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INTRODUCTION 

Full-waveform inversion (FWI) attracts a lot of interest due to 

its potential to give an accurate velocity model often needed 

for seismic imaging in complex geological environments. This 

accuracy is achieved by minimising the difference between 

modelled and field data (Tarantola, 1984). It is mainly used 

for inverting the surface reflection seismic data, where it relies 

on low frequencies and very large offsets that produce diving 

waves. Charara et al. (1996) showed that due to the rich 

wavefield information (presence of transmitted, converted, 

and reflected waves) in vertical seismic profile (VSP) datasets, 

the VSP data is also suitable for the inversion. The FWI of 

VSP data can be applied to data collected using geophone and 

distributed acoustic sensors (DAS) (Egorov et al., 2018). 

In this study, we use VSP data collected at the GeoLab 

Research facility, located at the Curtin University campus, 

Perth, WA. The facility has a 900 meters deep borehole 

suitable for testing borehole geophysical equipment and new 

technologies. The borehole is drilled in a geologically 

representative part of the Perth Basin. It comprises 

Quaternary, Tertiary, Cretaceous and Jurassic-aged sediments. 

Previous experiments at this facility provided insights on 

numerous subjects: the comparison of different borehole 

seismic receivers (Correa et al., 2017a, Correa et al., 2017b, 

Van Zaanen et al., 2017, Correa et al., 2018), a better 

understanding of distributed acoustic sensing measurements 

(DAS) (Pevzner et al., 2018, Dean et al., 2019, Sidenko et al., 

2020, Zulic et al., 2020), testing different seismic sources 

(Tertyshnikov and Pevzner, 2019), testing three-component 

VSP with DAS (Tertyshnikov and Pevzner, 2020), and 

examining the use of the well for passive registration of 

earthquakes and technogenic activities (Pevzner et al., 2018, 

Shulakova et al., 2020). 

The walkaway VSP experiment was carried out in June 2020 

(Zulic et al., 2020). For this feasibility study, we limit to 

analysis of the geophone data recorded from 130 m to 870 m 

depth with a 10 m interval from a single source location. The 

source location is 715 m north of the well and we refer to this 

shot as S63. An Inova 26,000 lbs vibroseis truck was used as a 

seismic source. We process and migrate the single-shot dataset 

and apply FWI workflow to invert for P- and S-wave 

velocities (Vp and Vs, respectively) and demonstrate the 

applicability of FWI applied to a single shot VSP data.  

METHODS 

The processing flow applied to the field dataset involves the 

following steps: loading data to the seismic processing 

software, correlating with the pilot sweep, assigning the field 

geometry, editing bad traces, orienting the horizontal 

components towards the source, stacking, applying 

deterministic deconvolution, performing wavefield separation, 

building the velocity model and performing the migration. 

In addition to the described processing, we applied a 2D 

elastic FWI workflow (Egorov et al., 2017) to synthetic and 

field datasets. The workflow is implemented in an open-source 

software package IFOS2D (Köhn, 2011, Bohlen et al., 2016). 

Pre-processing steps for FWI are the same as for the 

conventional flow (correlation with the pilot sweep, assigning 

field geometry, the orientation of horizontal components 

towards the source, stacking). Then, we convert the data to 

minimum phase, correct to 2D amplitudes and use the 

corrected vertical and radial components coupled with an 

elastic model as inputs for the FWI.   

Synthetic VSP data are calculated using Vp estimated from a 

near offset DAS VSP experiment at GeoLab (Correa et al., 

2017b) and Vs and density calculated using empirical relations 

(Castagna, 1985, Gardner, 1974). We refer to this model as a 

true model.  We use the forward modelling results to test 

imaging parameters and assess the performance of FWI for 

single-shot data. We invert the data from a shot location 

distanced 715 m using receivers from 130 m to 870 m depth 

interval for the frequency range 6-65 Hz. A smoothed version 
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of the elastic model used in the forward modelling is a starting 

model (M1) for FWI. 

For inversion of the field data, as the starting model (M2), we 

use the 1D Vp distribution obtained by inverting the first 

arrival travel times using fast marching eikonal solvers 

(Kroon, 2021) and Vs and density derived using the same 

empirical relations as for the synthetic model. We inverted 

field data from S63 using receivers 130 m to 870 m depth 

interval for the frequency range of 11 – 105 Hz.  

RESULTS AND DISCUSSION 

Figure 1 shows the true and starting Vp models used in the 

synthetic study and the inverted Vp models from FWI. We 

observe that the inverted model converges to the true model 

resolving thin layers of different velocities at depth (indicated 

by red arrows in the figure). Most of the model updates occur 

within the ray coverage area and wave propagation artefacts 

affect the rest of the model. The 10 m-thick high-velocity 

layer (indicated by a red dashed box in the figure) at a depth of 

130 m could not be reconstructed, probably due to inadequate 

coverage and maximum inversion frequency of 65 Hz. The 

synthetic modelling results confirm that the FWI of single-

shot VSP data produces an adequate subsurface image.  

Figure 1. Vp models used for synthetic data: (a) True 

model (b) Starting model M1 (c) Inverted model. Blue line 

show receivers and red star source location. The arrows 

point to the well-resolved thin layers. 

For the field data, we first used the same FWI parameters as in 

the synthetic study. However, the inversion of the field data 

did not converge even for low frequencies, indicating that the 

starting velocity model was not sufficiently accurate. 

Although the zero offset VSP is the most accurate method to 

obtain seismic velocities along the borehole (Cassel, 1990), 

the use of these velocities away from the borehole assumes 

lateral homogeneity and such assumption that is not always 

met in practice. We applied travel time tomography to create a 

new starting velocity model with the picked first arrival travel 

times from S63. We used a 1D-eikonal solver based 

tomography that accounts for the refracted waves present on 

raw gather to construct the velocity model. The results from 

FWI applied to field data using M2 are shown in Figure 2 for 

three frequency stages: 11 Hz (top), 40 Hz (middle) and 105 

Hz (bottom). As the number of iterations and frequency 

increase, the contribution of converted and reflected waves 

increases, while misfit decreases.  

Figure 3 shows the starting M2 model (Vp and Vs) and the 

results of FWI. Because the single offset VSP has a limited 

ray coverage, which we additionally reduced by excluding low 

signal to noise traces from the inversion (see the missing 

traces in Figure 2), the FWI images of Vp and Vs contain 

strong artefacts. However, FWI seems to resolve thin velocity 

layers around the well, indicated by the red arrow in Figure 3. 

These layers correlate to interbedded sandstone and siltstone 

units observed in the gamma-ray log, particularly within 

Yarragadee (Jy) Jurassic sediments, as shown in Figure 4.  

Figure 2. VSP gathers from different frequency stages (11 

Hz (top), 40 Hz (middle) and 105 Hz (bottom). From left to 

right: modelled (2a-2c), field (2d-2f) and calculated misfit 

(2g-2i) gathers. 

Figure 3. Results from FWI of data with source S63. From 

left to right: Starting Vp model (M2), Inverted Vp model, 

Starting Vs model, Inverted Vs model. 

For further interpretation and understanding of the FWI 

results, in Figure 4, we superimpose them over VSP migration 

image and additional logging data (gamma-ray, stratigraphy 

log indicating base of unit). Based on the inverted Vp and Vs 

images from FWI, we calculate the image of Poisson's ratio - 

PR (Birch, 1961), which can assist with rock characterisation. 

Results from both imaging methods (VSP migration and FWI) 

indicate some form of heterogeneity at a depth of 400 m. VSP 

migration has a distinctive reflector at this depth, while the 

FWI Vp image has a substantial change in velocity 

characterised by an undulating shape. Additionally, we 

observe a significant decrease of PR in one of the undulations, 

which can indicate more compacted material than in its 

surrounding. From the stratigraphic log, we can correlate these 

observations to the contact between Tertiary (Tkc) and 

Cretaceous (Kwlw) sediments, Kings Park Unconformity, a 

major paleovalley (Rockwater, 2016). This local heterogeneity 

can also explain the observed diffracted waves on the shot 

records.   



Subsurface characterization using FWI of VSP   Zulic, Bona, Tertyshnikov, Yurikov, Pevzner

3rd AEGC: Geosciences for Sustainable World – Online, 13-17September 2021, Brisbane, Australia  3 

Figure 4. Superimposed results with logging data (gamma-ray and stratigraphy). From left to right (a) VSP migration image 

M2; (b) migration Vp image over VSP migration; (c) Poisson's ratio image over VSP; (d) superimposition of Poisson's ratio, 

Vp and VSP migration image.  

CONCLUSION 

The FWI workflow applied to VSP data can provide additional 

value for the subsurface characterisation. The critical step for 

successful FWI application is having an appropriate starting 

velocity model, which can be obtained by tomography.  While 

the ray coverage is limited for a single offset VSP and 

numerous artefacts are observed in the images built by using 

FWI, there is a good correlation between VSP migration 

image, FWI results, gamma-ray log and stratigraphy. The 

artefacts could be reduced by including data from additional 

source locations. Overall, the described method allowed to 

some extent, the imaging of a subsurface, identification of 

geological contacts and their shapes.  
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