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Abstract

The propagation of elastic-flexural waves through the ice shelf was modeled with a full 3-
D elastic model. This model is based on momentum equations (as in the previous
models/versions) discretized using the finite volume method. The flow of sea water under
the ice shelf is described by the wave equation. Numerical experiments were undertaken

for a crevasse-ridden ice shelf with different spatial periodicities of crevasses.
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1. Model description and field equations

1.1 Basic equations

The momentum equations written as the momentum balance equation in the volume V

(bounded by the surface S) of an elastically deformable continuous medium have the

following form (e.g. [1], [2], [3], [4])

a2 do;
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where o is the stress tensor; and p is the ice density; i, k = 1,2,3 or in terms of rectangular
coordinate (XYZ) i, k means x, y, z; U; are displacements of an elastic continuous medium
(displacements of ice) which are also denoted in rectangular coordinates as U,V,W: U,V
and W are two horizontal and one vertical ice displacements, respectively.

As in previous versions/models (XY Z) is a rectangular coordinate system with the X-axis
along the center line, and Z-axis pointing vertically up. The ice shelf has a length L along
the center line. The geometry of the ice shelf is assumed to be given by lateral boundary
functions y, ,(x) at sides labeled 1 and 2 and functions for the surface and base elevation,
hsp(x,y), denoted by subscripts s and b, respectively. Thus, the domain, which includes
the volume of integration in Egs. (1), is 2 = {0 <x <L, y;(x) <y < y,(x), hy(x,y) <

z < hg(x,y)}.



Sub-ice water is assumed to be an incompressible inviscid fluid of uniform density. Other

assumptions are

6)) the water flow in the cavity ander the ice shelf is a two-dimensional horizontal
fluid flow, in which the vertical component of the flow velocity has a negligible
zero value, that corresponds to the propagations of waves in a shallow water
layer (e.g. the gravity waves) when the water depth is much less than the
wavelength (e.g. [1],[2]). Moreover, the ice is considered as a continuous solid
elastic medium (solid elastic plate).

(ii)  the horizontal velocity of the water flow is small so that the non-linear term in
the Euler equations can be neglected (e.g. [1], [2]), that corresponds the
propagation of a wave, in which the amplitude of water vertical displacements
is much less than the wavelength (e.g. [1], [2]).

Under these three assumptions, sub-ice water flow is independent of z in the vertical
column. Manipulations with the governing equations of the shallow sub-ice water layer

yield the wave equation [5]:
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where p,, is sea water density; d,(x, y) is the depth of the sub-ice water layer; W, (x, y, t)

is the vertical deflection of the ice-shelf base, and W}, (x,y,t) = W(x,y, hy(x,y),t); and

P'(x,y,t) is the deviation of the sub-ice water pressure from the hydrostatic value.

1.2 Boundary conditions

The boundary conditions are: (i) a stress-free ice surface; (ii) the normal stress exerted by
seawater on the ice-shelf free edges and on the ice-shelf base; and (iii) rigidly fixed edges

at the grounding line of the ice-shelf.



In the considered model, a linear combination of boundary conditions [6] was also used.
This linear combination is expressed as [6]

al Fi(U, V; W) + aZ q)i(U) V; W) = O; l = 1;2'37 (3)
where:

(1) F;(U,V,W) = 0 is the typical form of the boundary conditions, i.e. g;; n, = f;
where, f; is given forcing on the boundary (7 is the unit vector normal to the
surface);

(i)  @;(U,V,W) = 0 is the approximation based on integration of the typical form
of the boundary conditions to the momentum equations;

(iii) the coefficients a; and «, satisfy the condition a; + a, = 1.

The same approximation was used here as in previous versions (for example, see

https://doi.org/10.5281/zenodo.4004338). That is, on the boundaries in the

approximation, the basic equations were used in well-known differential form.

The boundary conditions for the seawater layer correspond to the frontal incident wave.

They are

. apr

(1) atx—O.a—O,
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(iii) atx =L:P' = Ag p,g e'“t, where 4, is the amplitude of the incident wave.

1.3 Discretization of the model


https://doi.org/10.5281/zenodo.4004338

Numerical solutions were obtained by a finite volume method, which is based on the

standard coordinate transformation x,y,z - x,n = % ¢ = (hy — z)/H, where H is the
27 )1

ice thickness (H = hg — hj). The coordinate transformation maps the ice domain Q into
the rectangular parallelepiped I1 = {0 < x < L; 0 <1 < 1;0 < ¢ < 1}, which simplifies the

numerical discretization.

Considering an elementary volume, which is an elementary rectangular parallelepiped in

coordinates x, 7, ¢: I = {xi_l SXSx,uN 1SS L §p 1§ < $k+1}, and
2 2 2 2 2 2

applying Eq (1.2) to this volume, we obtain six momentum fluxes entering this volume,
which are expressed by the stress tensor for an elastic continuum (which for an elastic

continuum are defined as forces applied to the surfaces of the volume) (Figure 1):
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where B = y, — y; is ice shelf width in transverse direction.



Six momentum fluxes (4.1) - (4.6), entering the elementary volume, rewritten in terms of

ice displacements, are presented in Appendix A.
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Figure 1. An elementary volume (an elementary rectangular parallelepiped) in which

the momentum balance is considered in the model.

1.4 Equations for ice-shelf displacements

Constitutive relationships between stress tensor components and displacements

correspond to Hooke's law, e.g., [3], [4]:



E v
0ij = m(uij +tT 5 uu5ij) , (5)

where u;; are the strain components, E - Young's modulus, v - Poisson's ratio.

1.5 Free energy of elastically deformed ice shelf

The free energy of elastic deformation of the bends of ice shelves per unit volume is

defined by the expression, e.g., [3], [4],

—_ 5 (24 ¥ 2
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Respectively, the free energy of the ice shelf bending is determined by integrating of

energy density (6) over the volume of the ice shelf:

E v
Foverau = 200+v) fV (ulzj + 1—2v ulzl) av. (7)

1.6 Ice-shelf harmonic vibrations. The eigenvalue problem.

(The content of this item is the same as in the description of previous
model/versions [6])

It is assumed that for harmonic vibrations all variables are periodic in time, with the
periodicity of the incident wave (of the forcing) given by the frequency w, i.e.,

§(x,y,2,t) = ¢(x,y,2) e, (8)

where ¢ = {U,V, W, a;;},



where we are interested in the real part of the variables expressed in complex form.

This assumption also implies that the full solution of the linear Egs. (1) is a sum of the
solution for the steady-state flexure of the ice shelf and solution (8) for the time-
dependent problem. In other words, solution (8) implies that the deformation due to the
gravitational forcing can be separated from the vibration problem, i.e. the term, which
includes pg, is absent from the final equations formulated for the vibration problem,
because a time-independent solution accounting for them applies and is not of interest in
this study.

The separation of variables in Eq. (8) and its substitution into Egs. (1) yields the same

2

2
equations, but with the operator ;7 replaced with the constant —w?, i.e. we obtain

equation for ¢(x, y, z):

L¢=-w, 9)
where £ is a linear integro-differential operator.

The numerical solution of Eq. (9) at different values of w yields the dependence of ¢ on
the frequency of the forcing w. When the frequency of the forcing converges to the
eigenfrequency of the system, we observe the typical rapid increase of
deformation/stresses in the spectra in the form of the resonant peaks.

Note that here, the term “eigenvalue” refers to the eigenfrequency (w,) of the ice/water

system or corresponding periodicity (T;, = i—”). As mentioned previously, the term
n

“eigenvalue” is employed in the same meaning like in a Sturm-Liouville Eigenvalue
Problem, e.g. [7]. Eigenvalues (where resonant peaks would be observed) are denoted by
the letters w,, or T, with the subscript n (or other), which is integer, because the array of
the eigenvalues is a countable set.

Letters w or T without the subscript denote the non-resonant values of frequency or
periodicity of the ice/water system. They are defined by the frequency of the incident wave

(of the forcing).



The eigenvalues can be derived from the equation D(w) = 0, where D is the determinant
of the matrix, which results from the discretization of Eqgs. (1), (2) and of the
corresponding boundary conditions. However, the probability of the appearance of the
forcing at any specific frequency is practically zero. This can be seen when we consider
only events within the frequency range (w; — Aw, w; + Aw). The probability of a forcing

that is within the frequency range, is non-zero:

plw € (w; — Aw, w; +Aw)} = ZAT(D , (10)

where Q is the width of the range in omega space, which includes all possible frequencies
of the forcing. Eq. (10) also assumes that the events have equal probabilities in different

parts of Q.

Thus, the probability of the resonant-like motion is higher when the value Aw, which is
defined by the width of the resonant peak, is higher too. Therefore, the width of the
resonant peaks is an important parameter, from a practical standpoint, because it defines
the probability of the suitable resonant-like motion.

Thus, the computation of the spectra provides important information about the width of
resonant peaks within the likely range of forcing frequencies found in nature. By assessing
the widths of such peaks, a better understanding of the probability that any one specific

forcing event, at a specific w can be assessed.

2. Code input parameters and code output results

The geometric parameters of the ice shelf, considered here as a rectangular
parallelepiped, are specified in lines 20-26 in the program code. Corresponding changes

in lines 118-122, where the lateral boundaries (y; (x), y,(x)) and the width of the ice shelf

9



are defined, and in lines 130-134, where thickness of the ice shelf is defined, should be
made in the case of a more general ice shelf geometry.
In this version a crevasse-ridden ice shelf [8] is considered. The parameters of crevasses

are listed in the lines 29-33 of the program code. They are

a) spatial periodicity of the crevasses T,
b) crevasse depth D.,;

¢) crevasse width W,..

The shape of the crevasse was assumed as rectangular (lines 147-167 in the code) or as

triangular (lines 170-197 in the code).

Some of the modes generated by the finite-volume model are listed below (Figures 2-

37).

The output of the code is the free energy spectrum, i.e. the overall free energy defined by

Eq (7) versus periodicity/frequency of the forcing (lines 21367-22227 in the code).

Figure 38 shows the example of the output of the code, i.e. free energy spectrum.

10
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Figure 32. Ice shelf vertical deflections result from the impact of the frontal incident
wave. The parameters of the model are a; = 1,a;, = 0. T.. = 2.5km; D, = 20m. The
periodicity of the forcing T = 300s.
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Figure 33. Ice shelf vertical deflections result from the impact of the frontal incident
wave. The parameters of the model are a; = 0,a, = 1. T, = 2.5km; D, = 20m. The
periodicity of the forcing T = 300s.
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parameters of the model are a; = 1,a, = 0. T, = 2.5km; D.. = 20m. The periodicity
of the forcing T = 500s.
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Appendix A: The incoming momentum fluxes (4.1) - (4.6) written in
terms of ice displacements

1) Three components of the incoming momentum flux I M from Eq. (4.1) are

a) [ ;1) (corresponding lines in the program code are 17259-17567) is

expressed as

022 = 1 GO ) i -

00 iy (33D 1)) @ - 20, (3] 2-(5;}1);';{%—
o) (GG +31E)) @y, - 25 )) () _5-(5,;11);';{%_
ey (), @l - w) (6, +E),) Gml-
&)L (eyH)k__ (G +3)) Gml-
(0 (3 (ZZ) A6, @ - @ ()L @+
@)+ (6, +16) ) P (G~ )

ij fownb N
o (a_f)k 1} +BY AxAn; (A1)
2 2

1
2

b) 13(,1) (corresponding lines in the program code are 18709-18993) is

expressed as

200 = ) () +16)) @l - @)L ()
ey - (6L, +3E),) @l - oo (6], +36),)
il - @i 2 @il 22 () 1))
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2 2
aw\ bJ AT ij ..
{3)) @ (39 e .

2

c) Iz(l) (corresponding lines in the program code are 20059-20317) is

expressed as

2010 _ {—(E;)i'f (58) @y GG, +330),) @il -
a7 (35) +3(59)) @, (éx)”l(a—w) JGTNE
(%), (L= ) (3 G+ (55” s
(&)1 (% )_%'(%H)ZJ_% e ()L 2 (), + G+
0 () +@)) + el () ) () +

(g_;);) 1-2v ((’ZY)k——( );]._%}'Bi'ijAn ) (A1.3)

2) Three components of the incoming momentum flux I @) Jrom Eq. (4.2) are

a) I ,EZ) (corresponding lines in the program code are 17571-17881) is

expressed as
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b) 13(,2) (corresponding lines in the program code are 18998-19283) is

expressed as

22 = ) () +2G)) @i @)L G
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3)

c) IZ(Z) (corresponding lines in the program code are 20322-20580) is

expressed as

k+1
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e (VN e i NE(LawN\Y 1 aw W o, i
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Three components of the incoming momentum flux I® from Eq. (4.3) are

a) 1353) (corresponding lines in the program code are 17886-18128) is

expressed as
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b) 13(,3) (corresponding lines in the program code are 19288-19531) is

expressed as

200 ) @) s ) () @)Y,
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e W”‘M; 402

o I 2(3) (corresponding lines in the program code are 20584-20749) is

expressed as
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4) Three components of the incoming momentum flux I ) Jrom Eq. (4.4) are

a) I ;4) (corresponding lines in the program code are 18133-18376) is
expressed as
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b) 1354) (corresponding lines in the program code are 19536-19779) is

expressed as
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o) I 2(4) (corresponding lines in the program code are 20753-20918) is

expressed as
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5) Three components of the incoming momentum flux I ) from Eq. (4.5) are

a) 1955) (corresponding lines in the program code are 18381-18530) is
expressed as

4»%@:%5%%%%%§wwﬁw$“%<m>+
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2 () @) @ (G @)
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b) 13(,5) (corresponding lines in the program code are 19784-19907) is

expressed as
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c) IZ(S) (corresponding lines in the program code are 20922-21019) is
expressed as

2= R +160))+ (69,
o) (2 (aW)l Yl

on

(B H)"# AnAE; (A5.3)

6) Three components of the incoming momentum flux I (6) Jrom Eq. (4.6) are

a) 1956) (corresponding lines in the program code are 18534-18683) is
expressed as
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b) 13(,6) (corresponding lines in the program code are 19911-20034) is
expressed as
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6 . . . .
c) IZ( ) (corresponding lines in the program code are 21023-21120) is
expressed as

(Z_VxV); 2 +(nx)l+ ,( (aa:/)L+1]+
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