
43Genome Informatics 11: 43-52 (2000)

Biological Sequence Compression Algorithms

Toshiko Matsumoto1,3 Kunihiko Sadakane2 Hiroshi Imail
toshikom@is.s.u-tokyo.ac.jp sada@dais.is.tohoku.ac.jp imai@is.s.u-tokyo.ac.jp

1 Department of Information Science , University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan

2 Graduate School of Information Sciences , Tohoku University, 2-1-1 Katahira, Aoba-ku,
Sendai 980-8577, Japan

3 Presently , the author is with Hitachi Software Engineering Co., Ltd.

Abstract

Today, more and more DNA sequences are becoming available. The information about DNA
sequences are stored in molecular biology databases. The size and importance of these databases
will be bigger and bigger in the future, therefore this information must be stored or communicated
efficiently. Furthermore, sequence compression can be used to define similarities between biological
sequences.

The standard compression algorithms such as gzip or compress cannot compress DNA se-
quences, but only expand them in size. On the other hand, CTW (Context Tree Weighting Method)
can compress DNA sequences less than two bits per symbol. These algorithms do not use special
structures of biological sequences.

Two characteristic structures of DNA sequences are known. One is called palindromes or reverse
complements and the other structure is approximate repeats. Several specific algorithms for DNA
sequences that use these structures can compress them less than two bits per symbol.

In this paper, we improve the CTW so that characteristic structures of DNA sequences are
available. Before encoding the next symbol, the algorithm searches an approximate repeat and
palindrome using hash and dynamic programming. If there is a palindrome or an approximate
repeat with enough length then our algorithm represents it with length and distance. By using
this preprocessing, a new program achieves a little higher compression ratio than that of existing
DNA-oriented compression algorithms. We also describe new compression algorithm for protein
sequences.

Keywords: DNA, protein, compression, context tree weighting

1 Introduction

Today, the complete DNA sequences of many organisms are already known, and the completion of
human genome project is making steady progress. The information of DNA sequences, RNA sequences,
and amino-acid sequences of proteins are stored in molecular biology databases. It is well known that
the sizes of these databases are increasing nowadays very fast. Therefore it is needed to store and
communicate data efficiently. Furthermore, there are other reasons to study compression of biological
sequences.

Understanding the Properties of DNA Sequences Using Compression Algorithms Since
DNA sequences contain four symbols 'a,' 't,' 'g,' and 'c,' if these were totally random, the most
efficient way to represent them would be using two bits for each symbol. However, only a small
fraction of DNA sequences result in a viable organism, therefore the sequences which appear in a
living organism are expected to be nonrandom and have some constraints. In other words, they
should be compressible. The studies in compression algorithms for DNA sequences answer the basic

44 Matsumoto et al.

question about the compressibility of DNA sequences, and from a viewpoint of information science,
we can use compression techniques to capture the properties of DNA sequences. It is known that
DNA sequences have two characteristic structures. One is reverse complements, and the other is
approximate repeats. The reverse complement of a sequence is a reverse sequence whose each symbol
is replaced with its complement one. The approximate repeats are repeats that contains errors. There
have been developed several special-purpose compression algorithms for DNA sequences (Grumbach
and Tahi [3], Chen, Kwong and Li [1], Lanctot, Li and Yang [5]). These algorithms use the structures
and can achieve high compression ratio.

 There is a difference between the compression ratio of coding and non-coding regions of DNA
sequence, and this is supported by a biological hypothesis (Lanctot, Li and Yang [5]) . Not all of
the DNA sequence specify a protein. In higher eukaryotes (such as plants and animals) much of the
sequence is cut out before the cell translates it into protein. Random mutations in a DNA sequence
are thought to be more deleterious if they take place in a coding regions rather than in a non-coding
regions. Therefore the two regions should have different information theoretic entropy.

 With conditional compression ratio, we can evaluate the "distance" between pairs of DNA se-
quences (Chen, Kwong and Li [1]) . DNA sequences that are "close" to each other are required to
be "close" to each other on the evolutionary tree, thus the "distance" on the evolutionary tree can
be measured by compression algorithms. Therefore we can guess whether organisms are "close" on
the evolutionary tree using compression algorithms. The minimum alignment score also can be used
to estimate the distance between a pair of sequences, however it is good only to measure two genes
that are closely related. It can hardly handle simple changes like reversal, translocation, and shuffling.
Using conditional compression ratio is more robust than using the minimum alignment score. Note
that we can choose a compression algorithm for defining similarities of sequences so that the compres-
sion ratio and the score of the alignment have one-to-one correspondence. Thus compression of DNA
sequence is important not only for improvement of efficiency of storage or communication but also for
understanding the properties of DNA sequences.

Using DNA Sequences as a Challenging Subject for Compression Algorithms DNA se-

quences only contain four symbols, therefore two bits per symbol is enough to represent these sequences
even if they are totally random. However if one applies the standard text compression software such
as compress or gzip, they cannot compress DNA sequences but only expand the file with more than
two bits per symbol. Thus DNA sequences are important as a new challenge for study of compression
algorithms. There are some reasons pointed out. These software are designed mainly for English text
compression, while the regularities in DNA sequences are much subtler (Chen, Kwong and Li [1]).
Generally the windows of the methods based on dictionary have a fixed width of small size. The use of
small windows is efficient on text whose redundancy is local. However, in the case of DNA sequence,
redundancies may occur at very long distances and factors can be very long (Grumbach and Tahi [3]) .

 Huffman's code also fails badly on DNA sequences both in the static and adaptive model, because
there are only four kind symbols in DNA sequences and the probabilities of occurrence of the symbols
are not very different.

 Concerning compression ratio, PPM (Cleary and Witten [2]) is one of the best compression al-
gorithms in practice. However it cannot compress DNA sequences less than two bits per symbol
either.

 It is true that the compression of DNA sequence is a difficult task for general compression algo-
rithms, but at the same time, from the viewpoint of compression theory it is an interesting subject
for understanding the properties of various compression algorithms.

Contributions of this paper Reverse complements and approximate repeats are known as char-
acteristic structures of DNA sequences. We introduce a new DNA-oriented compression algorithm
that uses context tree weighting and takes account of the characteristic structures of DNA sequences.

45Biological Sequence Compression Algorithms

The new algorithm has a function for searching reverse complements or approximate repeats using
hash table and dynamic programming, and if there is one, the algorithm represents it by its length
and distance. Our new algorithm can achieve a little higher compression ratio than that of existing
special purpose compression algorithms for DNA sequences.

 It is known that compression of proteins is a difficult task (Nevill-Manning and Witten [7]) . The
standard compression algorithms such as gzip or compress cannot compress proteins but only expand
them in size. There is a special purpose compression algorithm for proteins that takes account of the
underlying biochemical principles and it can compress proteins, although the compression ratio is not
very high. Therefore proteins are said to be incompressible. We show that many general compression
algorithms can really compress proteins.

2 Compression Algorithms

We briefly explain two compression algorithms used in our algorithm.

2.1 PPM

PPM (Cleary and Witten [2]) is a kind of statistical compression algorithms and has a high compression
ratio. PPM predicts the probability of next symbol using preceding several symbols called context,
and then compresses a sequence of symbols one by one with this probability. The maximum value of
length d of the context is called order of PPM. This value is one of parameters of PPM.

Calculate Probability using Context For each substring of input data whose length is less than
or equal to order, PPM stores the frequency of the each symbol that appears after the context. With
this values, PPM estimates the probability of the next symbol.

Escape Symbol A special escape symbol esc is defined in the PPM algorithm for an appearance of

a novel symbol which cannot be expected from the information of frequencies for the context whose

length is d. The esc symbol is a special symbol for shortening the length of the context. If the decoder

find the symbol esc, it changes the context to one whose length is d-1. For an appearance of a novel

symbol which has never appeared and PPM has no information of frequency about the symbol, the

context whose length is-1 is defined null context. In the context, all possibilities of symbols which

can appear are equal.

The Value of order If the value of order becomes bigger, the precision of the prediction is improved.

However on the other hand, the flexibility of the prediction is lost and the frequency of esc increases.

The increase of the frequency of esc has a bad influence on the compression ratio, therefore there is an

optimal value of order. For each sequence, the optimal value of order exists. It is well known that the

optimal value of order is five for many English texts. For DNA sequences, in many cases the optimal

value of order is less than five.

2.2 Context Tree Weighting

Context Tree Weighting (CTW) is a universal compression algorithm for FSMX sources proposed
by Willems et al [11]. and expected to have good compression ratio with an unknown model and
unknown parameters. FSMX sources are related to Tree sources with the property that the next
symbol probabilities depend on preceding several symbols. The PPM algorithm uses only one model,
but the CTW guesses the probabilities by adding up all possible models using weighting.

46 Matsumoto et al.

Context Tree The contexts are represented in a tree form and called a context tree. Each node
of the tree represents a context. All the tree have to satisfy is the restrictions of FSMX sources, for
convenience of explanation we assume that the maximum depth of the context tree is D. At each
node one store the frequency of the each symbol that appears after the context. Each value of the
frequencies of a parent node is the summation of the values of its children.

Probabilities at Each Context For each context, the probability of the next symbol is estimated
with the frequencies of symbols stored in the corresponding node of the context tree. For the proba-
bility of a symbol c at a context s we write Pse (c). This value is calculated by the concept of the PPM
algorithm. In the original algorithm of Willems et al [11] the Krichevski-Trofimov (KT) probability
estimator is used. In the PPM algorithm, a special escape symbol esc is used. If a novel symbol c
appears in a context sd which has depth of d, esc is encoded in context sd and then c is encoded in a
context sd-1 which has depth of d-1. To use the idea of esc in the CTW program, the estimate for
the probability of the symbol c is the probability of esc in the context sd times the probability of c in
the shorter context sd-1 . In the null context A, probabilities of symbols they have not appeared are
all equal and they divide the escape probability equally among themselves. We denote by A the set
of all alphabets. The probability Pe t (c) is calculated as follows:

1. calculate Pre(c)

(a) let m = 0
(b) for all cEA if c has not appeared, m=m+1
(c) for all cEA

 if c has appeared, Pre(c) is calculated according as PPM
 else, Pre (c)=Pre(esc)/m

2. calculate Psed (1<d<D)

 (a) let e = 0

 (b) for all c E A if c has not appeared in the context sd, e = e + Psed (c)

 (c) for all c E A
 if c has appeared in the context sd, Psed+1 (c) is calculated according as PPM

 else, Psed+1 (c) = Psed+1(esc)•Psed (c)/e

Adding up Models Assume that a symbol xt has a context Os. For each context s, according the
following expression Psw is calculated. Psw, is the weighted probability under Pse , and the next symbol
is encoded on the basis of this value at the null context Prw . 7 is a weighting parameter of CTW and
determine the importance of long or short contexts. If -y is large, CTW regards the short contexts as

important, and if -y is small, CTW regards the long contexts as important. Note that 0 < < 1.

II n

47Biological Sequence Compression Algorithms

By defining

we obtain the expression

The initial value of ƒÀ is 1.0 because if xt-11 is a null sequence then Pse (xti-1) is 1.0 and thus Psw (xti-1)

is 1.0. Therefore ƒÀ can be computed incrementally as follows:

3 DNA-Oriented Compression Algorithms

It is known that DNA sequences have characteristic structures that cannot be observed in other kinds
of data such as English text. There are several special purpose compression and entropy estimating
algorithms for DNA sequence that use these structures are studied and the compression ratio of these
algorithms are better than two bits per symbol (Grumbach and Tahi [3], Chen, Kwong and Li [1],
Lanctot, Li and Yang [5]) .

3.1 Characteristic Structures of DNA Sequences

Reverse Complement In DNA sequences, the symbols 'a' and 't' are the complement of each
other, and the symbols 'g' and 'c' are also the complement to each other. A string yl is the reverse
complement of xn1 if xi and yn+1-i are the complement of each other for 1 < i < n, and a pair of
strings yni and xni is called palindrome. For example, the reverse complement of aaacgt is acgttt .

 There are some DNA sequences which have long reverse complements. "CHMPXX" is the com-
plete chromosome III from yeast and one of the standard benchmark sequences used in DNA-oriented
compression and entropy estimating algorithms. The benchmark sequences are available at [6] . "CHM-
PXX" has 121024 symbols in it and it has an about 10000 symbols long reverse complement. "VACCG"
is the complete gene of a virus and also one of the standard benchmark sequence. "VACCG" has
191737 symbols in it and it has an about 8000 symbols long reverse complement. Therefore the
specific redundancy is important for compression algorithms.

Approximate Repeats DNA sequences, especially ones of higher eukaryotes, have many repeats.
It has been conjectured that this is because genes duplicate themselves sometimes for evolutionary
or simply for "selfish" purposes. Containing many repeats is favorable for compression algorithms,
however such regularities are often blurred by random mutations. Therefore it is important to adapt
to repeats that contain errors.

3.2 DNA-oriented Compression Algorithms

Biocompress-2 Grumbach and Tahi [3] proposed lossless compression algorithms for DNA se-
quence, namely Biocompress-2. The algorithm is based on LZ77. Biocompress-2 searches for exact
repeats or reverse complements and encodes them with length and position of it. Literal encoding and
second order arithmetic encoding is also used. In literal encoding each symbol is encoded as a two bit
number. Biocompress-2 compares these three methods and chooses the most efficient one dynamically.

48 Matsumoto et al.

GenCompress Chen, Kwong and Li [1] developed GenCompress that is also a compression algo-
rithm for DNA sequence based on LZ77. GenCompress uses both approximate repeats and reverse
complements and also uses reverse complements that contain errors. The algorithm searches approxi-
mate repeats or approximate reverse complements, and encodes it with length, position and the errors.
If an approximate repeat or an approximate reverse complement contains many errors, it does not

provide profit in the encoding, therefore GenCompress uses second order arithmetic encoding.

4 New DNA-Oriented Compression Algorithms Using Context Tree

Weighting

We propose a new DNA compression algorithm. It is a combination of LZ77-type algorithm like
GenCompress and the CTW algorithm. Long exact/approximate repeats are encoded by LZ77-type
algorithm, while short repeats are encoded by the CTW. We also use heuristics to improve compression
ratios described as follows.

4.1 Judgment of Using Edit Operations

Our new function searches approximate repeats or approximate reverse complements using dynamic
programming. With more edit operations the length can be enlarged, however we must determine
where to stop dynamic programming to maximize the profit and improve the compression ratio. The
algorithm estimates the number of bits needed to encode the repeat by CTW using the compression
ratio of the sequence already encoded, and find the combination of edit operations that provides the
biggest difference. When the length is short, the distance is long or many edit operations is needed,
the structure cannot provide profit and then the algorithm does not use it.

4.2 Non-Greedy Search of Repeats

If the algorithm searches reverse complements or repeats greedy, it may miss longer one. This is
illustrated in Figure 1. To cope with this, we defer the selection of these structures with a lazy
evaluation mechanism (Horspool [4]) . After a reverse complement or an approximate repeat of length
1 has been found, the algorithm searches for a longer structure at the next M symbols. If another
reverse complement or approximate repeat is found and that provides more profit, the previous one
is abandoned. Otherwise, the original one is kept.

reverse complement

Figure 1: Overlapping two reverse complements.

1. find an optimal reverse complement or repeat for vz which begins from the current position i.

 the length of the structure is denoted 10.

2. if l0 is smaller than lb, goto 9.

49Biological Sequence Compression Algorithms

3. calculate the number of bits needed to encode lo symbols using LZ77-like function and store in
 LZ0.

4. estimate the number of bits needed to encode lo symbols using CTW and store in CTWo.

5. if LZo < CTWo (the structure does not provide profit) goto 9.

6. for k=1 to M

(a) find an optimal reverse complement or repeat for v+k. the length of the structure is denoted
by lk.

(b) if lk is larger than lb, do the following.
 i. calculate the number of bits needed to encode lk symbols using LZ77-like function and

 store in LZk.

 ii. estimate the number of bits needed to encode lk symbols using CTW and store in
CTWk

7. if LZ0—CTWo is larger than LZk—CTWk for 1 < k < M then encode the structure using

LZ77-like function and goto 1.

8. find k such that LZk—CTWk is larger than LZk,—CTWk, for 0 < k' < M and encode k—1

symbols using CTW and goto 1.

9. encode one symbol using CTW and goto 1.

4.3 Experimental Results

Environment of Experiments We use a SUN Ultra60 workstation (CPU Ultra SPARC-II 360
MHz, memory 2048MB) and a Sun Enterprize 450 workstation (CPU Ultra SPARC-II 4x400MHz,
memory 4096MB) running Solaris 2.7. If the algorithm searches reverse complements or approximate
repeats, more time is needed to execute program than original CTW. And the speed of non-greedy
algorithm is slower than that of greedy-algorithm. The maximum number of edit operations also effects
the speed. If the sequence is long or contains many reverse complements or approximate repeats, much
time is needed. For short sequences such as "HUMDYSTROP" we need about 8 minutes and for long
sequences such as "HEHCMVCG" or "SCCHRIII" we need some hours. In many cases the optimal
value of order of CTW is 32 (Sadakane, Okazaki, Matsumoto and Imai [9]), therefore we use this
value. For the value of 7 which indicates the importance of long and short contexts, we examined
various values and checked the effect and tendency of 'y. The non-greedy algorithm checks the next
32 symbols.

Compression Ratio of Each Algorithm The compression ratio of each algorithm is shown in
Table 1. Biocompress-2 (Grumbach and Tahi [3]) and GenCompress (Chen, Kwong and Li [1]) are
DNA oriented compression programs. When our algorithm can achieve higher compression ratio than
Biocompress-2 and GenCompress, the compression ratio are written in bold face.

 normal CTW The original CTW program.

CTW+LZ A non-greedy program which searches exact and approximate reverse complements and
 exact and approximate repeats. This program encodes these structures using LZ77-like function

 and edit operations are encoded by arithmetic coding. Symbols which are not encoded in a
 repeat are encoded by order-32 CTW.

In the most cases, our new program can achieve a little higher compression ratio than Biocompress
and GenCompress.

50 Matsumoto et al.

Table 1: Compression ratios of algorithms which encode repeats by using LZ77-like function.

5 Protein Compression Algorithms

Proteins are sequences drawn from amino acids. There are 20 kinds of amino acids except for some
peculiar ones, therefore the size of alphabet of proteins is 20. It is known that the compression of
proteins is also very difficult (Nevill-Manning and Witten [7]) . The size of alphabet is 20, consequently
the entropy of proteins is equal to or less than log2(20)=4.322 per symbol. However the compression
ratios by the widely used compression algorithms compress or gzip are more than log2(20) bits per
symbol. Though PPMD+ can achieve high compression ratio for English text, it cannot compress
proteins either.

Compression results are shown in Table 2. The unit of compression ratio is bit per symbol. The
proteins are used in a protein-oriented compression algorithm (Nevill-Manning and Witten [7]) and
available at [8] . When an algorithm can compress a sequence less than log2(20) bits per symbol, the
corresponding compression ratio is written in bold face.

 compress, bzip2 and gzip are widely used compression programs compress, bzip2 and gzip. nor-
mal PPMD+gives the results for the statistical compression program PPMD+ (Teahan [10]). The
value of order is set to 5 which is known as the best value for compression ratio of English text.
adapted PPMD+ is a modified PPMD+ program whose value of order is adapted. We test the value
of order from 0 to 15 and the optimal order for each sequence is in parenthesis next to compression
ratio.

arith implements the adaptive arithmetic coding. lz-ari is the enhanced arithmetic coding with an
LZ77-like function. The size of alphabet is 20.

 The values of CTW20 are results of an improved CTW program whose size of alphabet is changed
to 20. The value of order is represented in parenthesis. We examine the effect of the value of r. In
many case about 0.005 is the optimal, and in Table 2, the best values are given. We cannot examine the
compression ratio of CT W20(16) for Human and Saccharomyces Cerevisciae due to lack of memory.
lz-CTW encodes exact repeats. Single symbols are encoded by order-8 CTW. lza-CTW is the same
as the lz-CTW, except that it encodes approximate repeats by an LZ77-like function.

CP (Nevill-Manning and Witten [7)) is a protein-oriented compression algorithm on the basis of
PPM and takes account of the underlying biochemical principles. The algorithm uses the probabilities
that an amino acid will mutate to another and weights the contexts.

As widely used compress and gzip, in all cases cannot compress proteins less than log2(20) bits
per symbol. They only expand in size. bzip2 can compress three proteins less than log2(20) bits per

Biological Sequence Compression Algorithms 51

Table 2: The results of general compression algorithms and proteins

symbol.

arith can compress all proteins less than log2(20) bits per symbol. lz-ari also can compress all
proteins. Although in all cases normal PPMD+ only expands in size, adapted PPMD+can really
compress all of the proteins less than log2(20) bits per symbol.

CTW20 can compress each protein and the results of CT W20(16) are higher a little than CTW20(8).
The optimal values of sy are 0.0005, 0.0005, 0.001 and 0.0005 for Haemophilus Influenzae, Human,
Methanococcus Janaschii and Saccharomyces Cerevisciae. The variation of the compression ratio by
changing the value of r is small, just like the case of original CTW.

lz-CTW also can compress all proteins. The difference between the compression ratio of lz-ari and
lz-CTW indicates the difference between the power of arithmetic coding and CTW. The compression
ratio of CTW is improved because of LZ77-like function, therefore the sequences have repeats in it.
Furthermore, the compression ratio, especially for Human, is improved by the lza-CTW that encodes
approximate repeats. Each sequence is a connection of proteins of a organism, therefore the LZ77-like
function can find repeat both from the same protein and from the previous proteins. The existence
of exact and approximate repeats in a sequence may indicate that proteins have repeats, and may
indicate that a organism has many similar proteins. Note that it is possible that both are true. We
have no idea.

CP can compress all of the proteins less than log2(20) bits per symbol. The compression ratio
are improved by enlarging the value of order, however the gains are little. This appears that little
compression is possible using algorithms that rely on Markov dependence (Nevill-Manning and Wit-
ten [7]) . However, this algorithm will be improved by using our techniques to combine statistical
compression algorithms with CTW.

If there are some characteristic structures in proteins, the special purpose algorithms that use the
structures can achieve high compression ratio.

52 Matsumoto et al.

6 Concluding Remarks

We have proposed DNA and protein sequence compression algorithms. For DNA sequences, our
algorithm slightly outperforms GenCompress by encoding bases which are not encoded by repeats by
CTW. For protein sequences, our algorithms significantly improves the result of the protein-oriented
compression algorithm. Furthermore, ours will be improved by combining CTW with the protein-
oriented algorithm.

Though improvements of our algorithms seem to be small, the improvements are achieved for most
of the examined sequences. Therefore our algorithms can be used to define more precise similarities
between sequences. This is important to classify biological sequences and make phylogeny trees.

Acknowledgement

The work of the second author was supported in part by the Grant-in-Aid on Priority Areas (C),
Genome Information Science,' of the Ministry of Education, Science, Sports and Culture of Japan.
The work of the third author was supported in part by the Grant-in-Aid on Priority Areas (A),
Genome Science.

References

[1] Chen, X., Kwong, S., and Li. M., A compression algorithm for DNA sequences and its applications
in genome comparison, Genome Informatics, 10:52-61, December 1999.

[2] Cleary, J.G. and Witten, I.H., Data compression using adaptive coding and partial string match-
ing, IEEE Trans. on Commun., COM-32(4):396-402, April 1984.

[3] Grumbach, S. and Tahi, F., A new challenge for compression algorithms: genetic sequences,
Information Processing & Management, 30:875-886, 1994.

[4] Horspool, R.N., The effect of non-greedy parsing in Ziv-Lempel compression methods, Proc. of
IEEE Data Compression Conference, 302-311, 1995.

[5] Lanctot, J.K., Li, M., and Yang, E., Estimating DNA sequence entropy. Proceedings of the 11th
Annual ACM-SIAM Symposium on Discrete Algorithms, 409-418, 2000.

[6] National Center for Biotechnology Information, Entrez Nucleotide Query,
http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=ns.

[7] Nevill-Manning, C.G. and Witten, I.H., Protein is incompressible, Proc. of IEEE Data Compres-
sion Conference, 257-266, 1999.

[8] Craig G. Nevill-Manning. Protein is incompressible, http://sequence.rutgers.edu/DCC99/.

[9] Sadakane, K., Okazaki, T., Matsumoto, T., and Imai, H., Implementing the context tree weighting
method by using conditional probabilities. Proc. of 22th Symposium on Information Theory and
its Applications, 673-676, SITA, December 1999, (in Japanese).

[10] Teahan, W. J., PPMD+. Program. http://www.cs.waikato.ac.nz/-wjt/sof tware/ppm.tar.gz

[11] Willems, F. M. J., Shtarkov, Y. M., and Tjalkens, T. J., The context tree weighting method: basic
properties. IEEE Trans. Inform. Theory, IT-41(3):653-664, May 1995.

