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A B S T R A C T

The ensemble random forest filter (ERFF) is presented as an alternative to the ensemble Kalman filter (EnKF)
for inverse modeling. The EnKF is a data assimilation approach that forecasts and updates parameter estimates
sequentially in time as observations are collected. The updating step is based on the experimental covariances
computed from an ensemble of realizations, and the updates are given as linear combinations of the differences
between observations and forecasted system state values. The ERFF replaces the linear combination in the
update step with a non-linear function represented by a random forest. This way, the non-linear relationships
between the parameters to be updated and the observations can be captured, and a better update produced.
The ERFF is demonstrated for log-conductivity identification from piezometric head observations in several
scenarios with varying degrees of heterogeneity (log-conductivity variances going from 1 up to 6.25 (ln m/d)2),
number of realizations in the ensemble (50 or 100), and number of piezometric head observations (18 or 36).
In all scenarios, the ERFF works well, reconstructing the log-conductivity spatial heterogeneity while matching
the observed piezometric heads at selected control points. For benchmarking purposes, the ERFF is compared
to the restart EnKF to find that the ERFF is superior to the EnKF for the number of ensemble realizations used
(small in typical EnKF applications). Only when the number of realizations grows to 500 the restart EnKF can
match the performance of the ERFF, albeit at more than double the computational cost.
1. Introduction

Characterization of the subsurface heterogeneity is of critical con-
cern for modeling groundwater flow (i.e., Capilla et al., 1999; Li et al.,
2011; Feyen et al., 2003; Fernàndez-Garcia and Gómez-Hernández,
2007) since it requires heterogeneous values of hydrogeologic parame-
ters, which commonly are only sparsely available, if at all. To overcome
the incomplete knowledge of the system and obtain better predictions
with numerical models, state variables such as piezometric head—
generally more extensively sampled—can be assimilated to improve
the characterization of harder-to-measure parameters such as hydraulic
conductivity (Carrera et al., 2005; Wen et al., 1999). Even with such
an improvement, parameter heterogeneity is never completely known,
and its uncertainty also needs to be characterized.

Stochastic data assimilation is an inverse modeling approach that
can be used to characterize parameter heterogeneity and its uncertainty
by assimilating state data sequentially in time (Zhou et al., 2014). The
ensemble Kalman filter (EnKF) proposed by Evensen (1994) is a very
popular data assimilation method for stochastic inverse modeling that
has been proven very efficient in numerous applications in fields as
varied as atmospheric science, oceanography, geophysics, geotechnical
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and petroleum engineering, hydrology, or hydrogeology (Yin et al.,
2015; Xu and Gómez-Hernández, 2016; Shuai et al., 2016; Zhu et al.,
2017; Chen et al., 2018; Liu et al., 2018; Gelsinari et al., 2020; Kim
et al., 2020; He et al., 2021).

Data assimilation for inverse modeling, as implemented by the EnKF
and its variants, is based on two main steps, a forecast of system evolu-
tion followed by an update (or correction) of the parameters describing
the system based on the discrepancy, at a few locations, between
predictions and observations. The updates are computed using linear
combinations with the weights calculated using covariance functions
in a manner very similar to the geostatistical interpolation technique of
cokriging. Such a linear scheme is a drawback of the Kalman-based data
assimilation methods since it is optimal only when the system evolves
in time following a linear state equation. Still, when the system evolves
non-linearly, the model is suboptimal, although its performance may
be very good, as demonstrated by its successful applications. A typical
example of an EnKF implementation in which the relationship between
the parameters and the state is non-linear is for inverse groundwater
modeling (Evensen, 1994; Xu et al., 2013).
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One of the reasons for the success of the EnKF is that the ex-
perimental covariances are computed from ensembles of realizations
that contain parameter values and their corresponding predictions. The
ensemble size is critical; it should be as small as possible to save CPU
time, but it should be as large as possible to obtain good experimental
covariance estimates that will prevent filter inbreeding and the ap-
pearance of spurious correlations and avoid filter divergence. (These
problems could be mitigated for small ensemble sizes with covariance
localization techniques (Chen and Zhang, 2006; Todaro et al., 2019; Xu
et al., 2013).)

Chen and Zhang (2006) studied the sensitivity of the EnKF to,
among other factors, the ensemble size and the choice of the initial
ensemble, and they showed that prior knowledge of the underlying
field, such as the structure of the covariance function, plays an impor-
tant role in data assimilation. Besides that, they found that a correct
estimation of uncertainty may require large ensemble sizes. The need
for large ensemble sizes and good prior knowledge of the spatial
variability of the field, the linear nature of the updating step, and its
big computational cost call for new strategies to improve available data
assimilation ensemble methods.

In the last years, machine learning and big data are permeat-
ing all ambits of science and technology. The easiness with which
large amounts of data are acquired in real-time and the new ap-
proaches to process them to build data-based predictive models have
given rise to a new paradigm in the treatment of information that
is starting to be used in environmental and water resources stud-
ies (Asher et al., 2015; Sit et al., 2020; Tahmasebi and Sahimi, 2021;
Mariethoz and Gómez-Hernández, 2021). In groundwater modeling,
machine learning algorithms have been used mainly to replace process-
driven models with data-driven ones to predict piezometric heads or
solute concentrations from ancillary variables. The justification is that
the data-driven models are cheaper to run and may capture relation-
ships that could escape a process-driven analysis (Knoll et al., 2019;
Al-Abadi and Alsamaani, 2020; Nguyen et al., 2020; Sachdeva and
Kumar, 2021; An et al., 2021). Although these algorithms have proven
their ability to deal with a wide range of problems in groundwater,
they are seldom used for stochastic inverse modeling purposes. To
the best of the authors’ knowledge, it has not yet been used as a
data assimilation algorithm capable of replacing the restart EnKF (r-
EnKF) (Chen et al., 2018; Xu and Gómez-Hernández, 2018, 2016).
Without trying to be exhaustive, some example applications of ma-
chine learning in groundwater inverse modeling are the works by Mo
et al. (2019), who combined an autoregressive neural network-based
surrogate method for forward modeling with an iterative local updat-
ing ensemble smoother (ILUES) (Zhang et al., 2018) to solve high-
dimensional contaminant transport inverse problems; (Bao et al., 2020,
2022), who used Generative Adversarial Networks (GAN) (Goodfel-
low et al., 2014) to reparameterize hydraulic conductivity, using a
low dimension latent variable, and then coupling it to an ensem-
ble smoother with multiple data assimilation (ES-MDA) Emerick and
Reynolds (2013); or Zhang et al. (2020), who used deep learning
to improve the ensemble smoother, although their starting ensemble
was built with good prior knowledge of the underlying hydraulic
conductivity spatial heterogeneity.

Since the weakest point of the Kalman-based data assimilation
methods is the linear updating step, which is equivalent to cokrige the
perturbations of hydraulic conductivity from the deviations between
predicted and observed piezometric heads, it is proposed to replace the
covariance-based updating step with a random forest-based updating.
Random forest updating should be able to capture the multipoint non-
linear relationships between conductivities and piezometric heads. This
new method is termed ensemble random forest filter (ERFF). The idea
of using random forests (Breiman, 2001) was inspired by the work
by Hengl et al. (2018) in which the authors propose, as an alternative to
kriging, a new framework for spatial interpolation using random forest,
2

demonstrating that this approach is capable of capturing relationships
that go beyond the linear correlation intrinsic to the covariance. The
framework proposed by Hengl et al. (2018) seeks the (non-linear)
interpolation of an attribute from sparsely observed attribute values.
In ERFF, however, the task is to interpolate piezometric head devia-
tions (between observed and predicted values) to provide correction
increments for hydraulic conductivity over the entire aquifer model.
By taking advantage of the ensemble of realizations and subtracting
them two by two, a new set of realizations (an order of magnitude
larger) is built to train the random forest. Finally, the ERFF replaces
the calculation and inversion of covariance matrices with random forest
training.

The ERFF is demonstrated in three synthetic aquifers of varying
heterogeneity (variances ranging from 1.0 to 6.25 (ln (m/d))2). A
sensitivity analysis of the ensemble size and the number of observations
is carried out. Differently from previous researchers (Mo et al., 2019;
Goodfellow et al., 2014; Zhang et al., 2020) and in line with the work
by Xu et al. (2013), it is assumed that there is no prior information
about the spatial heterogeneity of hydraulic conductivity, but only
information about its mean value and its variance. Xu et al. (2013)
have already shown the power of transient piezometric heads in the
characterization of hydraulic conductivity by the EnKF when no prior
information is available. As will be shown, this power is intrinsic and
can be taken advantage of by the ERFF. The concept of localization (Xu
et al., 2013; Todaro et al., 2019) is also included in the implementation
of the ERFF to reinforce the notion of spatial correlation by training the
random forest giving more weight to the observations that are closer to
the point being updated. The ERFF results are benchmarked against the
r-EnKF.

The structure of this paper is as follows. First, the basics of ensemble
Kalman filtering are introduced, followed by describing how the EnKF
becomes the ERFF. Second, the three reference synthetic transient
groundwater flow problems and the scenarios that will be analyzed are
described. Third, the results for the different scenarios are shown, and
one of the scenarios is compared with the r-EnKF. And fourth, the paper
ends with a summary and an outlook on potential lines of continuing
research.

2. Stochastic data assimilation

The EnKF algorithm (Evensen, 1994) is the evolution of the Kalman
filter (Kalman, 1960) to handle nonlinear state transfer functions by
using a Monte-Carlo approach. The EnKF (in the context of inverse
modeling) is a sequential data assimilation method that updates model
parameters based on the discrepancies between model predictions and
experimental observations at a few locations. The relationship between
parameters and observations must be known, and a forward model
relating parameters and state variables must be available. In the orig-
inal implementation of the EnKF for inverse modeling, both model
parameters and system states were updated. Still, it was found that
the updated states might violate constitutive relationships (such as
mass conservation), and the restart EnKF was introduced, whereby only
model parameters are updated, and the forecast for the next time step is
always performed from time zero. The reader interested in the details of
the EnKF is referred to the many papers published, particularly those
by Evensen (1994, 2003). In the following, a brief description of the
r-EnKF is presented to introduce the ERRF.

2.1. r-EnKF: Ensemble data assimilation with covariance-based updating

Consider a transient groundwater flow model in which piezometric
heads are predicted based on the hydraulic conductivity values on a
discretized aquifer (plus corresponding boundary, initial conditions,
and forcing terms). The forward model relating them is
𝐲(𝑡) = 𝑔(𝐱, 𝐲(𝑡 − 𝛥𝑡)), (1)
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Fig. 1. Reference fields and corresponding histograms.
Fig. 2. Observation (circle) and control (square) points.

where 𝑡 is time, 𝐱 ∈ R𝑛𝑝 is the hydraulic conductivity, 𝐲 ∈ R𝑛𝑜 is
the predicted system state at measurement locations, 𝑔(⋅) is a function
that includes the numerical flow model plus an observation operator
that extracts the predictions at observation locations, 𝑛𝑝 is the number
of cells in which the aquifer has been discretized and for which the
hydraulic conductivity needs to be known to solve the numerical flow
equation, and 𝑛𝑜 are the number of piezometric head observation
locations. Piezometric heads are collected sequentially in time, and
the purpose of the r-EnKF is, after each data collection, to update the
hydraulic conductivities so that after a sufficient number of updates,
the hydraulic conductivity spatial distribution resembles the true but
unknown one. The r-EnKF consists of an initialization step followed by
repeated forecast and update steps as follows:

1. Initialization step. An initial ensemble of 𝑛𝑒 realizations of hy-
draulic conductivity 𝐗𝑖𝑛𝑖 is generated using statistical or geo-
statistical methods and incorporating as much prior knowledge
3

as possible. In this paper, it is assumed that no prior informa-
tion about the spatial variability of hydraulic conductivity is
available. The initial set of realizations is made up of homoge-
neous realizations, each with a value drawn from a univariate
distribution.

2. Forecast step from time zero. In this step, the transient ground-
water flow forward model is solved, from time zero, for each
realization 𝑖, to obtain model predictions of the piezometric
heads at time step 𝑡 using the latest update of the conductivities
(for the first update, the initial ensemble of conductivities is
used). (Recall that to ensure mass conservation is not violated
by the piezometric heads at time 𝑡, the simulation is always
restarted from time zero.)

𝐲𝑖,𝑡 = 𝑔(𝐱𝑖,𝑡−1, 𝐲𝑖,0), 𝑖 = 1,… , 𝑛𝑒, (2)

where 𝐲𝑖,𝑡 is the vector of forecasted piezometric heads at the 𝑡th
time step, and 𝐱𝑖,𝑡−1 is the last update of hydraulic conductivities
at the previous time step (𝑡 − 1). For the first time step, 𝐱𝑖,𝑡−1 is
𝐱𝑖𝑛𝑖𝑖 .

3. Update step. The vector of hydraulic conductivities is updated
based on the discrepancies between forecasted and observed
piezometric heads. The updated parameter vector 𝐱𝑢 is given,
for the 𝑖th realization at the 𝑡th time step, by

𝐱𝑢𝑖,𝑡 = 𝐱𝑓𝑖,𝑡 +𝐊𝑡

[

𝐲𝑜𝑡 + 𝜺𝑜𝑖,𝑡 − 𝐲𝑓𝑖,𝑡
]

, (3)

where the subscripts 𝑖 and 𝑡 refer to a specific realization and
time step, respectively; 𝐱𝑓𝑖,𝑡=1 = 𝐱𝑖𝑛𝑖𝑖 and 𝐱𝑓𝑖,𝑡 = 𝐱𝑢𝑖,𝑡−1, 𝐲𝑓𝑖,𝑡 is the
vector of model predictions at observation locations; 𝐲𝑜𝑡 is the
vector of state values at observation locations; 𝜀𝑜𝑖,𝑡 is the vector
of observation errors (the observations errors have zero mean
and a covariance matrix 𝐑𝑡); and 𝐊𝑡 is the Kalman gain matrix,
given by

𝐊𝑡 = 𝐂𝑡
𝑋𝑌

(

𝐂𝑡
𝑌 𝑌 + 𝐑𝑡

)−1 , (4)

where 𝐂𝑡
𝑌 𝑌 is the auto-covariance of the state variables and 𝐂𝑡

𝑋𝑌
is the cross-covariance between parameters and state variables
for the 𝑡th time step, which are computed from the ensemble of
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Fig. 3. Mean and variances of the initial ensembles.
Fig. 4. Evolution in time of the ensemble mean for scenario S1.
realizations as

𝐂𝑡
𝑌 𝑌 = 1

𝑛e − 1

ne
∑

i=1

(

𝐲𝑖,𝑡 − 𝐲𝑡
) (

𝐲𝑖,𝑡 − 𝐲𝑡
)T , (5)

𝐂𝑡
𝑋𝑌 = 1

𝑛e − 1

ne
∑

i=1

(

𝐱𝑖,𝑡 − 𝐱𝑡
) (

𝐲𝑖,𝑡 − 𝐱𝑡
)T , (6)

with 𝐱 and 𝐲 being the ensemble means of parameters and
predictions, respectively.
Covariance localization is used to mitigate the problem of spuri-
ous correlations. It is done by element-wise multiplication of the
originals covariance matrices and a distance-dependent correla-
tion function that reduces the correlations between points as the
Euclidian distance between them increases. The cross-covariance
and the auto-covariance are then calculated as

𝐂̃𝑡
𝑋𝑌 = 𝐂𝑡

𝑋𝑌 ◦𝜆 (7)

𝐂̃𝑡
𝑌 𝑌 = 𝐂𝑡

𝑌 𝑌 ◦𝜆, (8)

where ◦ represents the Schur product, and 𝜆 is a correlation
function, given by:

𝜆(𝑟) =

⎧

⎪

⎪

⎪

⎨

⎪
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⎪

⎩
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𝑎
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(
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𝑎
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+ 1, 0 ⩽ r ⩽ a;
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(
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𝑎
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− 1

2

(
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(
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(
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(
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3

(
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)−1
, a ⩽ r ⩽ 2a;

0 r > 2a,
4

(9)
where 𝑎 is the distance beyond which no spatial correlation is ex-
pected, and 𝑟 is the Euclidean distance between the observation
and the point where log-conductivity has to be updated.

4. Back to the forecast step.

In a problem where there are 𝑛𝑝 parameters (in our case, 𝑛𝑝 will
be the number of cells in the numerical model) and 𝑛𝑜 observations,
vectors 𝐱𝑢𝑖,𝑡 and 𝐱𝑓𝑖,𝑡 have sizes 𝑛𝑝 × 1, vectors 𝐲𝑜𝑡 , 𝜀

𝑜
𝑖,𝑡, and 𝐲𝑓𝑖,𝑡 have sizes

𝑛𝑜 × 1, the Kalman gain 𝐊𝑡 and the cross-covariance 𝐂̃𝑡
𝑋𝑌 are matrices

of size 𝑛𝑝 × 𝑛𝑜, and the matrices 𝐂̃𝑡
𝑌 𝑌 and 𝐑 are of size 𝑛𝑜 × 𝑛𝑜. When

the observation errors are modeled as uncorrelated, 𝐑𝑡 is a diagonal
matrix. In the covariance matrix calculations, 𝐱𝑡 is a column vector of
size 𝑛𝑝×1 with the average values of each parameter computed through
the realizations, 𝐱𝑡 =

1
𝑛𝑒

∑ne
i=1 𝐱𝑖,𝑡, and, similarly 𝐲𝑡 is a column vector

of size 𝑛𝑜 × 1 with the average values of each state variable computed
through the ensemble of realizations, 𝐲𝑡 =

1
𝑛𝑒

∑ne
i=1 𝐲𝑖,𝑡.

2.2. ERFF: Ensemble data assimilation with random forest-based updating

The ERFF proposal is to replace the linear updating in Eq. (4) with
a non-linear update based on a random forest prediction. Eq. (4) can
be rearranged as follows

𝐱𝑢𝑖,𝑡 − 𝐱𝑓𝑖,𝑡 = 𝐊𝑡

[

𝐲𝑜𝑡 − 𝐲𝑓𝑖,𝑡 + 𝜺𝑜𝑖,𝑡
]

, (10)

and rewritten as

𝛥𝐱𝑖,𝑡 = 𝜑(𝛥𝐲𝑖,𝑡), (11)

where 𝛥𝐱𝑖,𝑡 and 𝛥𝐲𝑖,𝑡 are the correction (to be applied to the current esti-
mate of the parameters) and the discrepancy (between state predictions
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Fig. 5. Left column: Initial log-conductivity histograms. Central and right columns: Final log-conductivity histograms, for 18 and 36 observation scenarios respectively. The hollow
red histograms correspond to the reference fields. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
and observations) vectors, respectively. In the r-EnKF, function 𝜑 is a
linear combination of discrepancies, where 𝐊𝑡 (Eq. (4)) is the matrix
of coefficients. In the ERFF, 𝜑 will be replaced by a random forest
regressor, which should be able to capture any linear or non-linear
relationship existing between 𝛥𝐱𝑖,𝑡 and 𝛥𝐲𝑖,𝑡.

Random forest regression is a supervised machine learning algo-
rithm for building a predictor ensemble with a set of decision trees
(that is, a forest) that grow in bootstrapped sub-samples of the dataset
(that is, randomly selected samples with replacement). Predictions are
obtained by aggregating the various predictors from each decision tree
into a single average value (Breiman, 2001; Cutler et al., 2012; Biau,
5

2012). The bootstrap aggregation procedure used in random forest pro-
duces robust and highly accurate predictions without overfitting (Biau,
2012; Hengl et al., 2018). As the mathematical framework of the
random forest itself is not the focal point of this work, interested
readers are encouraged to refer to Breiman (2001), Cutler et al. (2012),
and Biau (2012) for a more in-depth analysis of the technique.

A random forest has to be built for each cell in the model where
log-conductivity is to be estimated. Once built, the discrepancies be-
tween forecasted piezometric heads (different for each realization) and
observed values are fed to the random forest to provide an estimate
of the log-conductivity perturbation to apply, at that specific cell, to
each realization. The ERFF consists of the same steps as the r-EnKF: an
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Fig. 6. Reference fields (top row) and log-conductivity ensemble mean at time step 26 for the different scenarios.
Fig. 7. Log-conductivity ensemble variance at time step 26 for the different scenarios.
initialization step followed by repeated forecast and update steps. The
difference lies in the update step, which is done using random forests,
as explained next. Consider a set of 𝑛𝑒 realizations of the hydraulic
conductivity and the associated 𝑛𝑒 realizations of the piezometric heads
at a given time step. With such a set, subtracting two by two each con-
ductivity realization and its associated piezometric heads, an ensemble
of 𝑛′𝑒 = 𝑛𝑒(𝑛𝑒 − 1)∕2 realizations of differences can be built

𝛥 ln𝐊𝑖3 ,𝑡 = ln𝐊𝑖2 ,𝑡 − ln𝐊𝑖1 ,𝑡
𝛥𝐡𝑖3 ,𝑡 = 𝐡𝑖2 ,𝑡 − 𝐡𝑖1 ,𝑡

}

𝑖1 = 1,… , 𝑛𝑒 − 1, 𝑖2 < 𝑖1 ≤ 𝑛𝑒, 𝑖3 = 1,… , 𝑛′𝑒 (12)
6

where 𝛥 ln𝐊𝑖3 ,𝑡 is a realization of log-conductivity differences at time
step 𝑡, and 𝛥𝐡𝑖3 ,𝑡 is a realization of piezometric head differences at the
same time step and for the same conductivity realizations used to obtain
the log-conductivity difference. Next, consider that observations have
been taken at a subset of 𝑛𝑜 locations. These observations will depart
from the forecasted values, and the differences between observations
and forecasts will change for each realization of log-conductivity. Con-
sider now a specific cell in the numerical model, 𝑗; from the ensemble
of differences, it is possible to build a training data set composed of

𝛥 ln𝐾𝑖,𝑗,𝑡
}

𝑖 = 1… , 𝑛′𝑒 (13)

𝛥ℎ𝑖,𝑘,𝑡, 𝑘 = 1,… , 𝑛𝑜
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Fig. 8. Standardized deviations between the reference fields and the ensemble means at time step 26 for the different scenarios.
from which to train a random forest to predict the perturbation of
log-conductivity at location 𝑗 associated with perturbations of the
piezometric heads at the set of 𝑛𝑜 locations. Once this random forest is
trained, the differences between the observed heads and the predicted
ones in each realization are calculated. The random forest is used to
predict a log-conductivity difference to apply to the current value of
log-conductivity at that specific location. This procedure is repeated
for each cell in the aquifer until all conductivity values are updated.
This procedure could be extended for the update of multiple param-
eters given observations of multiple variables, such as, for instance,
updating log-conductivities and porosities from piezometric head and
concentration observations.

To reinforce the need to account for spatial correlation, the head
differences are weighted before their use according to

𝛥′ℎ𝑖,𝑘,𝑡 = 𝛥ℎ𝑖,𝑘,𝑡𝜆
−1(𝑟) (14)

where 𝑖 is the realization index, 𝑘 is the observation index, 𝑡 is the time
index, 𝑟 is the Euclidean distance between the observation and the point
where log-conductivity has to be updated, and 𝜆 is the localization
function in Eq. (9).

The rationale for using Eq. (9) here is the following: when the
observation location is close to the log-conductivity location being
updated, 𝜆 is close to one, and no correction is introduced, but when
the head difference is far from the log-conductivity, the value of 𝜆
is close to zero, and the head difference is amplified in a way that
the random forest will interpret that there is no relationship between
head differences and log-conductivity differences. In this way, head
differences close to the point being updated will receive larger weight
in the log-conductivity update than head differences that are further
apart.

The random forest was implemented using the scikit-learn library in
Python (Pedregosa et al., 2011). Before running the different scenarios
described in the next section, tuning the algorithm’s hyperparame-
ters was necessary. This is probably the most tedious part of the
ERFF, which is always subject to some subjective decisions and is an
application-dependent task. Several preliminary runs were performed,
splitting the ensemble of differences into two subsets, 90% for training
and 10% for validation, and a sensitivity analysis was performed to
derive the best hyperparameter values. The values finally chosen for
the hyperparameters were: number of trees in the forest 120, minimum
number of samples required to split an internal node 2, minimum
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number of samples required to be at a leaf node 3, number of features
to consider 0.65, and random state 10. All other hyperparameters were
set at their default values as defined in scikit-learn.

It is important to stress one of the advantages of the ERFF over the
EnKF is that to get the 𝑛𝑒 ensemble of realizations is necessary to run 𝑛𝑒
times the forward model, but then, the number of realizations to train
the random forest increases to 𝑛𝑒(𝑛𝑒−1)∕2 after a simple subtraction of
the original 𝑛𝑒 realizations. To get the same number of realizations for
EnKF, 𝑛𝑒(𝑛𝑒 − 1)∕2 would have to be forward modeled.

3. Synthetic examples

Three synthetic, two-dimensional, heterogeneous, and confined
aquifers are built on a domain composed of 30 by 10 cells, each 1 m
by 1 m. The GCOSIM3D code (Gómez-Hernández and Journel, 1993)
was used to generate the three reference log-conductivity fields with
standard deviations (SD) of 1.0, 1.7, and 2.5 ln (m/d), and all of
them with a mean of 4.0 ln (m/d) and a spherical variogram with
maximum and minimum ranges of 20 and 10 m, respectively, with
the direction of maximum continuity oriented at 60◦ counterclockwise
with respect to the east–west axis. Transient groundwater flow is
simulated in all three synthetic aquifers under the following conditions:
north and south boundaries are impervious; along the east boundary,
a flow of −200 m3/d is prescribed; heads of 0 m are prescribed
along the west boundary, and initial hydraulic heads are set to 0 m
everywhere. Fig. 1 shows the three log-conductivity reference fields
with indication of the groundwater flow boundary conditions, along
with their histograms. The total simulation time is five days, discretized
into 100 time steps. Transient groundwater flow is numerically solved
by MODFLOW 2005 (Harbaugh, 2005) in FloPy (Bakker et al., 2016).

Each transient simulation for each reference field was sampled at
the locations shown in Fig. 2. The sampled values will be assimilated
by the ERFF to retrieve the spatial heterogeneity of the reference fields.
Only the observations for the 26 first time steps are used during the
assimilation. The remaining 74 time steps are used for validation.
Fig. 2 also shows three control points that will not be used during the
assimilation, but that will also serve to validate the final results.

Twelve scenarios were defined to evaluate the performance of the
ERFF. The scenarios were built to analyze the influence of the number
of realizations in the ensemble, the number of observation points, and
the standard deviation of the reference field. Table 1 summarizes the
scenarios considered.
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Fig. 9. Comparison between the ensemble random forest filter and the restart ensemble Kalman filter for scenario S1; (a) reference field, (b) reference field covariance map,
(c) log-conductivity ensemble mean for S1, (d) log-conductivity ensemble mean for r-EnKF, (e) and (f) mean covariance maps for the final log-conductivities for S1 and r-EnKF,
respectively, (g) and (h) ensemble log-conductivity variances for S1 and r-EnKF, respectively, (i) and (j) standardized log-conductivity deviations for S1 and r-EnKF, respectively,
and (k) and (l) log-conductivity histograms for S1 and r-EnKF, respectively.
For the generation of the initial ensemble of realizations, it is
assumed that no prior information about the spatial variability of
conductivity is available. For this reason, the assimilation procedure for
all scenarios starts with an ensemble of homogeneous log-conductivity
realizations drawn from Gaussian probability distributions of mean
4.0 ln (m/d) and standard deviations of 1.0, 1.7, and 2.5 ln (m/d)
according to the last column in Table 1. Fig. 3 displays the ensemble
means (Fig. 3a) and the ensemble variances (Fig. 3b–d) for the initial
log-conductivity fields for all scenarios. As expected, these values are
homogeneous and equal to the prior mean (the same for all scenarios)
and variance (different for the scenarios according to Table 1).
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Each scenario is used to study the ERFF for identifying the reference
field with the same standard deviation in the last column of Table 1.
Apart from the standard deviation, the scenarios differ in the number
of members of the initial ensemble, which can be 50 or 100, and the
number of head observation points, which can be 18 or 36, as shown
in Fig. 2. Hydraulic heads are collected and assimilated every time step
for the first 26 time steps; then, the model continues running until time
step 100.

In all scenarios, localization is used, with a parameter 𝑎 in Eq. (9)
equal to 12 m, implying that virtually no spatial correlation between
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Fig. 10. ASD and RMSE.

Table 1
Scenarios considered.

Scenario # observations # realizations SD

S1 18 50 1.7
S2 18 50 2.5
S3 18 50 1.0
S4 18 100 1.7
S5 18 100 2.5
S6 18 100 1.0
S7 36 50 1.7
S8 36 50 2.5
S9 36 50 1.0
S10 36 100 1.7
S11 36 100 2.5
S12 36 100 1.0

head differences and log-conductivity differences exists beyond this
distance.

Finally, for completeness, the r-EnKF was also applied to scenario
S1 and used as a benchmark for ERRF.

4. Results and discussion

Fig. 4 shows, for scenario S1, how the mean of the ensemble of
realizations evolves as observations are assimilated. It can be observed
that, starting from a homogeneous mean, heterogeneity is gradually
introduced in the ensemble of realizations after each assimilation step.
By step 26, the mean of the ensemble is a good estimate of the
reference. The large-scale features of the reference are already visible in
step 10, and by step 20, the short-scale features are displayed, too; not
many changes are noticeable after step 20. Similar time evolutions are
observable in the rest of the scenarios, although not shown here. These
9

results are promising, mainly since no prior information about spatial
heterogeneity is used. Fig. 5 shows the evolution of the histograms of
all realizations for each scenario. In the first column, the histograms
for all values in the initial ensembles of realizations for each scenario
are shown as solid gray bars. The histograms of the updated fields are
shown in the second and third columns. In all three columns, the hollow
red histogram is the histogram in the reference field. There is not much
difference between the initial and the updated histograms, although
it is clear that there is a shift towards a better fit to the reference
histogram in the updated realizations; however, it is important to notice
that the spatial heterogeneity of the realizations has gone from homo-
geneous values in each realization in the first column to heterogeneous
ones trying to replicate the reference so as to match the observed
piezometric heads in the other two columns. As already said, the only
statistical information used for the generation of the initial ensemble
is the probability distribution from which to draw the homogeneous
values for each realization; these distributions were chosen to match
the ones used to generate the references, but it can be said that starting
from a uniform distribution with reasonable ranges will yield the same
results, meaning that the method is capable of retrieving the spatial pat-
terns of the heterogeneous log-conductivity field with virtually no prior
information on this parameter. The difference between the scenarios in
the second and third columns of Fig. 5 is the number of observation
points, 18 and 36, respectively. With 36 observations, the final updated
histograms are slightly closer to the reference ones.

The performance of the method was further analyzed through sen-
sitivity analysis to three variables: number of observation points, en-
semble size, and hydraulic conductivity variance.

Fig. 6 shows the ensemble mean of the updated log-conductivity
fields after the 26th assimilation time step for all scenarios. The left
column shows the final mean log-conductivity field corresponding to a
standard deviation of 1.7 ln (m/d), while the center and right columns
show the final fields corresponding to standard deviations of 2.5 and
1.0 ln (m/d), respectively. The first row presents the reference fields for
comparison purposes, the second and third rows refer to scenarios with
18 observation points, and the fourth and fifth rows show the scenarios
with 36 observation points. Fig. 7 presents the ensemble variance of
the updated log-conductivity fields after the 26th assimilation time
step for all scenarios. And Fig. 8 shows the standardized discrepancy
between the reference and the ensemble mean of the updated fields
for each scenario computed as the difference between reference value
and ensemble mean over the scenario standard deviation. (In the latter
two figures, no reference row is displayed, the first and second rows
correspond to the scenarios with 18 observation points, and the third
and fourth rows scenarios with 36 observation points. Left, center and
right columns correspond to scenarios with log-conductivity standard
deviations of 1.7, 2.5, and 1.0 ln (m/d), respectively.) From these three
figures, one can observe that the method successfully reproduces the
heterogeneity of the reference fields regardless of the scenario. It is
worth noting that the results are very similar, independently of the
number of simulations, the number of observations, or the standard
deviation of the reference field. Only a slight improvement is found
when the number of observations is doubled. Further analyses carried
out and not presented here showed that the number of observations
could be reduced to ten and still, the ERFF recovered the heterogeneity
of the underlying conductivity fields. The success of the approach must
be related to the ability of random forests to extract non-linear relation-
ships between explanatory variables (piezometric head differences) and
the parameters (hydraulic conductivity differences).

Fig. 9 compares the ERFF and the r-EnKF using the same number of
observation points, ensemble size, and standard deviation of the refer-
ence field. The first row shows the reference field and the covariance
map computed on it. The second row shows the ensemble mean for
the ERFF (left) and the r-EnKF (right). As noticeable, the ERFF mean
is much closer to the reference than the r-EnKF. The third row shows
the ensemble average covariance maps, where again the covariance
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Fig. 11. Head evolution at control point #1. Reference field (dashed line). Mean of head simulations in the initial log-conductivity ensembles (solid blue line). Mean of head
simulations in the final ensembles (solid black line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
map of ERFF is closer to the reference than the one from r-ENKF. It
should be noticed that the ellipse of anisotropy is slightly smoothed for
the ERFF, while for the r-ENKF, the covariance map seems to display
a hole effect behavior with maximum continuity close to the north–
south direction. The fourth row shows the ensemble variance, which
is quite close to zero for both ERFF and r-ENKF. The fifth row shows
the error had the ensemble mean been used as an estimate for the
reference; again, the ERFF outperforms the r-ENKF. Finally, the sixth
row shows the histograms of the final realizations as compared with the
reference histogram. The same results can be noticed. The conclusion
would be that for 50 realizations, the ERFF is superior to the r-ENKF:
even with localization, the small number of realizations in r-ENKF takes
an important toll. This does not mean that the r-EnKF is disqualified for
inverse modeling, but the ERFF is better under these settings.

Aware of the very good results that the r-EnKF had given in the
past, the exercise was repeated with an ensemble of 500 realizations,
and then it yielded results as good as the ERFF. The problem was with
the number of realizations.

The computational costs of both methods and scenarios were also
evaluated by measuring the CPU runtime in an 11th Gen Intel Core i9-
11900KF 3.5 GHz with 64 GB of RAM. Table 2 shows the run times in
minutes. For the ERFF scenarios with 18 observation locations, the CPU
runtime nearly doubles when we go from 50 to 100 realizations; with
36 observation locations, going from 50 to 100 observations triples the
CPU runtime. The CPU runtime for the r-EnKF with 50 realizations and
18 observations is extremely low compared to scenarios with the same
characteristics (S1, S2, and S3), reflecting the additional time required
by the ERFF to generate the realizations of the differences and train the
RF for each cell. However, the computational cost needed by the r-EnKF
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Table 2
Computational costs.

Scenario CPU runtime (minutes) # observations # realizations SD

S1 17 18 50 1.7
S2 17 18 50 2.5
S3 18 18 50 1.0
S4 40 18 100 1.7
S5 41 18 100 2.5
S6 40 18 100 1.0
S7 21 36 50 1.7
S8 21 36 50 2.5
S9 21 36 50 1.0
S10 67 36 100 1.7
S11 65 36 100 2.5
S12 75 36 100 1.0
r-EnKF 500 38 18 500 1.0
r-EnKF 50 5 18 50 1.0

to arrive at satisfactory results is 2,2 times greater when compared to
the ERFF of the same characteristics.

For quantitative analysis, the root-mean-square errors (RMSE) and
the average standard deviations (ASD) were computed according to

𝑅𝑀𝑆𝐸 =

√

√

√

√

√

1
𝑛𝑒𝑛𝑝

𝑛𝑝
∑

𝑖=1

𝑛𝑒
∑

𝑗=1
(𝑥𝑖𝑗 − 𝑥𝑟𝑒𝑓𝑖 )2 (15)

𝐴𝑆𝐷 = 1
𝑛𝑝

𝑛𝑝
∑

𝑖=1
𝜎𝑥𝑖 (16)

where 𝑛𝑒 is the number of realizations in the ensemble, 𝑛𝑝 is the number
of cells, 𝑥 represents the log-conductivity at cell 𝑖 in realization 𝑗, 𝑥𝑟𝑒𝑓
𝑖𝑗 𝑖
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Fig. 12. Head evolution at control point #2. Reference field (dashed line). Mean of head simulations in the initial log-conductivity ensembles (solid blue line). Mean of head
simulations in the final ensembles (solid black line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
is the log-conductivity in the reference, and 𝜎𝑥𝑖 is the log-conductivity
ensemble standard deviation at cell 𝑖. Their evolution in time is shown
in Fig. 10, for all 12 scenarios plus the r-EnKF with 50 and 500 en-
semble realizations. Both values decrease in magnitude as time passes,
with the best performer being S11 (highest values for number of
observations, number of realizations, and reference variance), followed
by S8 (same as S11 but with only 50 realizations). Note also how the
RMSE goes chaotic for the r-EnKF with 50 realizations after iteration
5, probably due to a problem with filter inbreeding, very common in
ensemble Kalman filtering with few realizations.

Finally, Figs. 11, 12, and 13 show how the piezometric heads are
reproduced at the three control points. Observations were assimilated
only until time step 26 (vertical dashed line in all plots), but the
piezometric head evolution is shown until the end of the simulation
period at time 100. All figures show the head simulation in the ref-
erence field from time zero (dashed red line), the average of all head
simulations in the initial ensemble of realizations (solid blue line), and
the average of the simulations in the updated log-conductivity fields
after 26 assimilation steps (solid black line). Note that piezometric head
axes vary for each plot to best display the results. The graphs have
been grouped by columns, with each column corresponding to one of
the three reference cases. It is quite remarkable how the piezometric
heads change from being completely off target at time zero to matching,
almost perfectly, the reference head curves. The minimal discrepancies
between the mean of the simulated values and the reference happen
in some of the scenarios with the smaller number of observations,
i.e., S4 and S5. For comparison purposes, the head evolution in the log-
conductivity realizations obtained using the r-EnKF with 50 realizations
is shown in Fig. 14, where it can be seen that the reproduction of the
reference values is not as good as for the ERFF, particularly for control
points #1 and #2.
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5. Conclusion

A new data assimilation method, the ensemble random forest filter
(ERFF), has been proposed. It is inspired by the ensemble Kalman
filter but replaces the linear updating step with a non-linear up-
date computed using random forests. The ERFF uses an ensemble of
log-conductivity realizations and its associated ensemble of predicted
piezometric heads to build a large training dataset that is an order of
magnitude larger than the initial set of realizations (the dataset size
grows with the square of the number of realizations). The random forest
analyzes the differences in the predicted piezometric heads at observa-
tion locations with the differences in log-conductivities throughout the
domain, learns from this training set, and then predicts what should be
the difference to be added to the log-conductivity at each location in the
domain once the head observations are collected and their differences
with respect to the predictions evaluated.

The method has been tested in a number of scenarios with varying
degrees of heterogeneity (as measured by the standard deviation),
different number of realizations in the ensemble, and different number
of observation locations, and it has been found to perform well in
all scenarios and better than its benchmarking the restart ensemble
Kalman filter when the same number of realizations are used. Only
when the number of realizations rises to 500 is the Kalman filter
capable of providing similar results but at a cost 2,2 times larger than
the ERFF.

The main caveat of the proposal is, as in most machine learning
applications, the choice of the hyperparameters that control the build-
ing of the random forests. This task could be time-consuming until a
suitable set of hyperparameters is found that performs appropriately
for the problem at hand.
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Fig. 13. Head evolution at control point #3. Reference field (dashed line). Mean of head simulations in the initial log-conductivity ensembles (solid blue line). Mean of head
simulations in the final ensembles (solid black line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Head evolution at the three control points for scenario S1 in the final ensembles of realizations obtained by the ERFF and the r-EnKF with 50 realizations. Reference
field (dashed line). Mean of head simulations in the initial log-conductivity ensembles (solid blue line). Mean of head simulations in the final ensembles (solid black line). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Research continues on the application of the ERFF to more complex
problems, such as those involving the identification of external stresses
and boundary and initial conditions or the identification of more
complex log-conductivity patterns.
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