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Abstract 

We introduce analogues of Weyl’s circumferences and circles for the system of equations [1] with two pa-

rameters. 

It is proved that the deficiency index of the two-parameter system (1) in the singular end ),( 21 bbb   is 

not less than one. 

If one of two-parametric equations (1) has the case of limit circumference, then the deficiency index of the 

problem (1) is not less than two. But if both of the equations of the two-parameter system (1) has the case of limit 

circumferences, then the deficiency index of the problem (1) equals four. 
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Introduction: 

We consider a two –parameter system of Sturm-Liouville equations  
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Assume that )(),(),(),( 222221112111 xaxaxaxa and )(),( 2211 xqxq  are arbitrary complex-valued func-

tions, continuous on the interval ),,( ii ba  and ).2,1(Im,Re  iqrqP iiii   

We introduce analogues of G. Weyl’s circumferences and circles for the system of equations (1) with two 

parameters. 

G. Weyl’s theory on limit circumference for Sturm-Liouville operators with real potentials (see [1], [2]) is 

extended also for the case of complex potentials as was noted by V.B. Lidsky [3] when constructing theory of not 

self-adjoint Sturm-Lioville operators with discrete spectrum. 

We will use the denotations and reasonings of the works ([3],[4]). 
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Introduce the basis ),(),,(  iiii xx  of the space of solutions of the equation (1) satisfying the fol-

lowing initial conditions at the fixed point ),( iii ba : 
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Let .   ii  

Then there exists the sequence ),()(
1

)(
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m

m
i bab


  converging to ib as m and posing the proper-

ties: 
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The solution of the form  
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With increasing m circumference, the circumferences )()( m
ib

C  are contracted and as m  refract either 

to the limit point ),()( m
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m  or to the limit circumference )()( m
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C . 
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ib  lies on a closed limit circle  
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or coincides with the limit point )(
ibm  if and if the following relation is fulfilled: 
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It is easy to see that the Wronskian 

1)()()()(),( ''   iiiiiiiiii  

 and  

.Im2),(,0),( i
x

iiiiii
x

ii lill
iii


 

  

Now, multiplying the equation (1) by ,iy  integrating the obtained relation in the interval  )(, m
ii b  and 

isolating the imaginary part, we obtain: 
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We now note that the condition  
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is equivalent to such a selection of the values of il  for which the values of the linear fractional mapping  
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is real. 

And this is also equivalent to the fact that the point il  belongs to the image of the real line under the linear-

fractional mapping  
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in other words, to the belonging of the point il  of the circumference 
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The length of the radius )()( m
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R  of the circumference )()( m
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C  is found by the formula  
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Let us find the equation of the circle )()( m
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K . 

Obviously, the imaginary part of the pole of the linear fractional mapping (8) equals the expression  
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If    ii  , then from formula (7)  
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Hence it is seen that if 
 i , then the point il  belongs to the circle )()( m
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and this in its turn is equivalent to the inequality  
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If 
 i  , we obtain the inequality  
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From formulas (9) and (10) we obtain the circle )()( m
ib

K  for al    ii  in the form of  
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Hence, if is obvious that if 
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From the inequality (11) it is seen that the circles )()( m
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We call the amount of products ),(),( 2211  xyxy  belongs to ))(,(2 dxxBIL b  a deficiency index of 

two-parameter problem (1) in the singular end b (corresponding to the point  ) 
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Now, in the equality (12) assuming ),,(),( 1111  xxy   ),(),( 1222  xxy   and taking 

into account formulas (3) and (5), we obtain (considering 1r ): 
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m Cl   and the sign )"("""   corresponds to the case     ii  In all 

the addends of the right hand side of the equality (13), the second factors have finite limits as m  if only 
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Assume that for the first equation in two-parameter problem (1) we have the case a of limit circle, and fur-

thermore, let  
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Then all first factors of all addends of the right hand side of the equality (13) have finite limits as m
. Thus, subject to the mentioned conditions, the function ),)(,(),(),( 2
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index of two-parameter problem (1) is not less than two. 

In a similar way we can show that  
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if for the second equation in two-parameter problem (1) we have the case of a limit circle and the coefficients 
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Summarizing all the arguments related to the system of equations (1) we arrive at the following statement 
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Then the deficiency index of two-parameter prob-

lem (1) in the singular end ),( 21 bbb   is not less 

than a unit. 

If for one of two-parameter equations (1) we have 

the case of a limit circumference, then the deficiency 

index of the problem (1) is not than two. 

But if for the both equations of two-parameter sys-

tem (1) we have the case of limit circumferencesm then 

the deficiency index of problem (1) is equal to four. 
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