

Selected typing
rules

Figure 5 (Figure 13 in
supplementary materials shows
full set of rules)

given by the mutually inductive types
value_under_type_check and term_under_type_check in
file Typing.v (line 149)

Γ ⊢ e ⋮t τ
and Γ ⊢ v ⋮v
τ

Type denotation At the beginning of Section 4.1
(line 573 to 576) rR in file RefinementTypeDenotation.v (line 23) { n; bst; st }

⟦ τ ⟧

Type denotation
under context

At the beginning of page 13 (line
594 to 597) ctxrR in file CtxDenotation.v (line 25) { st }⟦ τ ⟧{ Γ

}

Soundness theorem Theorem 4.2 soundness in file Soundness.v (line 140)

Readers can find the supplemental materials in doc/poirot-full-version.pdf .

Differences Between Paper and Artifact

Our formalization only has two base types: nat and bool.
To simplify the syntax, our formalization don't treat the operators (e.g. +) as value (line 349 in the paper). Alternately, we can define the operators as value
using lambda functions. For example, the value + can be defined as

https://softwarefoundations.cis.upenn.edu/
https://chargueraud.org/research/2009/ln/main.pdf

fun (x: nat) (y: nat) =

 let (res: nat) = x + y in

 res

Our formalization only have four operators: + , == , < , nat_gen . Other operators shown in the paper can be implemented in terms of these. E.g., the minus
operator can be defined as:

let minus (x: nat) (y: nat) =

 let (diff: nat) = nat_gen () in

 if x + diff == y then diff else err

In addition, to simplify the syntax, all operators take two input arguments; e.g., the random nat generator takes two arbitrary numbers as input.

In the formalization, to simplify the syntax, pattern-matching can only pattern match against Boolean variables. Pattern matching over natural numbers

match n with

| 0 -> e1

| S m -> e2

is implemented as follows:

if n == 0 then e1

else let m = n - 1 in e2

We assume all input programs are alpha-converted, such that all variables have unique names.
We use the locally nameless representation in all terms, values, refinement, and type context, thus the definition looks slight different from the definition
shown in the paper.
We encode the propositions in the refinement type as Coq propositions. In order to capture the the free variables and the bound variables (see locally
nameless repsentation), all proposition will constructed with

a set of atoms (variables) d , which is the of the free variables in the proposition.
a natrual number n , which indicate the upper bound of the bound variables.

Following the encoding above, for example, the base coverage type [v:b | φ] will be encoded as [v:b | n | d | φ] .
The substitution of refinement types are formalized into states (a mapping from varaibles to values), helping to eliminate termination checks of the fixpoint
function in Coq when we define the logical relation. Precisely

the definition of the type denotation has the form { n; bst; st }⟦ τ ⟧ instead of ⟦ τ ⟧ , where (n, bst) is the state of the bound variables,
st is the state of the free variables.

the definition of the type denotation under the type context has the form { st }⟦ τ ⟧{ Γ } instead of ⟦ τ ⟧{ Γ } , where st is the state of the
free variables. Here we ommit the bound state (n, bst) thus all types in the type context are locally closed (see locally nameless repsentation).

In the formalization, our coverage typing rules additionally require that the all branches of a pattern matching expression are type safe in the basic type system
(they may not be consistent with the coverage type we want to check). We didn't mentioned it in the original paper, however, we will fix it in the second round
submission.
To the sake of convenience of proof, we split a single typing rules into different cases (then we can prove these cases separately dyring the induction proof).
For exmaple, the rule TLetE in the figure 13 (in the supplementary materials) is split as UT_Lete_base and UT_Lete_arr in our proof.

Appendix: Building Cobalt from Source (Optional)

Cobalt Synthesizer

Cobalt (based on the paper) is a purely functional, refinement-type guided synthesizer. This takes a pure-function spec, along with a small library (function signatures)
and synthesis all possible programs of a given function call length k and given nested depth. Unfortunately, the depedencies (e.g., the version of the OCaml and z3)
of Cobalt is conflit with Poirot, thus we put the synthesized results (see data/ feild in the section Artifact Structure) instead of the synthesizer into the docker.

This step is optional: although the program synthesis is not the claims in the our paper, we still provide instructions to reproduce these synthesized programs for the
readers who have a deep interest in it. In the rest of this section, we discuss the instructions for the Ubuntu build and running.

Prerequisites

To build Cobalt following dependencies must be installed:

OCaml (Version >= 4.03)

https://chargueraud.org/research/2009/ln/main.pdf
https://github.com/aegis-iisc/propsynth.git
https://dl.acm.org/doi/abs/10.1145/3563310

#install opam

$ apt-get install opam

#environment setup

$ opam init

$ eval `opam env`

install a specific version of the OCaml base compiler

$ opam switch create 4.03

$ eval `opam env`

check OCaml installation

$ which ocaml

/Users/.../.opam/4.03.0/bin/ocaml

$ ocaml -version

The OCaml toplevel, version 4.03.0

Z3 SMT Solver

$ opam install "z3>=4.7.1"

$ eval $(opam env)

Menhir for parsing the specification language

$ opam install menhir

$ eval $(opam env)

OCamlbuild version >= 0.12

$ opam install "ocamlbuild>=0.12"

$ eval $(opam env)

To Run the Evaluations.

Python3

$ apt-get install python3

Building Cobalt

After all the dependencies are installed, Cobalt can be directly built using ocamlbuild using the script build.sh in the project root directory.

$./build.sh

The above build script will create a native executable effsynth.native in the project's root directory

Running Cobalt:

Cobalt takes the following arguments:

$./effsynth.native [-cdcl] [-bi] [-k] [-nested] <path_to_specfile>

$./effsynth.native -cdcl -bi -k 3 tests_specsynth/ulist_quant.spec

This should produce a list of synthesized programs in output/tests_specsynth/ulist_quant.spec directory.

Generating Poirot benchmarks:

The 5 benchmarks in Table2 in Poirot are in test_specsynth/Poirot_benchmaks directory.

Run the following command to generate the programs used in Poirot for UniqueList:

https://github.com/Z3Prover/z3
https://github.com/ocaml/ocamlbuild/
https://www.python.org/download/releases/3.0/

$./effsynth.native -cdcl -bi -k 3 tests_specsynth/Poirot_benchmarks/Poirot_uniquelist.spc

This will generate a file output/tests_specsynth/Poirot_benchmaks/Poirot_uniquelist.spc containing the required programs.

	Artifact Guide: Covering All the Bases: Type-based Verification of Test Input Generators
	Getting Started Guide
	Requirements
	Using the Pre-Built Docker Image
	Building the Docker Image (Optional)
	Running the Docker Image
	Coq proofs in the Docker Image

	Step-by-Step Instructions
	Artifact Structure
	Running Benchmarks of Poirot
	Comprehensive Scripts
	Detailed Steps

	STLC Benchmark
	Detail Usage of Poirot
	Commands of Poirot
	Configuration of Poirot
	Input File Formats

	Proof Readme of λTG
	Proof File Structures
	Compilation and Dependencies
	Paper-to-artifact Correspondence
	Differences Between Paper and Artifact

	Appendix: Building Cobalt from Source (Optional)
	Cobalt Synthesizer
	Prerequisites
	Building Cobalt
	Running Cobalt:
	Generating Poirot benchmarks:

