Supporting Information

-for-

Flexible, Broadband, Super-Reflective Infrared Reflector Film

based on Cholesteric Liquid Crystal Polymer

Amid Ranjkesh, Yeongyu Choi, Jae-Won Huh, Seung-Won Oh, Tae-Hoon Yoon*

Department of Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea.

E-mail: *thyoon@pusan.ac.kr*

Figure.S1 Transmission spectra of polymer CLC films (a) left-handed and (b) right-handed CLC mixtures by excluding the UV light absorber.

Figure.S2 Transmission spectra of fabricated polymer CLC film at 5 minute UV light irradiation.

Figure.S3 Temperature-dependent transmission spectra of (a) right- and (b) left- handed CLC films upon varying the temperature from 25 °C to 70 °C.

Figure. S4 Transmission spectra at a different viewing angle from 0° to 60° for the CLC film at room temperature 25 °C.

Figure. S5 Change in the indoor temperature for the sets of houses: conventional PET, and the proposed IR reflector.