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ABSTRACT
Combined safety and cybersecurity testing are critical for assess-
ing the reliability and optimisation of autonomous driving (AD)
algorithms. However, safety and cybersecurity testing is often con-
ducted in isolation, leading to a lack of evaluation of the complex
system-of-system interactions which impact the reliability and op-
timisation of the AD algorithm. Concurrently, practical limitations
of testing include resource usage and time. This paper proposes a
methodology for combined safety and cybersecurity testing and
applies it to a real-world AV shuttle using digital twin, software-
in-the-loop (SiL) simulation and a real-world Autonomous Vehicle
(AV) test environment. The results of the safety and cybersecurity
tests and feedback from the AD algorithm designers demonstrate
that the methodology developed is useful for assessing the reliabil-
ity and optimisation of an AD algorithm in the development phase.
Furthermore, from the observed system-of-system interactions, key
relationships such as speed and attack parameters can be used to
optimise testing.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
Testing autonomous driving (AD) algorithms for performance un-
der safety test cases is a predominant focus for developers to assess
the reliability of the algorithm and for optimisation. AD algorithms
are also susceptible to manipulation from cyber threats which target
the advanced hardware technologies sensor telemetry which serves
as an essential input for perception, detection, and control deci-
sions [2, 12, 20]. Existing methods [3, 8] for testing are challenged
by the complexity of evaluating system-of-system interactions to
identify key relationships and parameters, and limitations of test-
ing inherent to real-world AV programs, resource usage and time.
The main idea of this paper is to establish a method for combined
safety and cybersecurity testing of developmental AD algorithms to
evaluate system-of-system interactions to identify and investigate
parameters that impact safety and the effect of cyber attacks, and to
develop future ideas for optimisation of testing. To this end, the pa-
per focuses on three research questions aligned with the challenges
of combined safety and cybersecurity for AD algorithms.

RQ1 How can AD algorithm designers evaluate the reliability
and optimisation of the AD algorithm to both safety and
cybersecurity test cases?

RQ2 Cybersecurity testing is predominantly conducted on well-
established AD algorithms. How can combined safety and
cybersecurity testing be conducted on a developing AD al-
gorithm?

RQ3 What key relations and parameters can we identify that can
optimise safety and cybersecurity testing?

To evaluate these research questions, we apply our methodology
to a developing AD algorithm in a digital twin, software-in-the-loop
(SiL) simulator and real-world AV testing environment. Cyberse-
curity testing and safety testing are often conducted separately,
reducing our understanding of the relationship between failures of
the algorithm caused under normal safety scenarios and failures
caused by the impact of cyber attacks. For AD algorithms in the
development stage, where the reliability and optimisation of the
AD algorithm to safety scenarios have not been established, this ex-
ploration of the relationship between safety and cybersecurity can
offer novel insights to improve the awareness of the AD algorithm
designer to shortcomings in the algorithm.
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The major contributions of this paper are the following:
• Methodology for combined safety and cybersecurity testing
• Safety and cybersecurity test cases conducted on an AD
algorithm under development, and with feedback from the
AD algorithm designer

• An analysis of the combined safety and cybersecurity test
cases that identifies key relations and the sensitivity of pa-
rameters.

• All the code, our AV simulation configurations and research
data used in the combined safety and security testing will
be available for the research community on GitHub.

2 TARGET SYSTEM
2.1 Low-Speed AV Shuttle for Public

Transportation
The target AV for this study, iseAuto (see Fig. 1), is a real-world
AV shuttle for public transportation, operating in numerous EU
countries. The shuttle was developed as part of a project at Tallinn

Figure 1: iseAuto autonomous shuttle

University of Technology’s AV research group. The objective of
this project is to build an open-source AV shuttle that provides a
smart city test bed within the university campus, enabling different
types of urban mobility research. Currently, this SAE level 4 and
5 shuttle is operating on the campus for experimental and study
purposes. iseAuto uses a multi-LiDAR sensor system for perception
and localisation. Two Velodyne LiDARs are mounted at the top
front (VLP-32) and the back (VLP-16) of the vehicle, in addition to
two Robosense RS-Bpearl at both sides (left and right), to decrease
the sensor blind zone around the car.

2.2 Autonomous Driving Algorithm
The AV uses Autoware.ai [11] autonomous software stack which is
an open-source AD software. This software enables us to employ
different algorithms for each main part of the autonomous system
including localization, sensing, detection, and navigation. Open-
Planner navigation planning algorithm.

In this study, we focused on OpenPlanner as one of the most
widely used path-planner modules in the AD software. In the latest
version of this algorithm, which is currently 2.5, the module has
become noticeably more advanced in terms of supporting various
high-definition map formats, predicting the trajectories of other
actors, and using a kinematics-based trajectory generator [5]. This

version is compatible with Autoware.ai 1.15. Open-planner com-
bines global and local planners that jointly utilize the road network
map to generate local waypoints based on a global route and man-
age discrete behaviours such as avoiding dynamic obstacles and
following traffic lights.

The local planner module generates tracks parallel to the main
path defined by the global planner. These tracks are named rollouts
(see Fig. 2). The trajectory evaluator assesses all possible rollouts
in case an obstacle blocks the path. Then, the behaviour selector
will lead the AV to the new safe rollout. Figure 2 shows how open-
planner selected rollout number 6 in order to pass the non-player
character (NPC). It also detects the curb lines and avoids those
rollouts which intersect the curbs.

The algorithm uses the output of the kf_contour_track algo-
rithms to consider all the perceived objects based on the LiDARs
point cloud in its local path planning. Earlier, the euclidean cluster-
ing algorithm received the filtered point cloud data and prepared
point clusters, which is the input of the kf_contour_track. This com-
bination of cluster and contour tracking is done in each sequence
for the open-planner to evaluate possible trajectories and create
the behaviour based on that. Figure 3 shows the diagram of how
the open-planner module works under the AD software package.

Figure 2: How open-planner generates different trajectory to
pass an object

3 COMBINED SAFETY AND CYBERSECURITY
TESTING METHODOLOGY FOR AD
ALGORITHMS

The architecture of the proposed combined testing methodology is
presented in Figure 3. Thismethod takes advantage of a high-fidelity
software in the loop (SiL) simulation [16] approach to validate
and verify the performance of a AD software under critical cyber
security conditions. This method consists of three main following
elements:

• Attack script: which simulates a critical security condition.
• High-fidelity simulator: It is a game engine environment that
provides the physics for modeling sensors and motion.

• AD software: It is the autonomous driving software that
controls the AV.

The combined safety and cybersecurity methodology consisted
of the following iterative steps:

• Scenario Selection
• Analysis of the scenario to extrapolate the safety eval-
uation criterion applicable

• Safety Test Case Setup
– Initialisation of the SiL high-fidelity simulator and config-
uration to the real-world AV
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Figure 3: Architecture of the testing platform

– Initial scenario testing using the safety test cases to assess
the reliability of the algorithm and the quality of the test
data

– Optimisation of the safety test cases to select a subset of
the scenario tests to assess the reliability of the algorithm

– Run of the safety test case scenarios
– Selection of distinct safety test case scenarios which pro-
vide most stable results in terms of success of mission and
safety violation

• Cybersecurity Test Case Setup
– Analysis of the scenario to determine cyber attack strategy
for test cases

– Development of the code for adversary generation in the
SITL high-fidelity simulator

– Selection of attack parameters
– Optimised the cybersecurity test cases
– Evaluate cybersecurity test cases in SiL high-fidelity sim-
ulator

– Real-World AV Testing for safety and cybersecurity
• Results Analysis
– Analysis of the performance of AD algorithm to safety
criteria

– Analysis of sensitivity of attack parameters and driving
parameters

3.1 Testing Environment
All tests are conducted in a virtual environment powered by the
“Unreal game engine” (Unreal) [4]. Carla simulator [6] is one of the
open-source high-fidelity vehicle simulators capable of connecting
to different AD software and scenario generator applications. In
this study, we use Carla 0.9.13 as the high-fidelity simulator. Fig-
ure 3 illustrates the requirements for the high-fidelity simulator to
conduct simulation testing which are two components, the digital
twin of our AV and the virtual replication of our target environment.
These replicated components help us to gain more accurate results
of the proposed platform [14]. The AV digital twin is a 3D model of
our real-world world AV shuttle, designed in Blender, a graphical
3d modelling software, and imported and built in Unreal for de-
ployment in Carla. This model uses the same dimension and sensor
configuration (model, position, and orientation) from the real AV
shuttle. The environment digital twin, in our case, is identical to
the location where we are testing and operating our shuttle, this

includes the urban details and vegetation. The next module in the
simulator is a scenario generator that produces the desired scenario
based on the user input specification. Finally, the simulator engine
generates sensor data from sensors, including LiDARs, cameras and
others and publishes it for other blocks (see Fig. 3 the simulator
block). Then, the AD software receives this data as raw LiDAR
point-cloud information and processes the data as mentioned in
the diagram (Figure 3).

This simulation setup was implemented on a desktop computer
with the following configuration:

• Intel® Core™ i7-11700K @ 3.60GHz × 16 cores
• NVIDIA GeForce RTX 3080 10 GB
• RAM: 128 GB

3.2 Scenario Selection
To evaluate the combined safety and cybersecurity testing, we chose
a simple overtaking maneuver, which is one of the most safety
challenging operations [13]. Figure 4 shows the functional level of
the planned scenario. To generate a variety of distinct scenarios,
we opt for the initial relative distance to the NPC 𝐷𝑥 and the NPC
constant speed 𝑆𝑁𝑃𝐶 as the distinct scenario parameters.

Figure 4: 𝐷𝑥 and 𝑆𝑁𝑃𝐶 , define the initial relative distance to
the NPC and the constant NPC speed in each scenario

Table 1: Target scenarios definition

Actor Speed 𝐷𝑥 Goal

AV [0:6]𝑚/𝑠 0 (m) overtake the NPC safely
NPC [1 1.4 1.8 2.1 2.5] [15 20 25](m) keep moving

3.3 Safety Evaluation Criteria
In determining the evaluation criteria for AV safety we consid-
ered two conditions, 1) mission success and 2) safety violations. A
safety violation consists of a collision and dangerous driving be-
haviour. In determining which criteria to apply, we considered the
EuroNCAP [1] and ISO26262 [10] standards as well those used in
composite studies [3, 7, 8]. We derived that the safety goal of the AD
algorithm is to execute the overtaking mission without colliding or
interfering with other ego vehicles or objects and without exhibit-
ing driving behaviour which is dangerous to the AV passengers.
Table 2 details the safety criteria applied in our experiments.

3.4 Safety Test Case Setup
To evaluate the reliability and optimisation of the AD algorithm
for the overtaking manoeuvre, we, firstly, initiated a run of 50
distinct scenarios in the high-fidelity simulator, repeating 6 times.
Each scenario was repeated 6 times to ensure the reproducibility
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Table 2: Safety Evaluation Criteria

Safety
Condition

Data
Label

Description Metric

Succeed Suce AV Successful complete
the mission

Pass/Fail

Not Finished NotF Failure to finish the mission Pass/Fail

Distance-to
-Collision

DTC Violation of the safe distance
between AV and NPC

AV within 0.5m
of other vehicle

Break on
Driving Lane

BrD AV initiates emergency break
on driving lane

Pass/Fail

Break on
Passing Lane

BrP AV initiates emergency break
on passing lane

Pass/Fail

Collision Col AV collides with NPC Pass/Fail

Violation V Safety Violation

of the outcome. With the mentioned desktop configuration, it took
approximately 100 𝑠𝑒𝑐 for each scenario and, in total, 8.3 hours for
300 runs. The purpose of the first scenario run was to provide a
general overview of the performance of the algorithm. We targeted
a range of 1 to 3𝑚/𝑠 for the NPC speed and 15 to 30𝑚 for the initial
relative distance to the NPC for selecting the 50 distinct scenario
parameters. The results showed that the AD algorithm could not
safely overtake the NPC at an NPC speed higher than 2.5𝑚/𝑠 and
a distance (𝐷𝑥 ) of more than 25𝑚.

Although a high number of scenario variations shows better
coverage in the scenario space to find corner cases, it will lead
to an increase in the time duration of the runs. Furthermore, the
number of each scenario repetitions was not sufficient to statis-
tically explain the occurrence of each safety violation. Finally, it
is worth mentioning that, as our primary study focus is not just
the validation of the AV performance, we need to use an optimum
number of trials for both safety and cyber test cases. Due to this,
we limited the scenario parameters space to the intervals listed
in Table 1 that regressed the test set to 15 distinct cases in a full
factorial setup. This enabled us to repeat the simulation of these
test cases 50 times and apply the full set of safety criteria: collision,
DTC, break in passing lane, break in driving lane, failure to finish,
and mission success.

Each scenario is generated by the Carla scenario runner utilizing
the Python behaviour trees to handle series and parallel events in
the scenario. Figure 5 depicts the scenario scheme starting with
the main sequence behaviour. This series begins with transforming
the actors into the environment and finishes by destroying the
actor block. A parallel behaviour (Driving Toward Intersection) is
defined to run the attack and the scenario stop block while the NPC
follows the defined waypoint. For safety test case scenarios, the
attack block is skipped, and the scenario waits till the stop criteria
are satisfied.

3.5 Cyber Test Case Setup
To determine the cyber attack strategy for implementation in this
test scenario, we analysed the overtaking scenario and its appli-
cability to state-of-the-art attacks on AD algorithms. We selected

Figure 5: Flow-graph of how each scenario is processed in
the simulation platform

LiDAR spoofing as it is a realistic attack in the driving environ-
ment of our real-world AV shuttle [3] and its impact is relevant to
safety outcomes due to the likelihood that the manipulated driv-
ing behaviour will result in collisions, emergency breaking, and
lane violations [20]. Attacks on LiDAR perception predominantly
focus on spoofing LiDAR 3D point-clouds through the following
means: 1) injection of adversarial LiDAR 3D point cloud data to
add adversarial objects to the driving environment inducing a false
positive result of the AD perception [3, 17] 2) removal of LiDAR
3D point cloud data to perturb the ability of the perception algo-
rithm to detect objects in the driving environment, also known as
a false negative result [8, 9] 3) manipulating LiDAR 3D point cloud
data to obfuscate the true distance of environmental objects (Other
road vehicles, pedestrians, other road objects) from the AV, causing
the perception to fail translation 4) implementation of adversarial
mesh in the driving environment to introduce manipulated points
into the LiDAR 3D point cloud and create unpredictable percep-
tion events [19]. The aim of the attacker, in adversarial LiDAR
threat models, is to induce the victim AV to perform dangerous
driving maneuvers, which include; emergency breaking, collisions,
and exceeding the limits of the driving lanes. Variables that have
been shown to influence attack success include; angle of attack of
the adversarial point cloud vector, density of the spoofed points,
duration of the broadcast of spoofed points, distance of the point
cloud to the target [3, 8, 17, 20]. We implemented a variation of the
attack suggested by Yang et al. [20], where the adversary creates
an adversarial roadside object to inject spoofed, malicious LiDAR
point clouds into the target AV LiDAR. In our attack, an adversary
has configured a LiDAR on the roadside to inject malicious point
cloud data into the AV as it is conducting the overtaking manoeuvre.
Figure 6 demonstrates the implementation of our attack.

Using the knowledge gained from literature [8, 17, 20], the pa-
rameters we chose to generate our attack are: density of the LiDAR
point clouds, frequency (the publishing rate of the fake points), du-
ration of the adversarial point cloud broadcast, and location, which
is the relative location between the target vehicle and NPC. As
an infinite number in the range of each of the parameters can be
chosen, we decided to limit our testing to parameter values that
had demonstrated utility to investigate the impact of cyberattacks
on AD algorithms. For example, Hallyburton et al. [8] found that
the success of cyber attacks increased when spoofed point density
were over 80. Therefore we chose a range for spoof point density
from 50 to 300.
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3.5.1 Taguchi Analysis. In this study, we use the Taguchi method
for statistical evaluation [18] of the attack parameters effect on
each safety criterion. The number of tests with four parameters and
3 levels for each in full factorial mode would become unrealistic
to perform, noting that each experiment should repeat 50 times
(81x50 = 4050 distinct scenarios). A design of the experiment is
recommended in order to avoid full factorial tests and reduce the
number of tests without compromising accuracy [18].

A Taguchi design of experiment (DOE) technique [18] was ap-
plied to quantify the influence of four proposed attack parameters;
the false points (FP) density, the FP frequency, the attack duration,
and the attack location. In total, 9 experiments were designed with 3
different values for the four parameters. The analyses hence possess
four factors and three levels for the Taguchi L9 matrix. Table 3 lists
the configuration for each run conducted for cybersecurity tests.

Table 3: Taguchi L’9 matrix for study of factor influence

Num. 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛

1 50 5 3 3
2 50 7 6 6
3 50 10 9 9
4 150 5 6 9
5 150 7 9 3
6 150 10 3 6
7 300 5 9 6
8 300 7 3 9
9 300 10 6 3

[50 150 300] [5 7 10] [3 6 9] [3 6 9]

Figure 6 demonstrates the cyber attack setup within the overtak-
ing scenario (Please note, the Figure only depicts the overtaking
frame and not the entire overtaking sequence.). The proposed attack
model will start by generating spoof points from the designated
place on the roadside. At the starting point, 𝑃1, the AV has relative
distance to NPC that defines the attack location. After a specific
duration (Attack Duration), the AV reaches, 𝑃2. While the attacker
keeps the malicious LiDAR pointing toward the AVs front LiDAR.
Overall, the spoofed point direction changes from 𝜃1 to 𝜃2.

Figure 6: Attack scheme

Code was created for the generation of the adversarial LiDAR
fake points to be run in the digital twin, high-fidelity simulation
environment. This is available on the GitHub site [15].

4 RESULTS AND ANALYSIS
In this section, we present the results of the safety and cybersecurity
testing of the end-to-end AD algorithm. The purpose of the safety

test case results is to evaluate the reliability and optimisation of the
algorithm.

4.1 Safety Test Case
The aim of the testing is to assess the utility of the methodology to
evaluate the relationship between the reliability of the AD algorithm
to safety and the impact of cybersecurity. As the testing is based
on a real-world AV, we were motivated to establish what results
could be gained from an amount of tests that took into account the
requirements for CPU and GPU resources and the time involved in
running high-fidelity simulations. For instance, 50 distinct scenarios
run 3 times expends x amount of resources, and takes x amount
of time. Therefore, we, firstly, performed a baseline evaluation test
where we ran 50 distinct scenarios of the overtaking manoeuvre,
3 times. Each scenario is distinct based on changes to parameters
such as NPC speed and initial distance to NPC.

In our proposed simulation platform, we perform 15 distinct sce-
narios, run 50 times; in total, 750 consecutive simulation runs were
conducted. Table 4 shows the parameters of the distinct scenarios
evaluated against the safety criteria. Using our configuration for
testing, the AD algorithm shows the performance for the overtaking
manoeuvre with a success rate of 43.9% of the simulated scenarios,
whilst, 66.1% are safety violations.

In Figure 7 is the performance of the AD algorithm.

Table 4: Summary of the safety simulation

𝐷x 𝑆NPC 𝑉Col 𝑉DTC 𝑉BrP 𝑉BrD 𝑉NotF 𝑉Suce

1 15 1 18% 22% 0% 10% 24% 26%
2 20 1 18% 40% 8% 6% 18% 10%
3 25 1 4% 20% 32% 8% 20% 16%
4 15 1.4 6% 32% 16% 2% 12% 32%
5 20 1.4 22% 26% 14% 6% 2% 30%
6 25 1.4 4% 12% 22% 8% 0% 54%
7 15 1.8 36% 34% 8% 2% 6% 14%
8 20 1.8 22% 12% 2% 2% 0% 62%
9 25 1.8 18% 6% 0% 4% 0% 72%
10 15 2.1 4% 0% 4% 2% 4% 86%
11 20 2.1 8% 10% 0% 0% 0% 82%
12 25 2.1 24% 0% 0% 4% 0% 72%
13 15 2.5 14% 6% 0% 6% 2% 72%
14 20 2.5 44% 22% 14% 0% 2% 18%
15 25 2.5 64% 18% 0% 0% 6% 12%

mean 20.4% 17.3% 8.0% 4.0% 6.4% 43.9%
STD 16.8% 2.3% 9.8% 3.2% 8.1% 28.3%
min 4% 0% 0% 0% 0% 10%
max 64% 40% 32% 10% 24% 86%

NPC speed is an important parameter as it influences the decision
control for the critical cut-in manoeuvre of the overtaking mission.
In the context of the results of the simulations, we can see that NPC
speed impacts certain safety criteria.

The first such relation that can be seen, is that more collisions
are caused at high speeds, > 2.1 𝑚/𝑠 . This can be the effect of a
poor trajectory evaluator that doesn’t consider the prediction of the
other actors motions in the process of the waypoint generation. In
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Figure 7: The 15 distinct scenarios

most collision cases the AV tried to perform a cut-in while the NPC
collided from the right side. The probability of this safety violation
will be increased as the NPC speed increases.

NPC speed also impacts the likelihood of a DTC safety violation.
In the range of the NPC speed parameter, 1𝑚/𝑠 to 1.8𝑚/𝑠 , it can be
observed that AV Shuttle violates the safe distance to the NPC. This
can be due to the AV speed adjusting relative to the NPC speed and
the cut-in is attempted at low-speed, whilst acceleration is required
to safely attempt the cut-in. This low-speed cut-in firstly causes a
DTC violation and if the overtaking manoeuvre progresses it causes
a collision. DTC and collision correlate based on the relative speed.
A low-speed NPC will likely result in a DTC violation, whilst in a
higher-speed scenario, a collision is more likely to happen.

In the lowest speed range, 1 𝑚/𝑠 to 1.4 𝑚/𝑠 , it is more likely
that the AV will initiate an emergency break in the passing lane.
This is due to the relationship of the NPC speed to the AV Shuttle
speed. The emergency break on the passing lane at low speeds
is caused by a failure of the open-planner trajectory evaluator to
effectively plan the overtaking trajectory. Figure 8 demonstrates
the AV emergency break in the passing lane, for a scenario with an
NPC Speed of 1𝑚/𝑠 . The upper rectangle represents the AV and the
lower rectangle is the NPC. The two rectangles closest to the left
represent the frame that the first emergency break on the passing
lane safety violation occurs. The most right rectangles represent
the end of the mission. The AV speed and the acceleration verify
two hard brakes in the mission while it was in the passing lane. The
failure of the trajectory planning of the open-planner algorithm is
apparent.

The failure to finish the overtaking mission is most prominent
at the lowest speed, 1𝑚/𝑠 , this is due to the time the AV Shuttle
is taking to perform the cut-in process and therefore cannot enact
the overtaking manoeuvre within the simulation timeout which
is 40 𝑠 . It was observed that for the proposed configuration, for
the lower speed of the NPC, the open-planner trajectory evaluator
is not reliable as it suggests waypoints that are not within safe
navigation and this is due to the lack of firm decision-making of
which roll-out to choose. Ultimately, this causes collision and DTC
safety violations. Furthermore, the failure to finish the simulation

Figure 8: A Brake on Passing Lane safety violation

results, we see the low-speed delays in the overtaking manoeuvre
decision making which results in the breach of the 40 𝑠 time-out.

The success rate of the safety test cases increases as the NPC
drives from 1.4 to 2.1𝑚/𝑠 speed. This focal success point around
scenario 10 with an NPC speed of 2.1𝑚/𝑠 can be a sign of matching
the current configuration of perception and open-planner with the
scenario situation.

The safety metrics results are shown in Figure 10 based on the
initial relative distance from the AV to NPC. It shows that the rate
of collision safety violations for longer initial distances from NPC
slightly increased while the success rate decreased. This is the only
trend that can be identified from results for initial relative distance,
so it can be concluded that speed is a more determining parameter
for the safety testing of our AV.

Overall, the results in Figure 7 indicate that speed is a critical
parameter for our AV safety testing platform.

Figure 9: Test Results based on NPC Speed
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Figure 10: Results based on Initial Relative Distance to NPC

4.2 Cybersecurity Test Case
For the cybersecurity test cases we chose 2 of the 15 distinct sce-
narios (Figure 7). This was to allow a greater scale of testing to
be conducted on a select number of relevant scenarios. Scenario
10 was chosen as it demonstrated the most reliable performance,
in terms of the most successful overtaking manoeuvres. Scenario
2 was chosen as it demonstrated the least successful results for
overtaking. These two scenarios were run 50 times each, as had
been conducted with the safety scenario runs. Figure 11 shows the
performance of cybersecurity testing, conducted on scenario 2 and
scenario 10, in comparison to safety test cases.

Scenario 10 results reveal a discernible impact of the cyber attack.
The LiDAR spoofing attack causes an increase in safety violations,
prominently, in collisions and emergency breaking in the passing
lane. This is also a concurrent result of the Scenario 2 test cases.
Figure 3 shows the control level view, that incorporates sensor per-
ception and mission and motion-planning. In the safety violation
cases, we noticed that the euclidean clustering and kf_countour de-
tect the spoofed LiDAR injection as an object and this false positive
detection impacts the local-planning to force the AV to make the
cut-in, in the overtaking manoeuvre process. Specifically, as the
placement of the adversarial LiDAR device is on the left of the AV,
the roll-outs of the left-side are blocked by the trajectory-evaluator.
This forces the AV to veer right and attempt the cut-in process that
causes predominantly collision, DTC safety violations.

Cao et al. [3] and Hallyburton et al. [8] identify density of the
spoofed points to be one of the key variables affecting cyber attack
success rate. Figure 12 and figure 13 present the sensitivity of each
attack parameter according to the cyber attack test cases. From
evaluating the raw data of the test sets, and the sensitivity analysis
for the cyber attack test cases of scenario 10, we concur with these
assessments. We find the rate of collisions is influenced by the
density of the point cloud and the location of the attack. We can
also see the influence the point of attack and duration have on
causing a break on passing lane safety violation. As the duration of
transmitting of the LiDAR point clouds increases and the location
of the attack is further from the NPC, the likelihood of the AV
initiating its breaks is higher.

In comparison, Scenario 2 cyber attack test case results show that
safety violations are less sensitive to attack parameters. This can
be due to the difficulty in interpreting the impact of cybersecurity

on this scenario due to the already high rate of safety violations of
the algorithms exhibited in the safety test case.

Table 5: Results of Cyber Attack applied to Scenario 10

Num. 𝑉Col 𝑉DTC 𝑉BrP 𝑉BrD 𝑉NotF 𝑉Suce

1 54% 20% 2% 0% 6% 18%
2 38% 38% 6% 2% 6% 10%
3 30% 28% 22% 2% 4% 14%
4 24% 28% 16% 6% 2% 24%
5 26% 16% 12% 6% 4% 36%
6 4% 4% 6% 4% 0% 82%
7 32% 14% 14% 6% 0% 34%
8 50% 24% 8% 2% 0% 16%
9 50% 30% 2% 2% 0% 16%

mean 34.2% 22.4% 9.8% 3.3% 2.4% 27.8%
std 15.9% 10.1% 6.7% 2.2% 2.6% 22.2%
min 4.0% 4.0% 2.0% 0.0% 0.0% 10.0%
max 54.0% 38.0% 22.0% 6.0% 6.0% 82.0%

Table 6: Results of Cyber Attack applied to Scenario 2

Num. 𝑉Col 𝑉DTC 𝑉BrP 𝑉BrD 𝑉NotF 𝑉Suce

1 16% 34% 28% 8% 14% 0%
2 26% 34% 20% 0% 8% 12%
3 20% 42% 20% 4% 6% 8%
4 26% 34% 16% 0% 14% 10%
5 22% 36% 16% 0% 20% 6%
6 22% 32% 20% 0% 18% 8%
7 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0%

mean 14.7% 23.6% 13.3% 1.3% 8.9% 4.9%
std 11.4% 17.9% 10.6% 2.8% 7.9% 4.9%
min 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
max 26.0% 42.0% 28.0% 8.0% 20.0% 12.0%

4.3 Real-World AV Testing
The real-world AV testing was conducted on a private road en-
vironment using our AV Shuttle, and an NPC vehicle (turquoise
Mitsubishi iMIEV). The NPC vehicle is stationary during the tests
as a safety assessment deemed it was too dangerous to conduct the
experiment with a moving vehicle. This is due to the experiment
being within a road environment where pedestrians and other ve-
hicles are present. We conducted 3 test cases; a safety test case,
cybersecurity test case and an optimised cybersecurity test case.
The first test was an overtaking safety scenario. Two repetitions
of the safety test case were conducted. The first test demonstrated
a successful execution of the overtaking mission. The second test
resulted in a DTC safety violation. The AV motioned to within
0.42𝑚 of the NPC. The DTC violation is evident in Frame 3 of Fig-
ure 14, which details the second overtaking safety test case. Frame 4
demonstrates the eventual overtake after the DTC safety violation.
Whilst the number of repetitions in the real-world pale in com-
parison to those conducted in the simulator, the real-world results
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Figure 11: Performance Results Comparing Cyber Vs Safety Test Cases

Figure 12: Scenario 10 - Cyber Attack Test Cases - Parameter
Sensitivity

Table 7: Result of the 3 real-world test cases

Test Type Num. of repeats success Safety Violations

Safety Tests 2 1 1 DTC=0.42𝑚
Cyber Tests 2 1 1 DTC=0.38𝑚
Optimised Cyber Tests 1 0 1 DTC=0.32𝑚

concur with simulation results, that the AD algorithm does not
have enough reliability for the deployment in real-world missions.

The cybersecurity test was conducted 3 times. Table 7 lists all the
real-word experiments and their results. The first cybersecurity test
demonstrated no impact from the spoofed LiDAR points and the
overtaking manoeuvre was successful. The second cybersecurity
test resulted in a DTC violation, the AV motioned to within 0.38𝑚
of the NPC. After these two tests, we optimised the target angle of
the spoofed points in relation to the attack scheme in Figure 6, to
reduce the attack starting angle of 𝜃1. We did this because during the
real-world test we observed that the reduced angle would provide

Figure 13: Scenario 2 - Cyber Attack Test Cases - Parameter
Sensitivity

assist the spoofed points to be closer to the AV trajectory and would
cause the AV to detour from its intended route. It can be seen that
this did work as the DTC decreased to 0.32𝑚. Figure 15 depicts the
real-world cybersecurity test. Frame 2 represents the moment the
attack was generated and perceived by the AD algorithm.

The videos and images related to the real-world tests are found
on GitHub site.

5 DISCUSSION
From the analysis of the results we interpreted that different safety
violations are connected to different modules of the AD algorithm.

Perception Module) We interpreted the cause of safety violations
of the emergency break in the passing lane and emergency break in
the driving lane to be related to the quality of the ground filtration.
As we observed, ground filtering outcome changes during the AV
maneuvers (turns) because the shuttle body is tilted because of
suspension and this results in the lidar reference frame orientation



Combined Safety and Cybersecurity Testing Methodology for Autonomous Driving Algorithms CSCS ’22, December 8, 2022, Ingolstadt, Germany

Figure 14: Real-World AV Test - Safety Test Case

Figure 15: Real-World AV Test - Cyber Attack Test Case

changing. Then some part of the ground point cloud as an unfiltered
perception can be seen in the detection algorithms as an obstacle.
This fake sudden obstacle might stop the AV during the motion.
The spoofed LiDAR point cloud threat model is likely to make this
condition worse. Optimisations for this: New body designs to rectify
or limit the issues of LiDAR with the physics of the AV Shuttle are
being developed. To focus specifically on these corner and edge
cases and look at optimisation of the filtering of the perception
algorithm. The latter recommendation is complicated by the fact
it may include trade-offs; if the LiDAR perception algorithm is
specifically tuned for this corner/edge case it could lead to over-
filtration in normal driving scenarios, therefore this is one of the
optimisation options to resolve the perception for the algorithm.

Open-Planner Module)We interpret the cause of safety violations
for DTC and collision as due to an issue of the open-planner in
predicting the trajectory of the NPC during the process of perform-
ing a cut-in, in front of the NPC. The optimisation would involve
incorporation of features that would enable the prediction of the
trajectory of the NPC and for perception improve the perception
of the side-lidar to accurately perceive the NPC. We found that
optimising all the perception and open-planner parameters for our
shuttle model would significantly improve the reliability of the AD
algorithm.

5.1 Open-Planner Developer Feedback
We sent a presentation of our results to the developers of the open-
planner AD algorithm. In response, they acknowledged that it
is a developing algorithm and we are engaged in more detailed
discussions with them on how to optimise the algorithm. They
also announced they are transitioning from Autoware.ai to Auto-
ware.universe which is a more developed and advanced platform.
Amongst their responses, they also pointed to the novelty of re-
ceiving feedback on the reliability of cybersecurity test cases in
addition to safety test cases.

6 RELATEDWORK
The closest contributions to our work are Yang et al. [20], Hally-
burton et al. [8], Cao et al. [3] and Zhu et al. [21]. Each of these
papers utilises a LiDAR spoofing threat model that varies based
on the method for delivering the attack, adversarial generation
and the type AD algorithm. Hallyburton et al. [8] target camera
and LiDAR sensor fusion. They identify a blind spot between the
camera and LiDAR sensor at the rear of the target AV. They use a
malicious, 3D LiDAR point cloud array to inject malicious spoof
points into the rear angle of the target AV. The attack was tested in a
high-fidelity simulation and real-world against multiple perception
algorithms. The results revealed a high rate of success utilising this
attack. Cao et al [3], Yang et al [20], and Zhu et al [21] developed
LiDAR spoofing attacks based on a threat model of a malicious
LiDAR 3D point cloud injection in the road environment and by
the roadside. Each of these contributions demonstrated that cyber
attack results from AV simulation testing can be used to identify
key parameters such as point cloud density, attack location and
duration and that these parameters can be optimised to test the
robustness of perception algorithms. We chose to extend from the
related literature, in our work, in three areas; simulation testing
configuration, safety criteria evaluation and target AD algorithm
is in the developmental phase and is used within a real-world AV
program. A feature of the selected work is that simulation testing
often selected only one frame or a limited amount of frames and
therefore the full driving mission was not observed. Whilst this is
useful for reducing testing resource usage, running massive scale
of tests and applicable to the scope of their work, as our study eval-
uates the end-to-end AD algorithm and combines safety, our study
focused on conducting simulation testing for the entire driving
mission. Secondly, the evaluation of cyber attacks focused on attack
success rate and attack parameters whilst the safety impact on the
AV as a result of cyber attacks was not as clearly elaborated. In our
study, we evaluate the cyber attack test cases with the same criteria
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as the safety case to derive the category of safety violation. Lastly,
most of the simulations use default AV configurations and evaluate
well-established algorithms. Our study uses a simulator configured
for a real-world AV and evaluates an AD algorithm in the devel-
opmental stage where reliability and optimisation are required to
be assessed under safety, non-cyber test cases before the impact of
cyber attacks can be understood.

7 CONCLUSION
We developed a combined methodology for safety and cybersecu-
rity utilising a digital twin, high-fidelity simulation environment
and a real-world AV shuttle for public transportation. We evaluated
our approach on a developing AD algorithm consisting of open-
planner, as the mission and motion-planning module. We evaluated
the reliability of the AD algorithm on an overtaking scenario using
test cases for safety and cybersecurity based on a LiDAR spoofing
attack. The combined safety and cybersecurity testing enabled us
to assess the outcome of the cyber attack in comparison to the
ground truth of the reliability of the AD algorithm established in
the safety testing. This clearly demonstrated the effect of cyber-
attacks regardless of the reliability of the algorithm. We were also
able to assess, from the performance of the AD algorithm, that the
algorithm is not optimised for the overtaking manoeuvre. In our
research, we discovered several sensitive parameters that play a
significant role in the safety outcome of the AV and the success
rate of the cyber attack. Furthermore, we provided the results of
our testing platform to the designer of the open-planner algorithm.
Based on their feedback a process has been initiated to optimise the
AD algorithm. All test scripts and software resources including our
AV simulation configurations and research data used in the com-
bined safety and security testing will be available for the research
community on GitHub.

7.1 Future Work
Future work consists of diversifying the safety scenarios to include a
more complex and broader range of scenarios. Cybersecurity testing
will be evolved to develop black-box testing models. Furthermore,
we will continue to develop methods for optimising testing to factor
in real-world limitations such as resource usage and time.
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