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Abstract—General video game playing aims at designing an
agent that is capable of playing multiple video games with no hu-
man intervention. In 2014, the General Video Game Artificial Intel-
ligence (GVGAI) competition framework was created and released
with the purpose of providing researchers a common open-source
and easy-to-use platform for testing their artificial intelligence (AI)
methods with potentially infinity of games created using the video
game description language (VGDL). The framework has been ex-
panded into several tracks during the last few years to meet the
demands of different research directions. The agents are required
either to play multiple unknown games with or without access
to game simulations, or to design new game levels or rules. This
survey paper presents the VGDL, the GVGAI framework, existing
tracks, and reviews the wide use of GVGAI framework in research,
education, and competitions five years after its birth. A future plan
of framework improvements is also described.

Index Terms—Artificial intelligence, computational intelligence,
games, General Video Game AI (GVGAI), general video game
playing (GVGP), video game description language (VGDL).

I. INTRODUCTION

GAME-BASED benchmarks and competitions have been
used for testing artificial intelligence capabilities since the

inception of the research field. Since the early 2000s, a number
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of competitions and benchmarks based on video games have
sprung up. So far, most competitions and game benchmarks
challenge the agents to play a single game, which leads to over-
specialization, or overfitting, of agents to individual games. This
is reflected in the outcome of individual competitions—for ex-
ample, over more than five years, the Simulated Car Racing
Competition [1]1 ran, submitted car controllers got better at
completing races fast, but incorporated more and more game-
specific engineering and arguably less of general artificial intel-
ligence (AI) and machine learning algorithms. Therefore, this
trend threatens to negate the usefulness of game-based AI com-
petitions for spurring and testing the development of stronger
and more general AI.

The General Video Game Artificial Intelligence (GVGAI)
competition [3] was founded on the belief that the best way to
stop AI researchers from relying on game-specific engineering
in their agents is to make it impossible. Researchers would
develop their agents without knowing what games they will be
playing, and after submitting their agents to the competition
all agents are evaluated using an unseen set of games. Every
competition event requires the design of a new set of games, as
reusing previous games would make this task impossible.

While the GVGAI competition was initially focused on
benchmarking AI algorithms for playing the game, the com-
petition and its associated software has multiple uses. In addi-
tion to the competition tracks dedicated to game-playing agents,
there are now tracks focused on generating game levels or rules.
There is also the potential to use GVGAI for game prototyping,
with a rapidly growing body of research using this framework
for everything from building mixed-initiative design tools to
demonstrating new concepts in game design.

The objective of this paper is to provide an overview of the
different efforts from the community on the use of the GVGAI
framework (and, by extension, of its competition) for general
game artificial intelligence. This overview aims at identifying
the main approaches that have been used so far for agent AI
and procedural content generation (PCG), in order to compare
them and recognize possible lines of future research within this
field. This paper starts with a brief overview of the framework

1We cite Yannakakis [1] and Russell [2] as standard references for Games
and AI (respectively) to reduce the number of non-GVGP references.
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and the different competition tracks, for context and complete-
ness, which summarizes work published in other papers by the
same authors. The bulk of this paper is centered in the next
few sections, which are devoted to discussing the various kinds
of AI methods that have been used in the submissions to each
track. Special consideration is given to the single-player plan-
ning track, as it has existed for longest and received the most
submissions up to date. This is followed by a section catalogu-
ing some of the noncompetition research uses of the GVGAI
software. The final few sections provide a view on the future
use and development of the framework and competition: how
it can be used in teaching, open research problems (specifically
related to the planning tracks), and the future evolution of the
competition and framework itself.

II. GVGAI FRAMEWORK

Ebner et al. [4] and Levine et al. [5] first described the need
and interest for such a framework that could accommodate a
competition for researchers to tackle the challenge of general
video game playing (GVGP). The authors proposed the idea of
the video game description language (VGDL), which was later
developed by Schaul [6], [7] in a Python framework for model-
based learning and released the first game engine in 2013. Years
later, Perez-Liebana et al. [3] implemented a version of Schaul’s
initial framework in Java and organized the first GVGAI compe-
tition, in 2014 [8], which employed games developed in VGDL.
In the following years, this framework was extended to accom-
modate two-player games [9], [10], level [11], rule [12] gen-
eration, and real-world physics games [13]. These competition
tracks accumulate hundreds of submissions. Furthermore, the
GVGAI framework and competition have been used as tools for
research and education around the globe, including their usage
in taught modules, M.Sc. and Ph.D. dissertation projects (see
Section XI).

VGDL is a text description language that allows for the
definition of 2-D, arcade, grid-based physics and (generally)
stochastic games and levels. Originally designed for single-
player games, the language now admits two-player challenges.
VGDL permits the definition of sprites (objects within the game)
and their properties (from speed and behavior to images or ani-
mations) in the sprite set. Thus, this set defines the type of sprites
that can take part in the game. Their interactions are regulated
in the interaction set, which defines the rules that govern the
effects of two sprites colliding with each other. This includes the
specification of score for the games. The termination set defines
how the game ends, which could happen due to the presence or
absence of certain sprites or due to timers running out. Levels
in which the games can be played are defined also in text files.
Each character corresponds to one or more sprites defined in the
sprite set, and the correspondence between sprites and charac-
ters is established in the mapping set. At the moment of writing,
the framework counts on 120 single-player and 60 two-player
games. Examples of VGDL games are shown in Fig. 1.

VGDL game and level files are parsed by the GVGAI frame-
work, which defines the ontology of sprite types and interactions
that are allowed. The benchmark creates the game that can be
played either by a human or a bot. For the latter, the framework

Fig. 1. Examples of VGDL games. From top to bottom, left to right: Butter-
flies, Escape, Crossfire, and Wait for Breakfast.

provides an API that bots (or agents, or controllers) can imple-
ment to interact with the game—hence, GVGAI bots can play
any VGDL game provided. All controllers must inherit from an
abstract class within the framework and implement a construc-
tor and three different methods: INIT, called at the beginning of
every game; ACT, called at every game tick and must return the
next action of the controller; and RESULT, called at the end of
the game with the final state.

The agents do not have access to the rules of the game (i.e.,
the VGDL description) but can receive information about the
game state at each tick. This information includes the game
status; i.e., winner, time step and score; state of the player (also
referred to in this paper as avatar), i.e., position, orientation,
resources, health points; and history of collisions and positions
of the different sprites in the game identified with a unique type
id. Additionally, sprites are grouped in categories attending to
their general behavior: nonplaying characters (NPCs), static,
movable, portals (which spawn other sprites in the game, or
behave as entry or exit point in the levels), and resources (that
can be collected by the player). Finally, each game has a different
set of actions available (a subset of left, right, up, down, use,
and nil), which can also be queried by the agent.

In the planning settings of the framework (single-player [8]
and two-player [10]), the bots can also use a forward model.
This allows the agent to copy the game state and roll it forward,
given an action, to reach a potential next game state. In these
settings, controllers have 1 s for initialization and 40 ms at each
game tick as decision time. If the action to execute in the game
is returned between 40 and 50 ms, the game will play the move
nil as a penalty. If the agent takes more than 50 ms to return
an action, the bot will be disqualified. This is done in order to
keep the real-time aspect of the game. In the two-player case,
games are played by two agents in a simultaneous move fashion.
Therefore, the forward model requires the agents to also supply
an action for the other player, thus facilitating research in general
opponent modeling. Two-player games can also be competitive
or cooperative, a fact that is not disclosed to the bots at any time.

The learning setting of the competition changes the informa-
tion that is given to the agents. The main difference with the
planning case is that no forward model is provided, in order to
foster research by learning to play in an episodic manner [14].
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This is the only setting in which agents can be written not only
in Java, but also in Python, in order to accommodate for popular
machine learning libraries written in this language. Game state
information (same as in the planning case) is provided in a Json
format, and the game screen can be observed by the agent at
every game tick. Since 2018, Torrado et al. [15] interfaced the
GVGAI framework to the OpenAI Gym environment.

The GVGAI framework can also be used for PCG. In the level
generation setting [11], the objective is to program a generator
that can create playable levels for any game received. In the rule
generation case [12], the goal is to create rules that allow agents
to play in any level received. The framework provides, in both
cases, access to the forward model, so agents can be used to test
and evaluate the content generated.

When generating levels, the framework provides the gener-
ator with all the information needed about the game such as
game sprites, interaction set, termination conditions, and level
mapping. Levels are generated in the form of 2-D matrix of char-
acters, with each character representing the game sprites at the
specific location determined by the matrix. The challenge also
allows the generator to replace the level mapping with a new
one. When generating rules, the framework provides the game
sprites and a certain level. The generated games are represented
as two arrays of strings. The first array contains the interaction
set, while the second array contains the termination conditions.

As can be seen, the GVGAI framework offers an AI chal-
lenge at multiple levels. Each one of the settings (or competi-
tion tracks) is designed to serve as benchmark for a particular
type of problems and approaches. The planning tracks provide
a forward model, which favors the use of statistical forward
planning and model-based reinforcement learning methods. In
particular, this is enhanced in the two-player planning track
with the challenge of player modeling and interaction with an-
other agent in the game. The learning track promotes research
in model-free reinforcement learning techniques and similar
approaches, such as evolution and neuroevolution. Finally, the
level and rule generation tracks focus on content creation prob-
lems and the algorithms that are traditionally used for this:
search-based [evolutionary algorithms (EAs) and forward plan-
ning methods], solver (SAT, answer set programming), cellular
automata, grammar-based approaches, noise, and fractals.

III. GVGAI COMPETITION

For each one of the settings described in the previous section,
one or more competitions have been run. All GVGAI compe-
tition tracks follow a similar structure: games are grouped in
different sets (ten games on each set, with five different lev-
els each). Public sets of games are included in the framework
and allow participants to train their agents on them. For each
year, there is one validation and one test set. Both the sets are
private and stored in the competition server.2 Participants can
submit their entries any time before the submission deadline to
all training and validation sets, and preliminary rankings are dis-

2www.gvgai.net; Intel Core i5 machine, 2.90 GHz, and 4 GB of memory.

TABLE I
WINNERS OF ALL EDITIONS OF THE GVGAI PLANNING COMPETITION

played in the competition website (the names of the validation
set games are anonymous).

A. Game Playing Tracks

In the game playing tracks (planning and learning settings),
the competition rankings are computed by first sorting all en-
tries per game according to victory rates, scores, and game
lengths, in this order. These per-game rankings award points to
the first 10 entries, from the first position to the tenth position:
25, 18, 15, 12, 10, 8, 6, 4, 2, and 1. The winner of the competi-
tion is the submission that sums more points across all games in
the test set. For a more detailed description of the competition
and its rules, the reader is referred to [8]. All controllers are run
on the test set after the submission deadline to determine the
final rankings of the competition, executing each agent multiple
times on each level.

1) Planning Tracks: The first GVGAI competition ever held
featured the single-player planning track, in 2014. A full descrip-
tion of this competition can be found in [8]. The year 2015 fea-
tured three legs in a year-long championship, each one of them
with different validation and test sets. The two-player planning
track [9] was added in 2016, with the aim of testing general
AI agents in environments that are more complex and present
more direct player interaction [10]. Since then, the single- and
two-player tracks have run in parallel until 2018.

Table I shows the winners of all editions up to date, along
with the section of this survey in which the method is included
and the paper that describes the approach more in depth.

2) Learning Track: The GVGAI single-player learning track
has run for two years: 2017 and 2018, both at the IEEE Confer-
ence on Computational Intelligence and Games (CIG).

In the 2017 edition, the execution of controllers was divided
into two phases: learning and validation. In the learning phase,
each controller has a limited amount of time, 5 min, for learning
the first three levels of each game. The agent could play as many
times as desired, choosing among these three levels, as long
as the 5-min time limit is respected. In the validation phase,
the controller plays ten times the levels 4 and 5 sequentially.
The results obtained in these validation levels are the ones used
in the competition to rank the entries. Besides the two sample
random agents written in Java and Python and one sample
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TABLE II
SCORE AND RANKING OF THE SUBMITTED AGENTS IN THE 2018’S GVGAI

LEARNING COMPETITION

agent using Sarsa written in Java, the first GVGAI single-player
learning track received three submissions written in Java
and one in Python [20]. The winner of this track is a naive
implementation of Q-Learning algorithm (see Section VI-A4).

The 2018 edition featured, for the first time, the integration
of the framework with the OpenAI Gym API [15], which results
as GVGAI Gym.3 This edition also ran with some relaxed con-
straints. First, only three games are used for the competition,
and they are made public. Only two levels for each are provided
to the participants for training purposes, while the other three
are kept secret and used for computing the final results. Second,
each agent has an increased decision time of 100 ms. Third, the
participants were free to train their agent by themselves using as
much time and computational resources as they wanted before
the submission deadline.

This edition of the competition received only two entries,
fraBot-RL-QLearning and fraBot-RL-Sarsa, submitted by the
same group of contributors from the Frankfurt University of
Applied Science. The results of the entries and sample agents
(random, DQN, Prioritized Dueling DQN, and A2C [15]) are
summarized in Table II. For comparison, the planning agent
open loop expectimax tree search (OLETS) (with access to the
forward model) is included. DQN and Prioritized Dueling DQN
are outstanding on level 3 (test level) of game 1 because level 3 is
very similar to level 2 (training level). Interestingly, the sample
learning agent DQN outperformed OLETS on the third level of
game 1. DQN, Prioritized Dueling DQN and A2C are not applied
to game 3 because of the different game screen dimensions of
different levels. We would like to refer the readers to [15] for
more information about the GVGAI Gym.

B. PCG Tracks

In the PCG tracks, participants develop generators for levels
or rules that are adequate for any game or level (respectively)
given. Due to the inherent subjective nature of content genera-
tion, the evaluation of the entries is done by human judges who
attend the conference where the competition takes place. For
both tracks, during the competition day, judges are encouraged
to try pairs of generated content and select the one they liked
(one, both, or neither). Finally, the winner was selected based
on the generator with more votes.

1) Level Generation Track: The first level generation com-
petition was held at the International Joint Conference on

3https://github.com/rubenrtorrado/GVGAI_GYM

Artificial Intelligence (IJCAI), in 2016. This competition re-
ceived four participants. Each one of them was provided a
month to submit a new level generator. Three different level
generators were provided in order to help the users get started
with the system (see Section VII for a description of these).
Three out of the four participants were simulation-based level
generators, while the remaining one was based on cellular au-
tomata. The winner of the contest was the Easablade generator,
a cellular automata described in Section VII-A4. The compe-
tition was run again on the following year at IEEE CIG 2017.
Unfortunately, only one submission was received; hence, the
competition was canceled. This submission used an n-gram
model to generate new constrained levels using a recorded player
keystrokes.

2) Rule Generation Track: The rule generation track [12]
was introduced and held during CIG 2017. Three different sam-
ple generators were provided (see Section VIII), and the contest
ran over a month’s period. Unfortunately, no submissions were
received for this track.

IV. METHODS FOR SINGLE-PLAYER PLANNING

This section describes the different methods that have been
implemented for single player planning in GVGAI. All the con-
trollers that face this challenge have in common the possibility
of using the forward model to sample future states from the
current game state, plus the fact that they have a limited action-
decision time. While most attempts abide by the 40-ms decision
time imposed by the competition, other efforts in the literature
compel their agents to obey a maximum number of calls of the
forward model.

Section IV-A briefly introduces the most basic methods that
can be found within the framework. Then, Section IV-B de-
scribes the different tree search methods that have been imple-
mented for this setting by the community, followed by evolu-
tionary methods in Section IV-C. Often, more than one method
is combined into the algorithm, which gives place to hybrid
methods (see Section IV-D) or hyperheuristic algorithms (see
Section IV-E). Further discussion on these methods and their
common takeaways have been included in Section X.

A. Basic Methods

The GVGAI framework contains several agents aimed at
demonstrating how a controller can be created for the single-
player planning track of the competition [8]. Therefore, these
methods are not particularly strong.

The simplest of all methods is, without much doubt, doNoth-
ing. This agent returns the action nil at every game tick with-
out exception. The next agent in complexity is sampleRandom,
which returns a random action at each game tick. Finally, on-
esteplookahead is another sample controller that rolls the model
forward for each one of the available actions in order to select
the one with the highest action value, determined by a function
that tries to maximize score while minimizing distances to NPCs
and portals.
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B. Tree Search Methods

One of the strongest and influential sample controllers is
sampleMCTS, which implements the Monte Carlo tree search
(MCTS) algorithm for real-time games. Initially implemented
in a closed loop version (the states visited are stored in the tree
node, without calling forward model during the tree policy phase
of MCTS), it achieved the third position (out of 18 participants)
in the first edition of the competition.

The winner of that edition, Couëtoux, implemented OLETS,
which is an open loop (states visited are never stored in the
associated tree node) version of MCTS, which does not include
roll-outs and uses open loop expectimax (OLE) for the tree
policy. OLE substitutes the empirical average reward by rM ,
a weighted sum of the empirical average of rewards, and the
maximum of its children rM values [8].

Schuster, in his M.Sc. thesis [21], analyzes several enhance-
ments and variations for MCTS in different sets of the GVGAI
framework. These modifications included different tree selec-
tion, expansion, and play-out policies. Results show that com-
binations of move-average sampling technique (MAST) and
n-gram selection technique (NST) with progressive history pro-
vided an overall higher rate of victories than their counterparts
without these enhancements; although this result was not consis-
tent across all games (with some simpler algorithms achieving
similar results).

In a different study, Soemers [19], [22] explored multiple en-
hancements for MCTS: progressive history and NST for the tree
selection and play-out steps, tree reuse (by starting at each game
tick with the subtree grown in the previous frame that corre-
sponds to the action taken, rather than a new root node), bread-
first tree initialization (direct successors of the root note are
explored before MCTS starts), safety prepruning (prune those
nodes with high number of game loses found), loss avoidance
(MCTS ignores game lose states when found for the first time by
choosing a better alternative), novelty-based pruning (in which
states with features rarely seen are less likely to be pruned),
knowledge-based evaluation [23], and deterministic game detec-
tion. The authors experimented with all these enhancements in
60 games of the framework, showing that most of them improved
the performance of MCTS significantly, and their all-in-one
combination increased the average win rate of the sample agent
in 17 percentage points. The best configuration was the winner
of one of the editions of the 2016 competitions (see Table I).

F. Frydenberg [24] et al. studied yet another set of enhance-
ments for MCTS. The authors showed that using MixMax back-
ups (weighing average and maximum rewards on each node)
improved the performance in only some games, but its com-
bination with reversal penalty (to penalize visiting the same
location twice in a play-out) offers better results than those of
vanilla MCTS. Other enhancements, such as macroactions (by
repeating an action several times in a sequence) and partial ex-
pansion (a child node is considered expanded only if its children
have also been expanded) did not improve the results obtained.

Perez-Liebana et al. [23] implemented KB-MCTS, a version
of MCTS with two main enhancements. First, distances to dif-
ferent sprites were considered features for a linear combination,

where the weights were evolved to bias the MCTS roll-outs. Sec-
ond, a knowledge base (KB) is kept about how interesting for the
player the different sprites are, where interesting is a measure
of curiosity (roll-outs are biased toward unknown sprites) and
experience (a positive/negative bias for getting closer/farther to
beneficial/harmful entities). The results of applying this algo-
rithm to the first set of games of the framework showed that the
combination of these two components gave a boost in perfor-
mance in most games of the first training set.

The work in [23] has been extended by other researchers in
the field, which also puts a special effort on biasing the Monte
Carlo (MC) simulations. Chu et al. [25] modified the random
action selection in MCTS roll-outs by using potential fields,
which bias the roll-outs by making the agent move in a direction
akin to the field. The authors showed that KB-MCTS provides
a better performance if this potential field is used instead of
the Euclidean distance between sprites implemented in [23].
Additionally, in a similar study [26], the authors substituted the
Euclidean distance for a measure calculated by a path-finding
algorithm. This addition achieved some improvements over the
original KB-MCTS, although the authors noted in their study
that using path-finding does not provide a competitive advantage
in all games.

Another work by Park and Kim [27] tackles this challenge
by: 1) determining the goodness of the other sprites in the game;
2) computing an influence map (IM) based on this; and 3) using
the IM to bias the simulations, in this occasion by adding a third
term to the upper confidence bound (UCB) equation [1] for the
tree policy of MCTS. Although not compared with KB-MCTS,
the resultant algorithm improves the performance of the sample
controllers in several games of the framework, albeit performing
worse than these in some of the games used in the study.

Biasing roll-outs is also attempted by Santos et al. [28], who
introduced redundant action avoidance (RAA) and nondefeat
policy (NDP); RAA analyzes changes in the state to avoid se-
lecting sequences of actions that do not produce any alteration
on position, orientation, properties, or new sprites in the avatar.
NDP makes the recommendation policy ignore all children of
the root node who found at least one game loss in a simula-
tion from that state. If all children are marked with a defeat,
normal (higher number of visits) recommendation is followed.
Again, both modifications are able to improve the performance
of MCTS in some of the games, but not in all.

Waard et al. [29] introduced the concept of options of
macroactions in GVGAI and designed option MCTS (O-
MCTS). Each option is associated with a goal, a policy, and
a termination condition. The selection and expansion steps in
MCTS are modified so the search tree branches only if an option
is finished, allowing for a deeper search in the same amount of
time. Their results show that O-MCTS outperforms MCTS in
games with small levels or a few number of sprites, but loses in
comparison to MCTS when the games are bigger due to these
options becoming too large.

In a similar line, Perez-Liebana et al. [13] employed macroac-
tions for GVGAI games that used continuous (rather than grid-
based) physics. These games have a larger state space, which,
in turn, delays the effects of the player’s actions and modifies
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the way agents navigate through the level. Macroactions are de-
fined as a sequence or repetition of the same action during M
steps, which is arguably the simplest kind of macroactions that
can be devised. MCTS performed better without macroactions
on average across games, but there are particular games where
MCTS needs macroactions to avoid losing at every attempt. The
authors also concluded that the length M of the macroactions
impacts different games distinctly, although shorter ones seem
to provide better results than larger ones, probably due to a more
fine control in the movement of the agents.

Some studies have brought multiobjective optimization to this
challenge. For instance, Perez-Liebana et al. [30] implemented
a multiobjective version of MCTS, concretely maximizing score
and level exploration simultaneously. In the games tested, the
rate of victories grew from 32.24% (normal MCTS) to 42.38%
in the multiobjective version, showing great promise for this ap-
proach. In a different study, Khalifa et al. [31] applied multiob-
jective concepts to evolving parameters for a tree selection con-
fidence bounds equation. A previous work by Bravi [32] (also
discussed in Section IV-D) provided multiple UCB equations for
different games. The work in [31] evolved, using S-metric se-
lection evolutionary multiobjective optimization algorithm, the
linear weights of a UCB equation that results from combining
all from [32] in a single one. All these components respond to
different and conflicting objectives, and their results show that
it is possible to find good solutions for the games tested.

A significant exception to MCTS with regard to tree search
methods for GVGAI is that of Geffner and Geffner [18] (win-
ner of one of the editions of the 2015 competition, YBCriber,
as indicated in Table I), who implemented iterated width [IW;
concretely IW(1)]. IW(1) is a breadth-first search with a crucial
alteration: a new state found during search is pruned if it does
not make true a new tuple of at most 1 atom, where atoms are
Boolean variables that refer to position (and orientations in the
case of avatars) changes of certain sprites at specific locations.
The authors found that IW(1) performed better than MCTS in
many games, with the exception of puzzles, where IW(2) (prun-
ing according to pairs of atoms) showed better performance.
This agent was declared winner in the CEEC 2015 edition of
the single-player planning track [3].

Babadi [33] implemented several versions of enforced hill
climbing (EHC), a breadth-first search method that looks for a
successor of the current state with a better heuristic value. EHC
obtained similar results to KB-MCTS in the first set of games of
the framework, with a few disparities in specific games of the set.

Nelson [34] ran a study on MCTS in order to investigate if,
giving a higher time budget to the algorithm (i.e., increasing
the number of iterations), MCTS was able to master most of
the games. In other words, if the real-time nature of the GV-
GAI framework and competition is the reason why different ap-
proaches fail to achieve a high victory rate. This study provided
up to 30 times more budget to the agent, but the performance
of MCTS only increased marginally even at that level. In fact,
this improvement was achieved by means of losing less often
rather than by winning more games. This paper concludes that
the real-time aspect is not only a factor in the challenge, but
also the diversity in the games. In other words, increasing the

computational budget is not the answer to the problem that GV-
GAI poses, at least for MCTS.

Finally, another study on the uses of MCTS for single-player
planning is carried out by Bravi et al. [35]. In this paper, the fo-
cus is set on understanding why and under which circumstances
different MCTS agents make different decisions, allowing for
a more in-depth description and behavioral logging. This study
proposes the analysis of different metrics (recommended action
and their probabilities, action values, consumed budget before
converging on a decision, etc.) recorded via a shadow proxy
agent, used to compare algorithms in pairs. The analysis de-
scribed in the paper shows that traditional win-rate performance
can be enhanced with these metrics in order to compare two or
more approaches.

C. Evolutionary Methods

The second big group of algorithms used for single-player
planning is that of evolutionary algorithms (EAs). Concretely,
the use of EAs for this real-time problem is mostly implemented
in the form of rolling horizon EAs (RHEAs). This family of
algorithms evolves sequences of actions with the use of the
forward model. Each sequence is an individual of an EA whose
fitness is the value of the state found at the end of the sequence.
Once the time budget is up, the first action of the sequence
with the highest fitness is chosen to be applied in that time
step.

The GVGAI competition includes SampleRHEA as a sample
controller. SampleRHEA has a population size of 10, individual
length of 10, and implements uniform crossover and mutation,
where one action in the sequence is changed for another one
(position and new action chosen uniformly at random) [8].

Gaina et al. [36] analyzed the effects of the RHEA parameters
on the performance of the algorithm in 20 games, chosen among
the existent ones in order to have a representative set of all
the games in the framework. The parameters analyzed were
population size and individual length, and results showed that
higher values for both parameters provided higher victory rates.
This study motivated the inclusion of random search (SampleRS)
as a sample in the framework, which is equivalent to RHEA but
with an infinite population size (i.e., only one generation is
evaluated until budget is consumed) and achieves better results
than those achieved by RHEA in some games. Gaina et al. [36]
also compared RHEA with MCTS, showing better performance
for an individual length of 10 and high population sizes.

Santos et al. [37] implemented three variants for RHEA with
shifted buffer (RHEA-SB) by: 1) applying the one-step-look-
ahead algorithm after the buffer shifting phase; 2) applying
a spatial RAA policy [28]; and 3) applying both the tech-
niques. The experimental tests on 20 GVGAI single-player
games showed that the third variant of RHEA-SB achieved
promising results.

Santos and Bernardino [38] applied the avatar-related in-
formation, spacial exploration and knowledge obtained during
game playing to the game state evaluation of RHEA. These
game state evaluation enhancements have also been tested on
an MCTS agent. The enhancements significantly increased the
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win rate and game score obtained by RHEA and MCTS on 20
tested games.

A different type of information was used by Gaina et al. [39]
to dynamically adjust the length of the individuals in RHEA: The
flatness of the fitness landscape is used to shorten or lengthen the
individuals in order for the algorithm to better deal with sparse
reward environments (using longer roll-outs for identification of
further away rewards), while not harming performance in dense
reward games (using shorter roll-outs for focus on immediate
rewards). However, this had a detrimental effect in RHEA, while
boosting MCTS results. Simply increasing the roll-out length
proved to be more effective than this initial attempt at using the
internal agent state to affect the search itself.

A different evolutionary computation agent was proposed by
Jia et al. [40], [41], which consists of a genetic programming
(GP) approach. The authors extract features from a screen
capture of the game, such as avatar location and the positions
and distances to the nearest object of each type. These features
are inputs to a GP system that, using arithmetic operands as
nodes, determines the action to execute as a result of three
trees (horizontal, vertical, and action use). The authors report
that all the different variations of the inputs provided to the GP
algorithm give similar results to those of MCTS, on the three
games tested in their study.

D. Hybrids

The previous studies feature techniques in which one tech-
nique is predominant in the agent created; albeit they may in-
clude enhancements that can place them in the boundary of
hybrids. This section describes those approaches that, in the
opinion of the authors, would in their own right be considered
as techniques that mix more than one approach in the same,
single algorithm.

An example of these approaches is presented by Gaina
et al. [42], which analyzed the effects of seeding the initial
population of a RHEA using different methods. Part of the de-
cision time budget is dedicated to initialize a population with
sequences that are promising, as determined by onesteplooka-
head and MCTS agents. Results show that both seeding options
provide a boost in victory rate when population size and in-
dividual length are small, but the benefits vanish when these
parameters are large.

Other enhancements for RHEA proposed in [43] are incor-
porating a bandit-based mutation, a statistical tree, a shifted
buffer, and roll-outs at the end of the sequences. The bandit-
based mutation breaks the uniformity of the random mutations
in order to choose new values according to suggestions given by
a univariate armed bandit. However, the authors reported that no
improvement on the performance was noticed. A statistical tree,
previously introduced in [44], keeps the visit count and accumu-
lated rewards in the root node, which are subsequently used for
recommending the action to take at that time step. This enhance-
ment produced better results with smaller individual length and
smaller population sizes. The shifted buffer enhancement pro-
vided the best improvement in the performance, which consist
of shifting the sequences of the individuals of the population

one action to the left, removing the action from the previous
time step. This variation, similar to keeping the tree between
frames in MCTS, combined with the addition of roll-outs at the
end of the sequences provided an improvement in victory rate
(20 percentile points over vanilla RHEA) and scores.

A similar (and previous) study was conducted by Horn
et al. [45]. In particular, this study features RHEA with roll-outs
(as in [43]), RHEA with MCTS for alternative actions (where
MCTS can determine any action with the exception of the one
recommended by RHEA), RHEA with roll-outs and sequence
planning (same approach as the shifted buffer in [43]), RHEA
with roll-outs and occlusion detection (which removes unneeded
actions in a sequence that reaches a reward), and RHEA with
roll-outs and NPC attitude check (which rewards sequences in
terms of proximity to sprites that provide a positive or negative
reward). Results show that RHEA with roll-outs improved per-
formance in many games, although all the other variants and
additions performed worse than the sample agents. It is inter-
esting to see that in this case the shifted buffer did not provide
an improvement in the victory rate, although this may be due to
the use of different games.

Schuster [21] proposed two methods that combine MCTS
with evolution. One of them, (1+1)-EA as proposed by [23],
evolves a vector of weights for a set of game features in order
to bias the roll-outs toward more interesting parts of the search
space. Each roll-out becomes an evaluation for an individual
(weight vector), using the value of the final state as fitness. The
second algorithm is based on strongly typed GP and uses game
features to evolve state evaluation functions that are embedded
within MCTS. These two approaches join MAST and NST (see
Section IV-B) in a larger comparison, and the study concludes
that different algorithms outperform others in distinct games,
without an overall winner in terms of superior victory rate,
although superior to vanilla MCTS in most cases.

The idea of evolving weight vectors for game features during
the MCTS roll-outs introduced in [23] (KB-MCTS)4 was ex-
plored further by Eeden in his M.Sc. thesis [46]. In particular,
the author added A* as a path-finding algorithm to replace the
Euclidean distance used in KB-MCTS for a more accurate mea-
sure and changing the evolutionary approach. While KB-MCTS
used a weight for each pair feature-action, being the action cho-
sen at each step by the Softmax equation, this paper combines
all move actions on a single weight and picks the action using
Gibbs sampling. The author concludes that the improvements
achieved by these modifications are marginal, and likely due to
the inclusion of path-finding.

Additional improvements on KB-MCTS are proposed by Chu
et al. [47]. The authors replace the Euclidean distance feature
to sprites with a grid view of the agent’s surroundings, and also
the (1+1)-EA with a Q-Learning approach to bias the MCTS
roll-outs, making the algorithm update the weights at each step
in the roll-out. The proposed modifications improved the victory
rate in several sets of games of the framework and also achieved

4This approach could also be considered an hybrid. Given its influence in
other tree approaches, it has also been partially described in Section IV-B
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the highest average victory rate among the algorithms it was
compared with.

İlhan and Etaner-Uyar [48] implemented a combination of
MCTS and true online Sarsa (λ). The authors use MCTS roll-
outs as episodes of past experience, executing true online Sarsa
at each iteration with a ε-greedy selection policy. Weights are
learnt for features taken as the smallest Euclidean distance
to sprites of each type. Results showed that the proposed ap-
proaches improved the performance on vanilla MCTS in the
majority of the 10 games used in the study.

Evolution and MCTS have also been combined in different
ways. In one of them, Bravi et al. [49] used a GP system to
evolve different tree policies for MCTS. Concretely, the authors
evolve a different policy for each one of the five games employed
in the study, aiming to exploit the characteristics of each game
in particular. The results showed that the tree policy plays a
very important role on the performance of the MCTS agent,
although in most cases the performance is poor—none of the
evolved heuristics performed better than the default UCB in
MCTS.

Finally, Sironi et al. [50] designed three self-adaptive MCTS
that tuned the parameters of MCTS (play-out depth and explo-
ration factor) on-line, using naive MC, an (λ, μ)-EA, and the
N-tuple bandit EA (NTBEA) [51]. Results show that all tuning
algorithms improve the performance of MCTS where vanilla
MCTS performs poorly, while keeping a similar rate of victo-
ries in those where MCTS performs well. In a follow-up study,
however, Sironi and Winands [52] extend the experimental study
to show that online parameter tuning impacts the performance
in only a few GVGP games, with NTBEA improving perfor-
mance significantly in only one of them. The authors conclude
that online tuning is more suitable for games with longer budget
times, as it struggles to improve performance in most GVGAI
real-time games.

E. Hyperheuristics/Algorithm Selection

Several authors have also proposed agents that use several
algorithms, but rather than combining them into a single one,
there is a higher level decision process that determines which
one of them should be used at each time.

Ross, in his M.Sc. thesis [53] proposes an agent that is a com-
bination of two methods. This approach uses A* with EHC to
navigate through the game at a high level and switches to MCTS
when in close proximity to the goal. The work highlights the
problems of computing paths in the short time budget allowed,
but indicate that goal targeting with path-finding combined with
local maneuvering using MCTS does provide good performance
in some of the games tested.

Joppen et al. [17] implemented YOLOBOT, arguably the most
successful agent for GVGAI up to date, as it has won several edi-
tions of the competition. Their approach consists of a combina-
tion of two methods: a heuristic best first search (BFS) for deter-
ministic environments and MCTS for stochastic games. Initially,
the algorithm employs BFS until the game is deemed stochastic,
an optimal solution is found, or a certain game tick threshold is
reached, extending through several consecutive frames if needed

for the search. Unless the optimal sequence of actions is found,
the agent will execute an enhanced MCTS consistent of in-
formed priors and roll-out policies, backtracking, early cutoffs,
and pruning. The resultant agent has shown consistently a good
level of play in multiple game sets of the framework.

Another hyperheuristic approach, also the winner of one of
the 2015 editions of the competition (Return42, see Table I),
determines first if the game is deterministic or stochastic. In
case of the former, A* is used to direct the agent to sprites
of interest. Otherwise, random walks are employed to navigate
through the level [16].

Azaria et al. [54] applied GP to evolve hyperheuristic-based
agents. The authors evolved three step-lookahead agents, which
were tested on the three game sets from the first 2014 GV-
GAI competition. The resultant agent was able to outperform
the agent ranked at the third place in the competition (sample
MCTS).

The fact that this type of portfolio agents has shown very
promising results has triggered more research into hyperheuris-
tics and game classification. The work by Bontrager et al. [55]
used K-means to cluster games and algorithms attending to game
features derived from the type of sprites declared in the VGDL
files. The resulting classification seemed to follow a difficulty
pattern, with four clusters that grouped games that were won by
the agents at different rates.

Mendes et al. [56] built a hyperagent that selected automati-
cally an agent from a portfolio of agents for playing individual
game and tested it on the GVGAI framework. This approached
employed game-based features to train different classifiers (sup-
port vector machines—SVM, multilayer perceptrons, decision
trees—J48, among others) in order to select which agent should
be used for playing each game. Results show that the SVM and
J48 hyperheuristics obtained a higher victory rate than that of
the single agents separately.

Horn et al. [45] (described before in Section IV-D) also
includes an analysis on game features and difficulty estima-
tion. The authors suggest that the multiple enhancements that
are constantly attempted in many algorithms could potentially
be switched ON and OFFdepending on the game that is being
played, with the objective of dynamically adapting to the present
circumstances.

Ashlock et al. [16] suggest the possibility of creating a classi-
fication of games, based on the performance of multiple agents
(and their variations: different enhancements, heuristics, objec-
tives) on them. Furthermore, this classification needs to be sta-
ble, in order to accommodate the ever-increasing collection of
games within the GVGAI framework, but also flexible enough
to allow a hyperheuristic algorithm to choose the version that
better adapts to unseen games.

Finally, Gaina et al. [57] gave a first step toward algorithm
selection from a different angle. The authors trained several
classifiers on agent log data across 80 games of the GVGAI
framework, in particular obtained only from player experience
(i.e., features extracted from the way search was conducted,
rather than potentially human-biased game features), to deter-
mine if the game will be won or not at the end. Three models are
trained, for the early, mid, and late game, respectively, and tested
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in previously not seen games. Results show that these predictors
are able to foresee, with high reliability, if the agent is going to
lose or win the game. These models would, therefore, allow to
indicate when and if the algorithm used to play the game should
be changed. A visualization of these agent features, including
win prediction, displayed live while playing games, is avail-
able using the VertigØ tool [58], which means to offer better
agent analysis for deeper understanding of the agents’ decision
making process, debugging, and game testing.

V. METHODS FOR TWO-PLAYER PLANNING

This section approaches agents developed by researchers
within the two-player planning setting. Most of these entries
have been submitted to the two-player planning track of the
competition [9]. Two methods stood out as the base of most
entries received so far, MCTS and EA [10]. On the one hand,
MCTS performed better in cooperative games, showing the abil-
ity to adapt better to asymmetric games, which involved a role
switch between matches in the same environment. EAs, on the
other hand, excelled in games with long lookaheads, such as
puzzle games, which rely on a specific sequence of moves be-
ing identified.

Counterparts of the basic methods described in Section IV-A
are available in the framework as well, the only difference being
in the one step lookahead agent, which requires an action to
be supplied for the opponent when simulating game states. The
opponent model used by the sample agent assumes they will
perform a random move (with the exception of those actions
that would cause a loss of the game).

A. Tree Search Methods

Most of the competition entries in the first three seasons
(2016–2018) were based on MCTS (see Section IV-B). It is
interesting to note that the 2016 winner won again in 2018—
highlighting the difficulty of the challenge and showing the
need for more research focus on multiplayer games for better
and faster progress.

Some entries employed an open loop version of MCTS, which
would only store statistics in the nodes of the trees and not
game states, thereby needing to simulate through the actions
at each iteration for a potentially more accurate evaluation of
the possible game states. Due to this being unnecessarily costly
in deterministic games, some entries such as MaasCTS2 and
YOLOBOT switched to breadth-first search in such games after
an initial analysis of the game type, a method that has shown
ability to find the optimal solution if the game lasts long enough.

Enhancements brought to MCTS include generating value
maps, either regarding physical positions in the level, or higher
level concepts (such as higher values being assigned to states
where the agent is closer to objects it has not interacted with
before; or interesting targets as determined by controller-specific
heuristics). The winner of the 2016 WCCI and 2017 CEC legs,
ToVo2, also employed dynamic MC roll-out length adjustments
(increased with the number of iterations to encourage further
lookahead if budget allows) and weighted roll-outs (the weights
per action generated randomly at the beginning of each roll-out).

All agents use online learning in one way or another (the
simplest form being the base MCTS backups, used to gather
statistics about each action through multiple simulations), but
only the overall 2016 and 2018 championship winner, adrienctx,
uses offline learning on the training set supplied to tune the
parameters in the stochastic gradient descent function employed,
learning rate and mini batch size.

B. Evolutionary Methods

Two of the 2016 competition entries used an EA technique as
a base as an alternative to MCTS: Number27 and CatLinux [10].

Number27 was the winner of the CIG 2016 leg, the controller
placing the fourth position overall in the 2016 Championship.
Number27 uses a genetic algorithm (GA), with one popula-
tion containing individuals that represent fixed-length action
sequences. The main improvement it features on top of the base
method is the generation of a value heat-map, used to encourage
the agent’s exploration toward interesting parts of the level. The
heat-map is initialized based on the inverse frequency of each
object type (therefore a lower value the higher the object num-
ber) and including a range of influence on nearby tiles. The event
history is used to evaluate game objects during simulations and
to update the value map.

CatLinux was not a top controller on either of the individ-
ual legs run in 2016, but secured the fifth position overall in the
championship. This agent uses a RHEA. A shift buffer enhance-
ment is used to boost the performance, specifically keeping the
population evolved during one game tick in the next, instead
of discarding it; each action sequence is shifted one action to
the left (therefore removing the previous game step), and a new
random action is added at the end to complete the individual to
its fixed length.

No offline learning was used by any of the EA agents, al-
though there could be scope for improvement through parameter
tuning (offline or online).

C. Opponent Model

Most agents submitted to the two-player competition use
completely random opponent models. Some entries have
adopted the method integrated within the sample One Step
Lookahead controller, choosing a random but nonlosing ac-
tion. In the 2016 competition, webpigeon assumed the opponent
would always cooperate and would, therefore, play a move ben-
eficial to the agent. MaasCTS2 used the only advanced model
at the time: It remembered Q-values for the opponent actions
during simulations and added them to the statistics stored in the
MCTS tree nodes; an ε-greedy policy was used to select oppo-
nent actions based on the Q-values recorded. This provided a
boost in the performance on the games in the WCCI 2016 leg,
but it did not improve the controller’s position in the rankings
for the following CIG 2016 leg. Most entries in the years 2017
and 2018 seasons employed simple random opponent models.

Opponent models were found to be an area to explore further
in [10] and Gonzalez and Perez-Liebana looked at nine differ-
ent models integrated within the sample MCTS agent provided
with the framework [59]. Alphabeta builds a tree incrementally,
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returning the best possible action in each time tick, while Min-
imum returns the worst possible action. Average uses a similar
tree structure, but it computes the average reward over all the
actions, and it returns the action closest to the average. Fallible
returns the best possible action with a probability p = 0.8 and
the action with the minimum reward otherwise. Probabilistic
involved offline learning over 20 games in the GVGAI frame-
work in order to determine the probability of an MCTS agent to
select each action and then using these to determine the oppo-
nent action while playing online. Same Action returns the same
action the agent plays, while Mirror returns its opposite. Fi-
nally, LimitedBuffer records the last n = 20 actions performed
by the player and builds probabilities of selecting the next ac-
tion based on this data, while UnlimitedBuffer records the entire
history of actions during the game. When all nine opponent
models were tested in a round-robin tournament against each
other, the probabilistic models achieve the highest win rates and
two models, Probabilistic and UnlimitedBuffer, outperforming
a random opponent model.

Finally, the work done on two-player GVGAI has inspired
other research on Mathematical General Game Playing. Ashlock
et al. [60] implemented general agents for three different mathe-
matical coordination games, including the Prisoner’s Dilemma.
Games were presented at once, but switching between them at
certain points and experiments show that agents can learn to
play these games and recognize when the game has changed.

VI. METHODS FOR SINGLE-PLAYER LEARNING

The GVGAI framework has also been used from an agent
learning perspective. In this setting, the agents do not use the
forward model to plan ahead actions to execute in the real game.
Instead, the algorithms learn the games by repeatedly playing
them multiple times (as episodes in reinforcement learning),
ideally improving their performance progressively. This section
describes first the approaches that tackled the challenge set in the
single-player learning track of the 2017 and 2018 competitions
and then moves to other approaches.

A. Competition Entries

1) Random Agent: A sample random agent, which selects
an action uniformly at random at every game tick, is included
in the framework (in both Java and Python) for the purposes
of testing. This agent is also meant to be taken as a baseline:
A learner is expected to perform better than an agent that acts
randomly and does not undertake any learning.

2) Multiarmed Bandit (MAB) Algorithm: DontUnderesti-
mateUchiha by K. Kunanusont is based on two popular MAB
algorithms, ε-decreasing greedy algorithm and UCBs. At any
game tick T , the current best action with probability 1 − εT

is picked; otherwise, an action is uniformly randomly selected.
The best action at time T is determined using UCB with in-
crement of score as reward. This is a very interesting combi-
nation, as the UCB-style selection and the ε-decreasing greedy
algorithm both aim at balancing the tradeoff between exploit-
ing more the best-so-far action and exploring others. Addi-
tionally, ε0 is set to 0.5, and it decreases slowly along time,

formalized as εT = ε0 − 0.0001T . According to the competi-
tion setting, all games will last longer than 2,000 game ticks,
so ∀T ∈ {1, . . . , 2000}, 0.5 ≥ εT ≥ 0.3. As a result, random
decisions are made for approximately 40% time.

3) State-Action-Reward-State-Action (Sarsa) Algorithm:
sampleLearner, ercumentilhan, and fraBot-RL-Sarsa are based
on Sarsa [2]. The sampleLearner and ercumentilhan use a subset
of the whole game state information to build a new state to reduce
the amount of information to be saved and to take into account
similar situations. The main difference is that the former uses a
square region with fixed size centered at the avatar’s position,
while the latter uses a first-person view with a fixed distance.
fraBot-RL-Sarsa uses Sarsa, and it uses the entire screenshot of
the game screen as input provided by GVGAI Gym. The agent
has been trained using 1000 episodes for each level of each
game, and the total training time was 48 h.

4) Q-Learning: kkunan, by K. Kunanusont, is a simple Q-
learning [2] agent using most of the avatar’s current information
as features, which a few exceptions (such as avatar’s health and
screen size, as these elements that vary greatly from game to
game). The reward at game tick t + 1 is defined as the difference
between the score at t + 1 and the one at t. The learning rate α
and discounted factor γ are manually set to 0.05 and 0.8. During
the learning phase, a random action is performed with proba-
bility ε = 0.1; otherwise, the best action is selected. During the
validation phase, the best action is always selected. Despite its
simplicity, it won the first track in 2017. fraBot-RL-QLearning
uses the Q-Learning algorithm. It has been trained using 1000
episodes for each level of each game, and the total training time
was 48 h.

5) Tree Search Methods: YOLOBOT is an adaption of
the YOLOBOT planning agent (as described previously in
Section IV-E). As the forward model is no more accessible
in the learning track, the MCTS is substituted by a greedy algo-
rithm to pick the action that minimizes the distance to the chosen
object at most. According to the authors, the poor performance
of YOLOBOT in the learning track, contrary to its success in
the planning tracks, was due to the collision model created by
themselves that did not work well.

B. Other Learning Agents

One of the first works that used this framework as a learning
environment was carried out by Samothrakis et al. [61], who
employed neuroevolution in 10 games of the benchmark. Con-
cretely, the authors experimented with separable natural evo-
lution strategies using two different policies (ε-greedy versus
softmax) and a linear function approximator versus a neural net-
work as a state evaluation function. Features like score, game
status, avatar, and other sprites information were used to evolve
learners during 1000 episodes. Results show that ε-greedy with
a linear function approximator was a better combination to learn
how to maximize scores on each game.

Braylan and Miikkulainen [62] performed a study in which
the objective was to learn a forward model on 30 games. The
objective was to learn the next state from the current one plus
an action, where the state is defined as a collection of attribute
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values of the sprites (spawns, directions, movements, etc.), by
means of logistic regression. Additionally, the authors transfer
the learnt object models from game to game, under the as-
sumption that many mechanics and behaviors are transferable
between them. Experiments showed the effective value of ob-
ject model transfer in the accuracy of learning forward models,
resulting in these agents being stronger at exploration.

Also in a learning setting, Kunanusont et al. [63], [64] de-
veloped agents that were able to play several games via screen
capture. In particular, the authors employed a deep Q-Network
(DQN) in seven games of the framework of increasing com-
plexity and included several enhancements to GVGAI to deal
with different screen sizes and a nonvisualization game mode.
Results showed that the approach allowed the agent to learn how
to play in both deterministic and stochastic games, achieving a
higher winning rate and game score as the number of episodes
increased.

Apeldoorn and Kern-Isberner [65] proposed a learning agent
that rapidly determines and exploits heuristics in an unknown
environment by using a hybrid symbolic/subsymbolic agent
model. The proposed agent-based model learned the weighted
state-action pairs using a subsymbolic learning approach. The
proposed agent has been tested on a single-player stochastic
game, Camel Race, from the GVGAI framework, and won more
than half of the games in different levels within the first 100 game
ticks, while the standard Q-Learning agent never won given the
same game length. Based on [65], Dockhorn and Apeldoorn [66]
used exception-tolerant hierarchical KBs (HKBs) to learn the
approximated forward model and tested the approach on the
2017 GVGAI learning track framework, respecting the com-
petition rules. The proposed agent beats the best entry in the
learning competition organized at CIG-17 [66], but still per-
formed far worse than the best planning agents, which have
access to the real forward models.

Using the new GVGAI Gym, Torrado et al. [15] compared
three implemented deep reinforcement learning (DRL) algo-
rithms of the OpenAI Gym, DQN, prioritized dueling DQN,
and advance actor-critic (A2C), on eight GVGAI games with
various difficulties and game rules. All the three RL agents
perform well on most of the games; however, DQNs and A2C
perform badly when no game score is given during a game play-
ing (only win or loss is given when a game terminates). These
three agents have been used as sample agents in the learning
competition organized at CIG-18.

Finally, Justesen et al. [67] implemented A2C within the
GVGAI-Gym interface in a training environment that allows
learning by procedurally generating new levels. By varying the
levels in which the agent plays, the resulting learning is more
general and does not overfit to specific levels. The level gener-
ator creates levels at each episode, producing them in a slowly
increasing level of difficulty in response to the observed agent
performance.

C. Discussion

The presented agents differ from each other in the input game
state (Json string or screen capture), the amount of learning

time, and the algorithm used. Additionally, some of the agents
have been tested on a different set of games and sometimes
using different game length (i.e., maximal number of game ticks
allowed). None of the agents, which were submitted to the 2017
learning competition, using the classic GVGAI framework, have
used screen capture.

The Sarsa-based agents performed surprisingly bad in the
competition, probably due to the arbitrarily chosen parameters
and very short learning time. Also, learning three levels and
testing on three more difficult levels given only 5 min learning
time is a difficult task. An agent should take care of the learning
budget distribution and decide when to stop learning a level and
to proceed the next one.

The learning agent using exception-tolerant HKBs [66] learns
fast. However, when longer learning time is allowed, it is domi-
nated by DRL agents. Out of the eight games tested by Torrado
et al. [15], none of the tested three DRL algorithms outper-
formed the planning agents on six games. However, on the
heavily stochastic game Seaquest, A2C achieved almost double
score than that of the best planning agent, MCTS.

VII. METHODS FOR LEVEL GENERATION

Different researchers used different approaches to generate
levels for the GVGAI framework. The following section de-
scribes all known generators either included in the framework
or developed during the competition.

A. Constructive Methods

Constructive generators are designed to generate levels based
on general knowledge. For example, enemies should be away
from the avatar, walls should not divide the world into islands,
etc. Based on the game, the generator adjusts a couple of pa-
rameters and rules to fit the game as, for example, the number
of NPCs in the generated level. Constructive generators do not
need any simulations after generating the level. The following
are the known constructive generators.

1) Sample Random Generator: This is the most naive
method to generate a level. The generator first identifies solid
sprites. Solid sprites block the avatar and all NPCs from moving
and do not react to anything. The generator adds a selected solid
sprite as a border for the generated level to prevent sprites from
wandering outside the game screen, followed by adding one of
each character in the level mapping section to a random location
in the level. This step ensures the game is playable. Finally, it
adds a random amount of random sprites from the level mapping
to random locations in the level.

2) Sample Constructive Generator: This generator uses
some general game knowledge to generate the level. First, the
generator calculates the level dimensions and the number of
sprites in the level, then labels game sprites based on their inter-
actions and sprite types. After that, it constructs a level layout
using the solid sprites, to later add the avatar to a random empty
location. After knowing the avatar position, the generator adds
harmful sprites (those that can kill the avatar) in a far location
from the avatar and adds other sprites at any random free loca-
tions. Finally, the generator makes sure that the number of goal
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sprites is sufficient to prevent winning or losing automatically
when the game starts.

3) Easablade Constructive Generator: This is the winner
generator for the first level generator competition. The generator
is similar to the sample constructive generator, but it uses cellular
automata to generate the level instead of layering the objects
randomly. The cellular automata is run on multiple layers. The
first layer is to design the map obstacles, followed by the exit
and the avatar, then the goal sprites, harmful sprites, and others.

4) N-Gram Constructive Generator: This generator uses an
n-gram model to generate the level. The generator records the
player actions from a previous play-through. This action se-
quence is used to generate the levels using predefined rules and
constraints. For example, if the player uses the USE action quite
often, the generator will include more enemies in the level. The
n-gram is used to specify the rules. Instead of reacting to each
separate action, the model reacts to an n-sequence of actions.
During the generation process, the algorithm keeps track of the
number and position of every generated object to ensure the
generated sprites do not overpopulate the level. A single avatar
sprite is placed in the lower half of the level.

5) Beaupre’s Constructive Pattern Generator: Beaupre
et al. [68] automatically analyzed 97 different games from the
GVG-AI framework using a 3 × 3 sliding window over all the
provided GVG-AI levels. They constructed a dictionary of all
the different patterns (they discovered 12 941 unique patterns)
with labels about the type of objects in them. The constructive
generator starts by checking if the game contain solid sprites
(sprites that does not allow player to pass through them). If that
was the case, the generator fills the edges using border patterns
(patterns that contain solid sprites and exist on the edge of the
maps). The rest of the game area is filled by random selecting of
patterns that maintain the following two heuristics: 1) only one
avatar sprite should be found in the level; and 2) all nonsolid
game areas are connected.

B. Search-Based Methods

Search-based generators use simulations to make sure the
generated level is playable and better than just placing random
objects. The following are the known search-based generators.

1) Sample Genetic Generator: This is a search-based level
generator based on the feasible infeasible 2 population GA
(FI2Pop). FI2Pop is a GA which uses two populations, one
for feasible chromosomes and the other for infeasible chromo-
somes. The feasible population tries to increase the difference
between the OLETS agent (see Section IV-B) and one-step look
ahead, while the infeasible population tries to decrease the num-
ber of chromosomes that violate the problem constraints (i.e., at
least one avatar in the game; the avatar must not die in the first 40
steps, etc.). Each population evolves on its own, where the chil-
dren can transfer between the two populations. This generator
initializes the population using sample constructive generator.

2) Amy12 Genetic Generator: This generator is built on top
of the sample genetic generator. The main idea is to generate a
level that fits a certain suspense curve. Suspense is calculated
at each point in time by calculating the number of actions that

leads to death or tie using the OLETS agent. The algorithm mod-
ifies the levels to make sure the suspense curve is not constant
during the life time of the game. Good generators are aimed at
producing three suspense peeks with values of 50% (where half
of the actions, on average, lead to losing the game). One of the
advantages of using this technique is that it makes sure that the
generated level is winnable. Games that are hard to win will
have a higher peak in the suspense curve, which is not valued
highly by the generator.

3) Jnicho Genetic Generator: This generator [69] uses a
standard GA with similar crossover and mutation operators to
the sample GA. The fitness function used is a combination be-
tween the score difference and the constraints specified in the
sample genetic generator. The score difference is calculated be-
tween an MCTS agent and one step look ahead agent. The score
difference is normalized between 0 and 1 to make sure it will
not overshadow the constraint values.

4) Number13 Genetic Generator: This is a modified version
of the sample genetic generator. These modifications include
using adaptive crossover mechanism, adaptive mutation rate,
a better agent than OLETS, and allowing crossover between
feasible and infeasible population, which is not allowed in the
sample genetic generator.

5) Sharif’s Pattern Generator: This generator is still work
in progress. Sharif et al. [70] identified 23 different patterns by
analyzing the grouping of different game sprites from several
GVG-AI games. They are working now on using these design
patterns as a fitness function for a search-based generator.

6) Beaupre’s Evolutionary Pattern Generator: Similar to
Beaupre’s constructive pattern generator in Section VII-A5,
they used the constructed dictionary for designing a search-
based generator. They modified the sample genetic generator
provided with the framework to work using patterns instead of
using game sprites. They also initialized the generator using the
constructive version to speed up the generation process.

C. Constraint-Based Methods

1) ASP Generator: This generator [71] uses answer set pro-
gramming (ASP) to generate levels. The main idea is to generate
ASP rules that generate suitable levels for the current game. The
generated rules consists of three different types. The first type are
basic rules, which are based on specific decisions to keep the lev-
els simple (for instance, levels can only have one sprite per tile).
The second type are game specific rules, which are extracted
from the game description file. An example is the identifica-
tion of singleton sprites that should only have one sprite in the
level. The last type are additional rules to minimize the search
space. These rules limit the minimum and maximum numbers
of each sprite type. All the rules are evolved using evolution-
ary strategy with the algorithm performance difference between
sampleMCTS and a random agent as the fitness function.

D. Discussion

The presented generators differ in the amount of time needed
to generate a level and the features of the generated content.
The constructive generators take the least amount of time to
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generate a single level without a guarantee that the generated
level is beatable. However, both search-based and constraint-
based generators take longer time, but generate challenging
beatable levels as they use automated playing agents as a fit-
ness function. The constraint-based generator only takes long
time to find an ASP generator that could be used to gener-
ate many different levels as fast as the constructive generators,
while search-based generators take a long time to find a group
of similar looking levels.

For the generators that participated in the GVG-AI level
generation competition (Easablade, Amy12, Jnicho, and Num-
ber13), they have been evaluated during IJCAI 2016 by asking
the conference delegates to play two randomly selected levels
and choose a preferred one. Each generator was used to gener-
ate three levels for four different games (The Snowman, Free-
way, Run, and Butterflies). Easablade was chosen most often
(78.4%), followed by Number13, amyP2, and jnicho (40.3%,
39.13%, and 34.54%, respectively). The winner, Easablade,
generated fewer objects than the opponents and nice looking
layouts produced by the cellular automata, which likely is the
main reason behind its victory. Most of the generated levels by
Easablade, however, were either unbeatable or easy compared
to the other generators.

VIII. METHODS FOR RULE GENERATION

This section describes the different algorithms that are in-
cluded in the framework or have been found in the literature [72]
toward generating rules for the GVG-AI framework.

A. Constructive Methods

Constructive methods are algorithms that generate the rules
in one pass without the need to play the game. The constructive
methods often incorporate knowledge about game design to
generate more interesting games.

1) Sample Random Generator: This is the simplest genera-
tor provided with the framework. The main idea is to generate
a game that compiles with no errors. For example, the game
should not contain interactions such as killing the end of screen
(EOS) sprite. The algorithm starts by generating a random num-
ber of interactions by selecting two random sprites (including
EOS) and a random interaction rule one by one. The algorithm
checks that every interaction is valid before adding it to the
generated game. After generating the random interactions, the
algorithm generates two termination conditions, one for win-
ning and the other for losing. The losing condition is fixed to
the avatar being killed, while the winning is either winning the
game after a random amount of frames or winning the game
when certain sprite count reaches zero.

2) Sample Constructive Generator: This is a more complex
generator that utilizes knowledge about VGDL language and
level design to generate more interesting games. The algo-
rithm starts by classifying the game sprites into different cate-
gories, such as wall sprites (those that surround the level), col-
lectible/harmful sprites (immovable sprites that cover around
10% of the level), spawner sprites (sprites that spawn another),
etc. For each type of sprite, the algorithm has rules to generate

interactions based on them. For example, harmful sprites kill
the avatar on collision, wall sprites either prevent any movable
object from passing through or kill the movable object upon col-
lision, etc. For more details about the rules, the reader is referred
to [12]. After the game interactions are generated, two termi-
nation conditions are generated, one for winning and the other
for losing. The losing condition is fixed to the avatar’s death,
while the winning condition depends on the current sprites. For
example: If collectible sprites exist in the current definition, the
winning condition is set to collect them all.

B. Search-Based Methods

Search-based methods use a search-based algorithm to find a
game based on certain criteria that ensure the generated game
have better rules than just randomly choosing them.

1) Sample Genetic Generator: Similar to the level genera-
tion track, the search-based algorithm uses FI2Pop to evolve
new games. As discussed before, FI2Pop keeps two popula-
tions, one for feasible games and the other for infeasible games.
The infeasible games try to become feasible by satisfying mul-
tiple constraints such as minimizing the number of bad frames
(frames contains sprites outside the level boundaries) under cer-
tain threshold, the avatar does not die in the first 40 frames, etc.
However, the feasible chromosomes try to maximize its fitness.
The fitness consists of two parts; the first part is to maximize
the difference in performance between the OLETS and MCTS
agents, and the difference between MCTS and random agent.
The second part is to maximize the number of interaction rules
that fires during the simulation of the generated game.

2) Thorbjrn Generator: This generator [72] is similar to the
sample genetic generator. It tries to maximize the difference be-
tween the performance of different algorithms. This generator
uses evolutionary strategies with mutation and crossover opera-
tors to generate an entire game instead of an interaction set and
termination conditions.

C. Discussion

Similar to the level generators, the difference between the
different generators is the time used in creation and the features
in the output game. The constructive methods take less time
but do not guarantee different games or playability, while the
search-based generators take long time to generate one game,
attempting to satisfy the playability constraints using automated
playing agents. Thorbjorn is the only generator that creates
the whole game, not only the interaction rules and termination
conditions, which makes it harder to compare to the rest of the
generators.

The remaining ones are the three sample generators that come
with the framework, which are compared to one another by
doing a user study on the generated games [12]. The generators
are used to generate three new games for three different levels
(Aliens, Boulderdash, and Solarfox). The participants in the
study were subjected to two generated games by two randomly
selected generators and asked to pick the one they prefer. The
constructive generator was the preferred one (chosen 76.38%
of the time), followed by the genetic (44.73%), and random
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(24.07%) generators. An explanation for the low preference
shown for the genetic generator could be its fitness function: It
incorporates a constraint that tries to make sure that the game
sprites are always in the playing area. This constraint caused
the GA in the current allocated time to favor games that limit
considerably the movement of the sprites.

IX. RESEARCH THAT BUILDS ON GVGAI

A. Learn the Domain Knowledge

Besides the work relevant to the learning competition, there
are some other research works around reinforcement learning
using the GVGAI framework. Narasimhan et al. [73] combined
a differentiable planning module and a model-free component
to a two-part representation, obtained by mapping the collected
annotations for game playings to the transitions and rewards, to
speed up the learning. The proposed approach has been tested
on four GVGAI single-player games and shown its effectiveness
on both transfer and multitask scenarios on the tested games.
The GVGAI learning competition proposes to use a screenshot
of the game screen (at pixel level) at every game tick to represent
the current game state. Instead of directly using the screenshot,
Woof and Chen [74] used an object embedding network (OEN),
which extracted the objects in the game state and compressed
object feature vectors (e.g., position, distance to the nearest
sprite, etc.) into one single fixed-length feature vector. The DRL
agent based on OEN has been evaluated on five of the GVGAI
single-player games and showed various performance levels on
the tested games [74].

B. AI-Assisted Game Design

Machado et al. [75] implemented a recommender system
based on the VGDL to recommend game elements, such as
sprites and mechanics. Then, the recommender system was ex-
panded to Cicero [76], [77], an AI-assisted game design, and
debugging tool built on top of the GVGAI. Cicero has a statistics
tool of the interactions to help figure out the unused game rules, a
visualization system to illustrate the information about game ob-
jects and events, a mechanics recommender, a query system [78]
for in-game data, a playtrace aggregator, a heatmap-based game
analysis system, and a retrospective analysis application Seek-
Whence [79]. The gameplay sessions by human players or AI
agents can be recorded, and every single frame at every game
tick can be easily extracted for further study and analysis.

Recently, Liu et al. [80] applied a simple random mutation hill
climber (RMHC) and a multiarmed bandit RMHC together with
resampling methods to tune game parameters automatically.
Games instances with significant skill-depth have been evolved
using GVGAI agents. Furthermore, Kunanusont et al. [51]
evolved simultaneously the GVGAI agents as part of the game
(opponent models).

Guerrero et al. [81] explored 5 GVGAI agents using 4 differ-
ent heuristics separately on playing 20 GVGAI games, allowing
different behaviors according to the diverse scenarios presented
in the games. In particular, the aforementioned work explored
heuristics that were not focused on winning the game, but to

explore the level or interact with the different sprites of the
games. These agents can be used to evaluate generated games,
thus help evolve them with preferences to particular behaviors.

Khalifa et al. [82] modified MCTS agents by editing the UCT
formula used in the agent. Human playing data have been used
for modeling to make the modified agents playing in a human-
like way. Primary results showed that one of the studied agents
achieved a similar distribution of repeated actions to the one by
human players. The work was then extended by Bravi et al. [49],
in which game-play data have been used to evolve effective UCT
alternatives for a specific game. The MCTS agents using new
formulas, with none or limited domain information, are com-
pared to a standard implementation of MCTS (the sampleMCTS
agent of GVGAI) on the game Missile Command. Applying the
UCT alternatives evolved using game-playing data to a standard
MCTS significantly improved its performance.

Besides designing games and the agents used in them, the
automatic generation of video game tutorials (aimed at helping
players understand how to play a game) is also an interesting
subfield of study. Green et al. [83] pointed out that the GVGAI
Framework provides an easy testbed for tutorial generation.
The game rules in GVGAI are defined in VGDL; therefore, the
tutorial generation can be easily achieved by reading and trans-
lating VGDL files. Furthermore, Green et al. [84] build a system
(AtDelfi) that generates tutorials using the VGDL file and auto-
mated AI agents. AtDelfi reads the VGDL file and builds a graph
of interactions between the game sprites. AtDelfi analyzes the
graph to identify the winning path (sequence of nodes starting
from player sprite that leads to the winning condition in the
graph), losing paths (sequence of nodes starting from the losing
condition till there is no dependence), and score path (sequence
of nodes starting from player sprite that leads to score change in
the graph). These paths are represented as text and videos that
explain to the user how to play the game. The text is generated
using a string replacement method to generate a human read-
able instructions, while the videos are recorded using a group
of automated agents that won the GVGP Competition [8] and
record every group of frames that cause one of the interactions
on the path to trigger.

A more recent work by Anderson et al. [85] focused on de-
signing deceptive games to deceive AI agents and lead the agents
away from a globally optimal policy. Designing such games
helps understand the capabilities and weaknesses of existing
AI agents and can serve as a preparation step for designing a
meta-agent for GVGP, which combines the advantages of dif-
ferent agents. The authors categorized the deceptions and im-
ported various types of deception to the existing GVGAI games
by editing the corresponding VGDL files. The agents submit-
ted to the GVGAI single-player planing competition have been
tested on the new games. Interestingly, the final ranking of the
agents on each of the games differed significantly from the rank-
ings in the GVGAI competition. The new designed deceptive
games successfully explored the weaknesses of agents that have
performed well on the test set of the official competition.

Finally, C. Guerrero-Romero et al. in a vision paper [86],
proposed a methodology that consists of the use of a team
of general AI agents with differentiated skill levels and goals
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(winning, exploring, eliminating sprites, collecting items, etc.).
The methodology is aimed at aiding game design by analyzing
the performance of this team of agents as a whole and the pro-
vision of logged and visual information that shows the agent
experience through the game.

C. Game Generation With RAPP

Nielsen et al. [87] proposed relative algorithm performance
profile (RAPP) as a measure of relative performance of agents
and tested their approach on different general game-playing AI
agents using GVGAI framework. The authors showed that well-
designed games have clear skill-depth, thus being able to distinct
good or bad players. In other words, a strong agent or human
player should perform significantly better than a weak agent or
human player over multiple playings on well-designed games.
For instance, a skillful agent is expected to perform better than
a random agent, or one that does not move.

Then, Nielsen et al. [72] integrated the differences of average
game scores and win rate between any agent and a random agent
to the evaluation of new games, either randomly generated or
generated by editing existing GVGAI games. Although most of
the resulted games are interesting to play, yet there are some
exceptions, in which the core challenge of the game has been
removed. For instance, the enemy cannot heart the player, which
makes it no more an enemy. But, it still provides useful starting
points for human designers.

Kunanusont et al. [51] extended the idea of RAPP. Five GV-
GAI agents and a deterministic agent designed for the tested
Space Battle Game are used as the candidate opponent, which
is considered as part of the game to be evolved. Two GVGAI
agents, one step look ahead (weak), MCTS (strong), and the de-
terministic agent (mediocre), are used to play multiple times the
evolved game for evaluation. The evaluation function is defined
as the minimum of the difference of game scores between the
strong and mediocre agents, and the difference of game scores
between the mediocre and weak agents, aiming at generating
games that can clearly distinguish stronger agents and weak
agents.

Recently, Kunanusont et al. [88] used the NTBEA to
evolve game parameters in order to model player experience
within the game. The authors were able to find parameteriza-
tions of three games that, when played by MCTS and RHEA
agents, produce predefined and different score trends.

D. Robustness Testing

Perez-Liebana et al. [89] ran a study on the winners of the
2014 and 2015 editions of the single-player planning compe-
tition in order to analyze how robust they were to changes in
the environment with regard to actions and rewards. The aim
of the aforementioned work was to analyze a different type
of generality: Controllers for this framework are developed to
play in multiple games under certain conditions, but the authors
investigated that that could be the effect of breaking those com-
promises: an inaccurate forward model, an agent that does not
execute the move decided by the algorithm or score penalties
incurred by performing certain actions.

An interesting conclusion on this study is that, once the con-
ditions have been altered, sample agents climb up to the top of
the rankings and that the good controllers behave worse. Agents
that rely on BFS or A* (such as YOLOBOT or Return42, already
described in this paper) handled noise very badly. MCTS also
showed to be quite robust in this regard, above other rolling
horizon agents that could not cope so well with these changes.
This paper also reinforced the idea that the GVGAI frame-
work and competition are also robust. Despite the changes in
the performance of the agents, some controllers do better than
others under practically all conditions. The opposite (rankings
depending only on noise factors, for instance) would mean that
the framework is fragile.

More recently, Stephenson et al. [90] have pointed out that
the selection of a proper subset of games for comparing a new
algorithm with others is critical, as using a nonsuitable represen-
tative subset may have a bias to some algorithms. More general,
the questions is, given a set of sample problems, how to sample
a subset as fair as possible for the algorithms to be tested, and
to avoid the bias to any of the algorithms. The authors use an
information-theoretic method in conjunction with game playing
data to assist in the selection of GVGAI games. Games with
higher information gains are used for testing a new agent.

X. DISCUSSION AND OPEN RESEARCH PROBLEMS ON SINGLE-
AND TWO-PLAYER PLANNING

The single- and two-player planning versions of GVGAI are
the ones that have received most attention and research. Despite
their popularity and efforts, the best approaches rarely surpass an
approximately 50% victory rate in competition game sets, with
very low victory rate in a great number of games. Similarly,
different MCTS and RHEA variants (including many of the en-
hancements studied in the literature) struggle to achieve a higher
than 25% victory rate in all (more than a hundred) single-player
games of the framework. Therefore, increasing performance in
a great proportion of games is probably the most challenging
problem at the moment.

Literature shows multiple enhancements on algorithms and
methods aiming to improve this performance; but, in the vast
majority of cases, the improvements only affect a subset of
games or certain configurations of the algorithms. While this is
understandable due to the nature of GVGP, it also shows that the
current approaches do not work in order to reach truly general
approaches that work across board.

The work described in this survey has shown, however, in-
teresting insights that can point us in the right direction. For in-
stance, several studies show that using more sophisticated (i.e.,
with A* or other methods such as potential fields) distances to
sprites as features works better than Euclidean distances. The
downside is that computing these measurements take an impor-
tant part of the decision time budget, which cannot be used in
case it is needed for some games or states where the best action
to take is not straightforward.

In general, one could say that one of the main points to
address is how to use the decision time more wisely. Some
approaches tried to make every use of the forward model count,
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like those agents that attempt to learn facts about the game during
the roll-outs of MCTS. Again, some attempts in this direction
have provided marginal improvements; but, the problem may be
trying to design a general feature extractor. In other words, what
we try to learn is influenced by what we know about existing
games (i.e., some sprites are good, others are bad, some spawn
other entities and there are sprites—resources—that the avatar
can collect). Some games may require features that have not
been thought of, especially because the challenge itself presents
games that have not been seen before.

Another improvement that has been tried in several studies is
the use of macroactions (in most cases, a repetition of an action
during several consecutive steps) to: 1) make the action space
coarser; and 2) make a better use of the time budget. Again, these
modifications have improved performance in certain games (in-
cluding some that had not been won by any algorithm previ-
ously), but they either did not have an impact on others, or they
made the performance worse. It is likely that different games
can benefit from different macroaction lengths (so, work could
be done on trying to automatically and dynamically adapt the
number of times the action is repeated) but also of more com-
plex structures that allow for high-level planning. In fact, games
that require high-level planning are still an open problem to be
solved in this setting.

Games classification and the use of hyperheuristics are also
an interesting area for research. Some of the best approaches
up to date, as YOLOBOT, do make a differentiation between
stochastic and deterministic games to later use one or another
algorithm. An open challenge is how to make this classification
more accurate and detailed, so an approach could count on
a portfolio of (more than two) algorithms that adapt to every
game. Attempts have been made to classify with game features,
but results suggest that these classifications and the algorithms
used are not strong enough. Devising more general features for
this, maybe focused on the agent game-play experience rather
than game features, is a line of future research.

All these unsolved issues apply to both single- and two-player
settings; although the latter case adds the difficulty of having an
opponent to compete or collaborate with. There are two open
problems that arise from this: First, no study has been made
that tries to identify the game and behavior of the opponent
as collaborative or competitive. Analysis of the other player’s
intentions can be seen as a subfield on its own; only that in this
case we add the general game playing component to it. Second,
some advancements have been done in using opponent models
that go beyond random, but investigation in more complicated
opponent models that better capture and learn the behavior of
the other player could potentially yield better results.

Besides the development of agents for game playing, AI-
assisted game design, automatic game testing, and game debug-
ging using GVGAI agents have attracted researchers’ attention.
Some work around evolving game skill-depth using relative per-
formance between GVGAI agents have been done recently, and
most of this work has been focused on RAPP, where perfor-
mance is measured in terms of how well the agents play the
given games. However, it is sensible to explore other aspects
of agent game-play to influence game design. Factors like the

amount of level explored by different agents (so a generator fa-
vors those levels or games that allow for a wider exploration, or
maybe a progressive one), their decisiveness [91] on selecting
the best action to take, or the entropy of their moves, can also
be used to this end.

XI. EDUCATIONAL USE OF GVGAI

The GVGAI framework has been used to provide engaging
assignments for taught modules and as the basis for many M.Sc.
dissertation projects. The descriptions below give an idea of
the educational uses of GVGAI but are not intended to be an
exhaustive list.

A. Taught Modules

GVGAI has been used in at least two distinct ways within
taught modules. The most typical way is to use design specific
aspects of the course around the framework, and teaching the
students about the main concepts of GVGAI with examples
of how to write agents for the selected tracks. This is, then,
followed up with an assignment, where a significant weight is
given to how well each student or group’s entry performs in
the league. Several institutions have run private leagues for this,
including Otto von Guericke Universität Magdeburg, Univer-
sity of Essex, University of Muenster, Universidad Carlos III
de Madrid, Universidad de Malaga, and New York University.
Running a private league means the course supervisor has full
control over the setup of the league, including when students can
enter and how thoroughly the entries are evaluated, and the set
of games to evaluate them on. For the two-player track, this also
allows control over the opponents chosen. The Southern Uni-
versity of Science and Technology and the Nanjing University
have also used GVGAI framework in their AI modules, without
running a private league, as assignments when teaching search
or reinforcement learning methods.

Another use-case in taught modules is to teach the VGDL
part of framework, then set the development of novel and inter-
esting games as the assignment. This was done to good effect
at IT University of Copenhagen, where the students produced
a number of challenging puzzle games that were later used in
the training and validation sets of the planning track. A similar
approach was taken in a module on AI-assisted game design at
the University of Essex, where planning track games were also
produced.

B. M.Sc. Dissertation Projects

GVGAI offers an extensive range of interesting research chal-
lenges, some of which have been addressed in M.Sc. dissertation
projects. The majority of the ones we are aware of have focused
on the single-player planning track, but this is not surprising as
it was the first track to be developed. The single-player planning
track also has the benefit of providing some good sample agents
as starting points for further work, either in the sense of extend-
ing the sample agents to achieve higher performance, or using
the sample agents as a useful source of comparison. A good ex-
ample is the work on MCTS with options, in which options refer
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to action sequences designed for specific subgoals. The version
with options significantly outperformed the sample MCTS agent
on most of the games studied: As with many cases what began as
an M.Sc. thesis was later published as a conference paper [29].
In our experience, this usually provides an excellent educational
experience for the student. Other planning track thesis include
[21], the real-time enhancements of [22], knowledge-based vari-
ants [46], and goal-oriented approaches [53].

Beyond the planning tracks, other examples (already de-
scribed in this survey) include applying ASP [92] or GAs [69]
to the level generation track and learning from game screen
capture [63]. Moreover, [63] was essentially a learning track
approach before the learning track was running. Finally, an-
other approach is to extend the framework in some way, such as
developing the two-player learning track [93].

XII. FUTURE DIRECTIONS

The GVGAI framework and competition are in constant de-
velopment. The opportunities that this benchmark provides for
different lines of research and education are varied, and this
section outlines the future directions planned ahead for the
following years.

A. New Tracks

As new challenges are proposed, the possibility of organizing
them as competition tracks arise. Below are listed some possible
new tracks that can attract interesting research areas.

1) Automatic Game Design: The game design involves, but
is not limited to, game generation, level generation, rule gener-
ation, and play-testing (playing experience, game feeling, fun,
etc.), study of game market, user interface design, and audio
design. The automatic game design becomes an active research
topic since the late 2000s. A review of the state of the art in
automatic game design can be found in [80].

A Game Generation track would aim at providing AI con-
trollers, which automatically generate totally new games or
game instances by varying the game parameters, i.e., param-
eter tuning. How to achieve the former is an open question. The
straightforward way would be providing a particular theme, a
database of game objects, or searching spaces of game rules,
with which the participants can generate new games. The ideal
case would be that the controllers automatically create totally
new games from nothing. Although there is a yawning gulf be-
tween aspiration and reality, yet an interdisciplinary field com-
bining automatic game design and domain-specific automatic
programming is expected. The latter, automatic game tuning,
is relatively easier. Some search-based and population-based
methods have been applied to game parameter optimization
aiming at maximizing the depth of game variants [80] or finding
more playable games.

2) Multiplayer GVGAI: Multiagent games have drawn peo-
ple’s attention, for instance, real time strategy games (e.g., Star-
Craft) and board games (e.g., Mahjong). The study of multia-
gent GVGAI is a fruitful research topic. Atari games can also
be extended to multiagent games. In particular, the Pac-Man
can be seen as a multiagent game, and related competitions

have been held since 2011. The most recent Ms Pac-Man versus
Ghost Team Competition [1], which included partial observabil-
ity, was held at the CIG, in 2016. Nevertheless, a more general
multiagent track is favorable.

The interface of the two-player planning track was initially
developed for two or more players, so it has the potential to be
expanded to a multiplayer planning track, in which an agent is
allowed to control more than one player, or each of the players is
controlled by a separate agent. This future track can be expanded
again as a multiagent learning framework, providing a two-or-
more-player learning track.

3) Turing Test GVGAI: Determining if an agent that is play-
ing a game is a human or a bot is a challenge that has been
subject of study for many years [1], and the idea of applying
it to a general video game setting is not new [94]. This offers
an interesting opportunity to extend the framework to having a
Turing test track where participants create AI agents that play
like humans for any game that is given. Albeit the understand-
able difficulty of this problem, the interest for research in this
area is significant: What are the features that can make an agent
play like a human in any game?

B. General Directions

There are several improvements and additions to the frame-
work that can be done and would potentially affect all existent
and future competition tracks. One of these continuous modi-
fications is the constant enlargement of the games library. Not
only new games are added for each new edition of the competi-
tion, but also the work done on automatic game design using the
GVGAI framework has the potential to create infinite number
of games that can be integrated into the framework.

Adding more games can also be complemented with com-
patibility with other systems. Other general frameworks like
OpenAI Gym [95], arcade learning environment (ALE) [96] or
Microsoft Malmö [97] count on a great number of single- or
multi-player, model-free or model-based tasks. Interfacing with
these systems would greatly increase the number of available
games, which all GVGAI agents could play via a common API.
This would also open the framework to 3-D games, an impor-
tant section of the environments the current benchmark does not
cover.

With regard to the agents, another possibility is to provide
them with a wider range of available actions. For instance, the
player could be able to apply more than one action simultane-
ously, or these actions could form a continuous action space (i.e.,
pressing a throttle in a range between 0 and 1). This would en-
hance the number of legal combinations for the agent to choose
from at each decision step.

Besides the framework itself, the website for GVGAI could
also be improved to provide better and faster feedback to
the competition participants. More data analysis features can
be added, such as visualization of the score changes during
the game playing, the action entropy, and the exploration of the
game world (heat-map of visited positions). A related work is to
provide better and more flexible support for game play metric
logging, better support for data mining of results together with
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visualization, and better data saving, which will help enabling
to upload replays (i.e., action logs) from AI agents and human
play-throughs.

Another envisaged feature is being able to play the game in
a web browser (without any download or installation) by an
AI agent or human, and visualize the analyzed features during
the game playing in real time. A bonus will be the easy pa-
rameterization options for games; thus, a player or an AI agent
can easily set up the parameters and rules to define the desired
game by inserting values directly or generate pseudorandomly a
level to play using some preimplemented automatic game tuning
techniques, given some particular goals or features.

XIII. CONCLUSION

The GVGAI framework offers the most comprehensive sys-
tem to date for evaluating the performance of GVGP agents, and
for testing general purpose algorithms for creating new games
and creating new content for novel games. The framework has
been used in multiple international competitions and has been
used to evaluate the performance of hundreds of general video
game agents.

The agent tracks cater for planning agents able to exploit
a fast forward model and for learning agents that must learn
to react sensibly without the benefits of a forward model. The
planning track already comes in single- and two-player versions;
the learning track is currently single-player only, but with a two-
player version envisaged. Although long-term learning may also
be used within the planning track, yet the best-performing agents
have, as far as we know, not yet done this. Recent successes in
Go indicate what can be achieved by combining learning and
planning, so applying a similar system within GVGAI is an inter-
esting prospect. In fact, the combination of different approaches
into one is an interesting avenue of future research. An example
is the work described in this survey, which mixes learning and
procedural level generation [67], but one could imagine further
synergies such as content generation and learning for two-player
games.

The main alternative to GVGAI is the ALE [96]. At the time
of writing, ALE offers higher quality games than those by GV-
GAI, as they were home-console commercial games of a few
decades ago. In GVGAI terms, ALE offers just two tracks:
single-player learning and planning, with the learning track be-
ing the more widely used. For future work on machine learning
in video games, we predict that the two-player tracks will be-
come the most important, as they offer open-ended challenges
based on an arms race of intelligence as new players are devel-
oped, and are also outside of the current scope of ALE. Although
ALE has had so far a greater uptake within some sectors of the
machine learning community, yet GVGAI benefits from being
much more easily extensible than ALE: It is easy to create new
VGDL games, easy to create new levels for these games, and
easy to create level generators for them as well. It is also easy to
automatically generate variations on existing VGDL games and
their levels. This allows for training on arbitrarily large sets of
game variations and level variations. In contrast, agents trained
on ALE games run a serious risk of overfitting to the game and

level they are trained on. An immediate priority is to test the
rich set of ALE agents on the equivalent GVGAI-tracks to gain
a sense of the relative difficulty of each environment and to learn
more of the relative challenges offered by each.

The content creation tracks offer an extremely hard challenge:
creating rules or levels for unseen games. Promising directions
include the further development and exploitation of a range of
general game evaluation measures [91], and greater use of the
best GVGAI agents to perform the play-testing of the novel
rules and levels.

The VGDL has been an important part of GVGAI to date,
since it makes it possible to rapidly and concisely specify new
games. However, it is also a source of limitation, as its limited
expressiveness makes it hard to make games that are fun for
humans to play. VGDL also limits the ease with which com-
plex game mechanics can be embedded in games, which, in
turn, limits the depth of challenge that can be posed for the
GVGAI agents. Hence, an important future direction is the au-
thoring of GVGAI-compatible games in any suitable language
that conforms to the necessary GVGAI API in order to ensure
compatibility with the desired GVGAI track.

Finally, while the above discussion provides a compelling
case for the future of GVGAI as a tool for academic study, we
also believe that when it reaches a higher level of maturity it
will provide an important tool for game designers. The vision
is to provide an army of intelligent agents with a range of play-
testing abilities, and a diverse set of metrics with which one can
analyze a range of important functional aspects of a game.

ACKNOWLEDGMENT

The authors would like to thank the participants of all tracks
of the competition for their work and submitted controllers and
generators.

REFERENCES

[1] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games. New
York, NY, USA: Springer-Verlag, 2018.

[2] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Kuala Lumpur, Malaysia: Pearson Education Limited, 2016.

[3] D. Perez-Liebana, S. Samothrakis, J. Togelius, S. M. Lucas, and T. Schaul,
“General video game AI: Competition, challenges and opportunities,” in
Proc. 30th AAAI Conf. Artif. Intell., 2016, pp. 4335–4337.

[4] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and J. Togelius,
“Towards a video game description language,” Dagstuhl Follow-Ups,
vol. 6, pp. 85–100, 2013.

[5] J. Levine et al., “General video game playing,” Dagstuhl Follow-Ups,
vol. 6, pp. 77–84, 2013.

[6] T. Schaul, “A video game description language for model-based or in-
teractive learning,” in Proc. IEEE Conf. Comput. Intell. Games, 2013,
pp. 1–8.

[7] T. Schaul, “An extensible description language for video games,” IEEE
Trans. Comput. Intell. AI Games, vol. 6, no. 4, pp. 325–331, Dec. 2014.

[8] D. Perez et al., “The 2014 general video game playing competition,”
IEEE Trans. Comput. Intell. AI Games, vol. 8, no. 3, pp. 229–243, Sep.
2016.

[9] R. D. Gaina, D. Perez-Liebana, and S. M. Lucas, “General video game
for 2 players: Framework and competition,” in Proc. 8th Comput. Sci.
Electron. Eng., Sep. 2016, pp. 186–191.

[10] R. D. Gaina et al., “The 2016 two-player GVGAI competition,” IEEE
Trans. Games, vol. 10, no. 2, pp. 209–220, Jun. 2018.

[11] A. Khalifa, D. Perez-Liebana, S. M. Lucas, and J. Togelius, “General
video game level generation,” in Proc. Annu. Conf. Genetic Evol. Comput.
Conf., ACM, 2016, pp. 253–259.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 07,2023 at 23:17:36 UTC from IEEE Xplore.  Restrictions apply. 



PEREZ-LIEBANA et al.: GVGAI: A MULTI-TRACK FRAMEWORK FOR EVALUATING AGENTS, GAMES AND CONTENT GENERATION 213

[12] A. Khalifa, M. C. Green, D. Pérez-Liébana, and J. Togelius, “General
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