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Abstract

Climate models like the coupled Arctic atmosphere-ocean-sea ice model HIRHAM-
NAOSIM are helpful to gain a deeper understanding of Arctic Amplification and
interactions between atmosphere, ocean and sea ice. HIRHAM-NAOSIM is evaluated
in Arctic winter compared to data from the MOSAiC expedition for February 2020.
A warm surface temperature bias of more than 5 ◦C during clear-sky conditions is
discussed in terms of modeled surface energy budget, clouds and atmospheric stability.
HIRHAM-NAOSIM’s control run underestimates the stable atmospheric stratification
and has a positive bias in liquid water path and longwave radiation during observed
clear-sky time periods. Though the positive longwave radiative bias outweighs the
impact of a changed snow thermal conductivity and the positive temperature bias
during radiatively clear state remains, a halved conductivity of 0.15Wm−1K−1 reduces
the simulated surface temperature by up to 5 ◦C and causes a higher occurrence of
stable atmospheric conditions.

Zusammenfassung

Der weltweite Klimawandel ist auf Grund der polaren Verstärkung in der Arktis
(engl.: Arctic Amplification) durch vergleichsweise schnell steigende Temperaturen sicht-
bar. Für ein tieferes Verständnis der Wechselwirkungen zwischen Atmosphäre, Ozean
und dem arktischen Meereis werden gekoppelte regionale Klimamodelle herangezogen.
Das gekoppelte Atmosphäre-Ozean-Modell HIRHAM-NAOSIM wird im arktischen
Winter für Februar 2020 anhand von Beobachtungsdaten der MOSAiC Expedition
(09/2019–10/2020) evaluiert. Während der kälteren Zeitperioden wird eine Überschät-
zung der simulierten Oberflächentemperatur von mehr als 5 ◦C beobachtet. Diese wird
in Bezug auf die Energiebilanz, Wolken und atmosphärische Stabilität des Modells
diskutiert. Der Kontrolllauf von HIRHAM-NAOSIM unterschätzt das Auftreten von
stabilen atmosphärischen Schichtungen ebenso, wie den Anteil abwärts gerichteter
langwelliger Strahlung während Zeiträumen mit wolkenlosem Himmel. Die erhöhte
Oberflächentemperatur durch die Überschätzung der langwelligen Strahlung kann nicht
durch eine verringerte Wärmeleitfähigkeit des Schnees ausgeglichen werden. Der Tem-
peraturunterschied zwischen Modell und Beobachtung während des ’radiatively clear
state’ bleibt bestehen. Trotzdem reduziert eine Halbierung der thermischen Leitfähigkeit
auf 0.15Wm−1K−1 die simulierte Oberflächentemperatur und bewirkt eine verbesserte
Wiedergabe stabiler Zustände.
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List of Symbols

CRE cloud radiative effect in Wm−2

ci sea ice fraction
ϵ surface emissivity ϵ = 0.985
g gravitational acceleration at North Pole g = 9.83ms−2 [1]
Hc conductive heat flux in Wm−2

Hl latent heat flux in Wm−2

Hs sensible heat flux in Wm−2

hi ice thickness in m
hs snow thickness in m
IWV vertically integrated water vapour in kgm−2

ki ice thermal conductivity in Wm−1K−1

ks snow thermal conductivity in Wm−1K−1

LWd downward longwave radiation in Wm−2

LWnet net longwave radiation in Wm−2

LWu upward longwave radiation in Wm−2

LWP liquid water path in gm−2

RiB bulk Richardson number
Rnet net radiative fluxes in Wm−2

SEB surface energy budget in Wm−2

SLP sea-level pressure in hPa
SWd downward shortwave radiation in Wm−2

SWnet net shortwave radiation in Wm−2

σ Stefan-Boltzmann constant σ ≈ 5.67× 10−8Wm−2K−4 [2]
T10m air temperature at 10m height in ◦C
Tb ice-bottom temperature in ◦C
Ts surface temperature in ◦C
Θv virtual potential temperature in K
U horizontal windspeed component in ms−1

V horizontal windspeed component in ms−1

z height in m
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1 Introduction

Climate change can be observed worldwide. New temperature records and the more
frequent occurrence of extreme weather events are just two of many observable effects [3].
Various feedback effects lead to a faster change of the Artic climate compared to the
global mean, a process known as Artic Amplification [4]. The ice-albedo feedback is one
of the drivers of Arctic Amplification. It describes the loss of snow-covered sea ice due
to higher temperatures and the resulting decrease of the surface albedo because of the
darker ocean surface. More longwave radiation is absorbed, the temperature rises, and
the sea ice reduction is amplified [5]. In the last 20 years surface temperatures in the
Arctic increased by more than twice the global mean [6]. Changes of the Arctic climate
can hereby also impact mid-latitude weather events via large-scale circulation patterns
such as e.g. the Arctic Oscillation [7]. Therefore a deeper understanding and better
simulation of the changing Arctic system and its feedback mechanisms is of high interest.

One tool to investigate feedbacks are coupled climate models like the Arctic atmo-
sphere-ocean-sea ice model HIRHAM-NAOSIM [8]. Previous studies have shown that
the model has biases in reproducing the observed sea ice extent and near-surface air
temperature in wintertime [8]. The positive temperature bias in Arctic wintertime is a
common bias in Arctic climate models, reanalysis, and forecasts and is often resulting
from an inaccurate representation of the surface energy budget [9]. It is challenging to
simulate the atmospheric boundary layer and its stability over Arctic sea ice because of
the various interactions between clouds, radiation and turbulence over an inhomoge-
neous surface cover [10].

The MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Cli-
mate) expedition marks the biggest attempt of humankind to observe one complete
Arctic seasonal cycle from September 2019 to October 2020. The collected data give
the opportunity to evaluate climate models and gain a better understanding of the
Arctic atmosphere, ocean, cryosphere and ecosystem and their interactions [11].

The objective of this bachelor thesis is the evaluation of HIRHAM-NAOSIM in
Arctic wintertime compared to observational data from the MOSAiC expedition. In the
following Chapter 2 an overview of the physical background of Arctic winter climate
characteristics is given. Chapter 3 introduces the MOSAiC expedition, the used data
and experimental setups as well as the Arctic climate model HIRHAM-NAOSIM. Five
synoptic events are analyzed and the applied statistical methods are introduced. The
HIRHAM-NAOSIM control run (CTRL) is evaluated compared to MOSAiC data in
Section 4.1. Afterwards, the influence of a changed snow thermal conductivity in the
model setup is examined in Section 4.2. This quantitiy has been shown to be a key
parameter in sea ice models, i.e. by Urrego-Blanco et al. [12]. Finally the results are
summarized and compared to previous findings in Chapter 5.
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2 Physical Background

This chapter provides an overview of important characteristics of Arctic climate in
winter which are most relevant for this thesis. It includes the surface energy budget
and its interaction with clouds, the two Arctic winter states and atmospheric stability.
Afterwards, information about the snow thermal conductivity is given.

2.1 Surface Energy Budget

The surface energy budget (hereafter referred to as SEB) consists of turbulent and
radiative fluxes as indicated in Equation (2.1). It describes the energy transfer across
a surface interface without energy storages and determines the net surface heat flux
between the atmosphere and the ocean, ice or land [13, p.110]. Radiative and non-
radiative fluxes are defined as positive when directed towards the surface and negative
when directed away from the surface. A negative SEB means that there is an energy
loss of the surface corresponding to cooling effects, whereas a positive SEB is equivalent
to a gaining of energy and leads to surface warming.

SEB = Rnet +Hs +Hl +Hc (2.1)

Hs refers to the sensible heat flux, Hl the latent heat flux and Hc the conductive
heat flux from ocean to atmosphere through sea ice and snow. The non-radiative fluxes
Hs and Hl differ from each other because Hs is the heat transport along a vertical
temperature gradient and Hl is the heat flux associated with phase transitions.

The total amount of radiative fluxes Rnet can be calculated as sum of the net longwave
and shortwave radiations LWnet and SWnet [13, p.111]

Rnet = LWnet + SWnet = LWd − ϵσT 4
s + SWd(1− α). (2.2)

SWd is the incoming solar radiation and LWd the longwave component of LWnet,
which is directed towards the surface. Figure 2.1 gives an overview of these incoming and
outgoing fluxes and the structure of typical surface conditions in the Artic. Incoming
shortwave radiation, which reaches the surface, gets absorbed or transmitted through
ponds. With the surface albedo α as the ratio of reflected and incoming solar radiation,
SWd · α is the reflected shortwave radiation. According to the Stefan-Boltzmann law,
the outgoing longwave flux can be calculated with the formula LWu = ϵσT 4

s with the
surface emissivity ϵ, the Stefan-Boltzmann constant σ and the surface skin temperature
Ts [2, p.159]. In Arctic winter the SEB can be calculated as in Equation (2.1) without
the shortwave radiation term SWnet due to a lack of incoming solar radiation during
polar night [13, p.112]. There are no energy-transporting phase transitions except
rare sublimation events in winter because the surface is frozen and Ts below 0 ◦C. For
this reason the latent heat flux does not need to be considered as well. Hc is small
compared to the radiative fluxes and therefore is not included in the calculation of
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2.1 Surface Energy Budget

Figure 2.1: Schematic overview of incoming and outgoing radiative and non-radiative
fluxes of the surface energy budget on sea ice. The ice is partly covered
by snow and has some leads with direct contact between ocean and atmo-
sphere. Incoming solar radiation SWd is reflected due to the surface albedo.
Longwave radiation is outgoing from the surface and incoming from the
atmosphere (Stefan-Boltzmann). Moreover, sensible and latent turbulent
heat fluxes above the surface affect the SEB. Through the ice and snow
the conductive heat flux provides heat exchange between atmosphere and
ocean. The graphic has been modified and is taken from [15].

SEB in Section 4.1. In spite of that, since changing the snow characteristics has an
impact on the conductive heat fluxes, Hc is considered in Section 4.2.

The Arctic sea ice shown in Figure 2.1 separates the ocean from the atmosphere.
Underneath the sea ice is a fresh water layer from basal melting situated above a
layer of comparatively warm water. The edge of the sea ice can vary depending on
thermodynamic and mechanical movements. Hereby, the dynamic of the sea ice can also
lead to the formation of ridges and leads. Leads are open water areas within the sea ice
cover, which quickly re-freeze with a thin ice layer in winter. They make an exchange
of gases, aerosols and direct heat transfer from the warmer ocean to the atmosphere
possible. Ridges cause momentum fluxes at the atmosphere-ice and ice-ocean interfaces.
On parts of the sea ice there is a heterogeneous snow layer acting as insulator between
sea ice and the atmosphere. The snows insulating effect plays an important role in the
sea ice growth [14]. In the lower left of Figure 2.1 a more detailed picture of the snow
ice interface is shown.

In addition to the sea ice characteristics, clouds have a big influence on the SEB as
well. They affect the net shortwave radiation by reflecting the incoming solar radiation
(albedo effect). By emitting thermal longwave radiation depending on their temperature
they contribute to the net longwave radiation (greenhouse effect) [5]. Most of the time
the downward LW radiation from the clouds results in warming. There is only a short
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2 Physical Background

time period in Arctic summer when the shading of the clouds has a bigger impact
than the greenhouse effects [16]. The Cloud Radiative Effect (CRE) is defined as the
difference between the net radiative fluxes at cloud coverage and in clear-sky conditions.
It quantifies the impact of clouds on the SEB. Shupe et al. [16] come to the conclusion
that the CRE for longwave radiation mainly depends on the cloud temperature, height
and cloud emissivity, whereas the shortwave CRE depends on the cloud shortwave
radiation transmittance, surface albedo and the solar zenith angle. Clouds containing
liquid water have a higher impact on the radiation budget than ice-only clouds [7]. For
this, the liquid water path (LWP ) is an important measure of the effect of clouds.

As a simplification, the Arctic winter climate can be separated into two states
depending on the synoptic situation [17] [18]. These states are called ’radiatively clear
state’ and ’opaquely cloudy state’. They influence the atmosphere up to the stratosphere
but are also impacting the ocean, sea ice and snow layers [18]. The radiatively clear
state is characterised by calm periods [19]. Clouds during radiatively clear state are
either too high above the surface to contribute to LWnet with downwelling longwave
radiation or they have a too small optical thickness [18]. The small amount of LWd leads
to a net cooling effect. Synoptic situations with clear-sky condition are also typically
characterized by higher sea-level pressures and lower windspeeds. The atmosphere is
in a stable condition, which can last up to two weeks [18] and is characterized by a
strong temperature inversion. Typical for the opaquely cloudy state are optically thick
clouds consisting of liquid water. They occur during storms when heat and moisture
is transported into the Arctic [17]. The presence of these clouds increases LWd and
therefore they contribute to a surface warming. Related winds to the stormy events
decrease the atmospheric stability. As a result the temperature inversion becomes
weaker [20]. The two Arctic winter states become visible in the bimodale structure in
histogram plots of for example LWnet.

2.2 Atmospheric Stability

A measure of the atmospheric stability is the bulk Richardson number (RiB). It is based
on the Monin–Obukhov similarity theory (MOST) [21] for near-surface turbulence [22].
In a stable stratified atmosphere turbulent fluxes counteract gravity. Higher windspeeds
lead to an increase in turbulence, whereas a bigger buoyancy suppresses turbulence.
Therefore RiB is calculated as quotient of the buoyancy and shear terms, and higher
values of RiB are related to more stable stratification.

RiB =

g
Θv

∆Θv∆z

∆U2 +∆V 2
(2.3)

The bulk Richardson number is calculated at 10m height. g = 9.83ms−2 is the gravi-
tational acceleration at the North Pole [1], ∆z the depth of the considered atmospheric
layer and ∆U and ∆V are horizontal changes of the windspeed components at 10m.
Equation (2.3) uses the virtual potential temperature Θv and ∆Θv, which is the vertical
temperature gradient between 10m height and the surface.

Stable stratification is characterized by lower windspeeds and potentially a strong
vertical temperature gradient. Since the windspeed is in the denominator of Equa-
tion (2.3) and the temperature gradient ∆Θv in the numerator, RiB becomes higher in
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2.3 Snow Thermal Conductivity

more stable synoptic situations. RiB can be used to define three stability categories,
namely unstable (RiB < 0), neutral (0 ≤ RiB < 0.02) and stable (0.02 ≤ RiB) [10,
Supplementary Table 1].

2.3 Snow Thermal Conductivity

Snow has a relatively small thermal conductivity ks compared to the thermal conductivity
of sea ice ki [9] and is the most reflective natural material on earth [23]. The thermal
conductivity of ice depends on its salinity and temperature but a typical value for ki
of pure ice at 0 ◦C is 2.24Wm−1K−1 [13, p.114]. For fresh snow ks is in the order of
0.06Wm−1K−1, whereas ks of older snow is in the order of 0.42Wm−1K−1 [13, p.114].
ks is often estimated as function of the density of snow. But besides this, other

parameters such as grain-size or snow temperature influence the thermal conductivity
as well [24]. The fact that snow is also very heterogeneous [25] makes it difficult to
measure or simulate its thermal conductivity. The calculation of the conductive heat
flux Hc through ice and snow [26] includes the snow thermal conductivity.

Hc =
ci(Tb − Ts)

hi/ki + hs/ks
(2.4)

ci is the sea ice fraction, Ts the surface temperature and Tb the ice-bottom tempera-
ture. hi and hs are ice and snow thicknesses and ki and ks are ice and snow thermal
conductivities. A change of the thermal conductivity of snow leads to a changed amount
of heat transfer from the ocean to the atmosphere and a resulting shift of the surface
temperature and temperature gradient [27].

Several feedback effects have to be taken into account when evaluating the sensitivity
of a climate model towards a change of the snow cover [13, p.144]. A smaller snow
thermal conductivity for example increases the insulating effect of the snow layer causing
a decrease of the heat loss towards the atmosphere. This leads to an inhibited basal ice
growth [12] [14] [28]. High thermal conductivity has the opposite effect. A changed ice
thickness influences the lead fraction and there are also feedback linkages to surface
albedo and surface temperature [13] [29].
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3 Data and Methods

This section introduces the observational data from the MOSAiC expedition and data
from the regional coupled Arctic climate model HIRHAM-NAOSIM. In addition to
that, the synoptic events of February 2020 and statistical methods are presented.

3.1 MOSAiC Expedition

3.1.1 MOSAiC Drift

The MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
expedition took about one year from September 2019 to October 2020 [30] and can be
separated in five ’legs’ as seen in Figure 3.1. The data used for this thesis originate
from leg 2 and leg 3. Several observation stations were positioned around the RV
Polarstern which was frozen into an ice floe using the Arctic ice drift to cross the Arctic
ocean [31]. Aim of the expedition was to gather data from atmosphere, cyrosphere,
ocean and ecosystem of a seasonal Arctic cycle and to enhance the understanding of
their interactions to improve climate models and forecasts [11].

Figure 3.1: Overview of the MOSAiC
expedition track. Legs of
the MOSAiC expedition are
distinguished by different
colours with passive drift of
the Polarstern as solid lines
and active movement as dot-
ted lines. The annual max-
imal and minimal sea ice
edge from March 2020 and
September 2019 is shown as
well. Data used in this thesis
are from leg 2 and leg 3. The
figure is taken from [31].

Barentssea

The Central Observatory (CO) including the Polarstern and instruments in a distance
of 5 km was used to gain a detailed and interdisciplinary understanding of the Arctic
seasonal cycle on a small scale. In addition to this, measurements took place in a
distance of 5 km to 50 km around the CO in the Distributed Network (DN) to measure
spatial variability and heterogenity [11].
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3.1 MOSAiC Expedition

3.1.2 Data

The data used in this thesis come from the meteorological site Met City installed
in approximately 500m distance to Polarstern and from three ASFS (autonomous
Atmospheric Surface Flux Stations) situated in the Distributed Network in a distance
of around 25 km to Polarstern. The tower at Met City is of 10m height. Met City and
station ASFS40 have data for the whole February 2020. For station ASFS30 data are
available until 2020-02-27 and for station ASFS50 until 2020-02-06. Integrated water
vapour (IWV ) and liquid water path (LWP ) are derived from a microwave radiometer
onboard the Polarstern [32].

Table 3.1 lists the used MOSAiC variables which are relevant for SEB and their
measurement instruments. Due to the early data version there is only unpublished
information on systematical uncertainties. They are listed in Table 3.1 as well. The
uncertainties of LWP and IWV depend on the elevation angle of the measurement
and therefore are not itemized in Table 3.1. The data have a resolution of 1min for
temperatures and radiative fluxes and 10min for the non-radiative fluxes. The resolution
of LWP and IWV is between 1 s and 2 s. Each variable is averaged to three-hourly
means if more than 50% of data for the three hours is available. The threshold of 50%
data availability is set to avoid giving too much weight to outliers.

Table 3.1: MOSAiC’s variables and measurement instruments at Met City, Polarstern
and the ASFS stations. The locations, heights and abbreviations of the
instruments are given [31]. Uncertainties are listed if the information is
provided.

Variable Location Height in m Instrument Uncertainty
T10m Met City 9.34 Vaisala HMT330 ±0.4 ◦C

Ts
Met City surface PIR LWu,LWd

ASFS surface Apogee IRT; IR20 LWu,LWd

LWd
Met City 3.00 Eppley PIR ±2.6Wm−2

ASFS 2.00 Hukseflux IR20 ±2.6Wm−2

LWu
Met City 1.50 Eppley PIR ±1.0Wm−2

ASFS 2.00 Hukseflux IR20 ±1.0Wm−2

Hs
Met City 2.00 Metek uSonic-Cage MP
ASFS 3.86 Metek uSonic-Cage MP

U ,V Met City 10.54 Metek uSonic-Cage MP ±0.3ms−1

IWV Polarstern 29.00 RPG HATPRO G5
LWP Polarstern 29.00 RPG HATPRO G5

The surface temperature Ts is derived from measurements of the longwave radiation
parts LWu and LWd [33]

Ts =

[
LWd − (1− ϵ)LWu

ϵσ

]0.25
. (3.1)

ϵ = 0.985 is the surface emissivity and σ ≈ 5.67 × 10−8Wm−2K−4 [2, p.159] the
Stefan-Boltzmann constant.
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3 Data and Methods

3.2 Climate Model HIRHAM-NAOSIM

3.2.1 Model Description

The regional Arctic atmosphere-ocean-sea ice model couples the ocean-sea ice model
NAOSIM (North Atlantic/Arctic Ocean-Sea Ice Model) [34] with the atmospheric
model HIRHAM5 (High Resolution Hamburg) [35] [36]. The first version of this
coupling was described 2003 [37] and the latest description is given in [8]. Further
explanations of improvements in the parameterizations are made in [38] and [26].

The domains of HIRHAM5 and NAOSIM are depicted in Figure 3.2. The overlap
area in which the stand-alone models are coupled is highlighted in yellow. HIRHAM5
has 40 vertical levels and a horizontal resolution of 0.25 ◦ (∼ 25 km) while NAOSIMs
horizontal resolution is 1/12 ◦ (∼ 9 km) and it has 50 vertical levels [8].

Sea surface temperature, sea ice concentration, sea ice thickness, snow thickness
on ice and the freezing temperature of sea water are transferred from NAOSIM to
HIRHAM5 every hour in the coupled areas [8]. HIRHAM5 transfers the atmospheric
fluxes to NAOSIM also with an hourly time interval. Responsible for the coupling is
the software YAC 1.2.0 (Yet Another Coupler) [8], [39]. In the small domain outside
of the coupled area the models are treated as in stand-alone mode.

Figure 3.2: Domains of the stand-alone ocean
model NAOSIM and atmosphere
model HIRHAM5 in central Arc-
tic. The area of the cou-
pled model HIRHAM-NAOSIM
is highlighted in yellow. The
graphic is taken from [8].

3.2.2 Model Experiments

The control run of HIRHAM-NAOSIM (CTRL) is simulated for the period from
2019-01-01 to 2020-05-01. It is started with the HN2.1 configuration and ice-ocean
initialization from HN2.1 ensemble member 1 which is similar to the HN2.0 configuration
described by Dorn et al. [8]. CTRL is laterally driven with ERA5 reanalysis data [40]
and nudged in all levels by 1%. Nudging describes the replacement of a percentage of
the model data by reanalysis data [41].

As mentioned in Section 2.3 the thermal conductivity of snow depends, among other
parameters, on the density of the snow and therefore varies a lot. Freshly fallen snow
has a relatively small ks and the estimated snow thermal conductivity of the MOSAiC
expedition is 0.50Wm−1K−1 [42]. The choice of ks and snow density influences the
simulated sea ice volume [12]. The CTRL run has a snow thermal conductivity of
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3.3 Synoptic Events

ks = 0.31Wm−1K−1 like many other sea ice models [25]. To evaluate the impact
of a change in ks two sensitivity runs are carried out. In run k15 ks is halved to
0.15Wm−1K−1, run k50 uses the estimated conductivity of MOSAiC. Table 3.2 gives
an overview of the model runs and their snow thermal conductivities.

Table 3.2: HIRHAM-NAOSIM model runs, names and used snow thermal conductivities.
Model Run Name ks in Wm−1K−1

runN36_itd0 CTRL 0.31
runN36_itd0_consn_0.15 k15 0.15
runN36_itd0_consn_0.50 k50 0.50

3.3 Synoptic Events

Synoptic meteorology deals with the state of the atmosphere over a wide area including
observations of the sky cover, atmospheric pressure and precipitation [43] [44]. The
discussion is limited to February 2020. In this month, a variety of different meteorological
conditions occurred. Clear-sky conditions as well as cases of warm air intrusions into
the Arctic and storm events have been observed. They are discussed representative
for the other months. Five time periods with specific events have been selected. The
time periods are chosen based on the atmospheric circulation, namely integrated water
vapour (IWV ) and sea-level pressure (SLP ) as well as the temperature difference
between CTRL run and MOSAiC observations.

Exemplary two of the synoptic situations are shown in Figure 3.3. In the days
around 2020-02-19 12:00 a stormy event including a cyclone with its lowest pressure
around 950 hPa is over the Barents-Kara Seas and influences the synoptic situation
at Met City. During its passage south of Polarstern, SLP of CTRL run at Met City
decreases by approximately 20 hPa to 970 hPa and IWV rises by around 3 kgm−2 to
values between 4 kgm−2 and 5 kgm−2 caused by the poleward transport of heat and
moisture at the eastern flank of the cyclone. Another stormy event discussed takes
place around 2020-02-03. A cyclone steers a moisture intrusion and pressure low from
Barents Sea towards the Polarstern. This is shown in Figure 6.1 (left) appended to this
thesis.

The plot on the left side of Figure 3.3 is from 2020-02-07 15:00. It shows a synoptic
situation with pressures at around 1010 hPa and IWV around 1 kgm−2 to 2 kgm−2 at
Met City. A similar synoptic situation with SLP between 1010 hPa and 1020 hPa and
small values of IWV can be observed around 2020-02-10 and is depicted in the middle
in Figure 6.1. Furthermore, the event around 2020-02-14 is taken into account. It was
chosen because of the surface temperature difference of the CTRL run and MOSAiC
data, which was bigger than 5 ◦C for over nine hours in a row. This event is characterized
by a moisture intrusion from the Kara Sea and SLP at Polarstern is around 1000 hPa.
The Polarstern in Figure 6.1 (right) is on the edge of the moisture intrusion. This
has to be considered when using only the nearest grid cell of HIRHAM-NAOSIM to
Polarstern.
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3 Data and Methods
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Figure 3.3: Spatial plots of integrated water vapour (IWV , shaded) and isobares of
sea-level pressure (SLP ) from HIRHAM-NAOSIM’s control run (CTRL)
in the Arctic at two times in February 2020. The position of Met City is
marked in orange. The left plot from 2020-02-07 15:00 represents a synoptic
situation with relatively high sea-level pressures at Polarstern and the plot
on the right from 2020-02-19 12:00 shows the synoptic situation during a
cyclone event over the Barents-Kara Seas.

3.4 Statistical Methods

The evaluation of the model in Chapter 4 uses MOSAiC data. Model output represents
three-hourly grid cell averages, while the MOSAiC measurements are collected from four
experimental sites. To compare the datasets, three-hourly means of the observational
data are calculated and the nearest grid cell of HIRHAM-NAOSIM to each station
is located for every time step of MOSAiC’s drift using the function ’cKDTree’ from
scipy [45].

One method to compare observational and model data is time series analysis. It
helps to connect synoptic events with model biases. In the discussion of Chapter 4
the MOSAiC data in the time series is plotted as the mean value of the stations. The
standard deviation across the stations σs at each time step is calculated as

σs =

√∑n
s=1(os − ōs)2

n
. (3.2)

It is also plotted for every time step. n is the number of stations with usable data with
a maximum of four stations, os represents the data points of the different stations s
and ōs their mean value.

Furthermore, probability density function plots (pdf plots) are created to gain a
better understanding of the distribution and range of the data. In contrast to histogram
plots, the bins in the pdf plots are smoothed by a gaussian kernel. For plotting the pdfs
in python seaborn’s function ’kdeplot’ [46] is used.

To evaluate the model quantitatively the mean bias error (MBE) is calculated as
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3.4 Statistical Methods

the monthly mean difference of model and observational data with

MBE =
1

N

N∑
i=1

(mi − oi). (3.3)

oi is the observational data and mi are the values of the simulation belonging to the
nearest grid cell to the station of oi at time step i. N is the total number of time steps,
which is 232 for February 2020 multiplied by the number of stations with available data.

Moreover, the root-mean-square error (RMSE) is taken into account with

RMSE =

√√√√ 1

N

N∑
i=1

(mi − oi)2. (3.4)

To perform a correlation analysis, the normalized covariance matrix M is calculated
using numpy’s function ’corrcoef’ [47]. M of two datasets is calculated as their covariance
matrix normalized by the product of their standard deviations [48]. The correlation
(corr) of observational data o and model data m with their mean values ō and m̄ and
standard deviations σm and σo is on the main diagonal of M and can be calculated as

corr =
1
N

∑N
i=1(oi − ō)(mi − m̄)

σmσo

. (3.5)
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4 Results and Discussion

This chapter first discusses the evaluation of the HIRHAM-NAOSIM control run
(CTRL) compared to data from the MOSAiC expedition. Afterwards, the sensitivity
of HIRHAM-NAOSIM to a change in snow thermal conductivity is examined.

4.1 Evaluation of the Control Run with MOSAiC
Observations

Before going into details of temperature (Section 4.1.1), radiation (Section 4.1.2) and
atmospheric stability (Section 4.1.3) an overview in Table 4.1 shows the model biases
in temperature, SEB components, integrated water vapour (IWV ) and liquid water
path (LWP ). The table contains the monthly mean of the observational data, mean
bias errors and correlations.

Table 4.1: Variables for three-hourly MOSAiC and HIRHAM-NAOSIM data from Febru-
ary 2020 at Polarstern. The monthly mean value of MOSAiC data is derived
from data of all stations. Mean bias error (MBE) and correlation (corr)
are calculated using Equations (3.3) and (3.5) for three model runs with
different snow thermal conductivities (ks). The control run (CTRL) has a ks
of 0.31Wm−1K−1 and the thermal conductivies of the runs k15 and k50 are
0.15Wm−1K−1 and 0.50Wm−1K−1. Temperature, SEB components, IWV ,
and LWP are taken into account. From the surface upward directed fluxes
are defined negative and downward directed fluxes positive.

Variable MOSAiC CTRL k15 k50
mean MBE corr MBE corr MBE corr

Ts −27.75 ◦C 2.13 K 0.89 1.27 K 0.89 2.56 K 0.90
T10m−Ts 1.03 K −0.19 K 0.49 0.05 K 0.48 −0.32 K 0.50

Hs 3.45 Wm−2 8.26 Wm−2 0.30 10.40 Wm−2 0.26 6.96 Wm−2 0.32
LWd 173.09 Wm−2 15.97 Wm−2 0.77 14.67 Wm−2 0.77 16.76 Wm−2 0.79
LWu −206.18 Wm−2 −7.96 Wm−2 0.86 −5.07 Wm−2 0.86 −9.39 Wm−2 0.87
LWnet −33.43 Wm−2 9.02 Wm−2 0.56 10.47 Wm−2 0.58 8.41 Wm−2 0.59
SEB −29.19 Wm−2 16.58 Wm−2 0.61 20.54 Wm−2 0.59 14.46 Wm−2 0.61

LWP 3.62 gm−2 2.66 gm−2 0.36 2.59 gm−2 0.36 2.66 gm−2 0.34
IWV 2.92 kgm−2 −0.55 kgm−2 0.92 −0.56 kgm−2 0.92 −0.55 kgm−2 0.92

All variables except LWu, ∆T , and IWV have a positive bias in the mean February
MBE for the control run. In the following sections, reference will be made to the
contents of Table 4.1.
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4.1 Evaluation of the Control Run with MOSAiC Observations

4.1.1 Temperature

The time series of three-hourly data from February 2020 for the surface temperature
Ts is depicted in Figure 4.1. The observed temperature varies between −40.37 ◦C and
−10.62 ◦C. It reaches February’s highest observed temperature during the cyclone event
around 2020-02-19. The surface temperature decreases the most in the end of February.
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Figure 4.1: Time series of three-hourly surface temperature Ts for February 2020 at
Polarstern. MOSAiC data are plotted as mean from Met City and the flux
stations with the across station standard deviation σ in blue. σ of Ts is
small. Model runs of HIRHAM-NAOSIM are averaged over the nearest grid
cells to MOSAiC stations in green (control run CTRL), orange (k15) and
purple (k50). For further evaluations some periods of time are hatched in
blue and grey depending on the synoptic events described in Section 3.3.

To examine it more closely for the specific events presented in Section 3.3, there are
blue and grey hatched periods in Figure 4.1. During the first cyclone event around
2020-02-03, the observed temperature rises from approximately −35 ◦C to −17 ◦C. After
a fast increase, the temperature drops again after the cyclone passage to around −32 ◦C
on 2020-02-05. A similar strong temperature rise of approximately 19 ◦C from −32 ◦C
to −13 ◦C is observed during a cyclone event around 2020-02-19. Ts stays at around
−10 ◦C until it decreases again when the cyclone has passed on 2020-02-20.

In the grey hatched periods, the MOSAiC surface temperature Ts decreases in the first
and the third of the time periods at 2020-02-07 and around 2020-02-14. The decrease
is particularly pronounced around 2020-02-07, when Ts drops from −23 ◦C to −35 ◦C
in approximately one day. During the grey period around 2020-02-10 the temperature
reaches a maximum followed by a decrease of approximately 5 ◦C at the end of the day
and the beginning of 2020-02-11.

The model is able to simulate the monthly temperature maximum and minimum of
MOSAiC’s observations. The temperature minimum of CTRL (−41.01 ◦C) and the
maximum (−9.31 ◦C) are close to the observed values and of similar timing. CRTL
matches the temporal changes in temperature with a correlation of 0.89 (Table 4.1)
and a RMSE of 2.75K. The monthly MBE has a positive bias of 2.13K, but the
time series show that the temperature is not systematically overestimated in the model.
Instead, in specific periods (grey hatched in Figure 4.1) the model is too warm.

Indeed, the surface temperature of CTRL during stormy events in the blue hatched
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4 Results and Discussion

periods rises as strong as the observed temperature. Especially in the second event
around 2020-02-19 the modeled temperature is within the across station standard
deviation and thus reproduces the observed Ts. The temperature increase of CTRL
run in the first blue time period is overestimated by approximately 3 ◦C compared to
observations. Grey hatched periods are at times when the CTRL surface temperature
is more than 5 ◦C higher than the MOSAiC temperature for longer than nine hours
in a row. This happens during synoptic events with observed temperatures beneath
−20 ◦C and clear-sky conditions. The model reproduces the temperature increase shortly
before these cold periods but CTRL remains at too high temperatures. In the third
grey time period around 2020-02-14, CTRL temperature rises as high as during the
blue hatched times due to the modeled stormy intrusion nearby the grid cell of Polarstern.

The monthly positive bias of CTRL run is visible in Figure 4.2. Maximum and
minimum of the observed Ts are reached but the graph of CTRL run is slightly shifted
towards higher temperatures. The density of Ts is underestimated at low temperatures
in the range of approximately −40 ◦C to −28 ◦C and overestimated for relatively warm
temperature conditions within the range of −25 ◦C to −10 ◦C.

Figure 4.2: Plot of the pdf of surface
temperature Ts for Febru-
ary 2020 at MOSAiC drift.
MOSAiC data is plotted in
blue and the model out-
put in green (CTRL), or-
ange (k15) and purple (k50)
for HIRHAM-NAOSIM runs
with different ks. The plot is
based on three-hourly data
and derived from Met City
and the ASFS and their near-
est grid cells of HIRHAM-
NAOSIM. −50 −40 −30 −20 −10 0 10
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To conclude, the CTRL run simulates the surface temperature with a high corre-
lation of 0.89 compared to MOSAiC observations and there is no systematic over- or
underestimation. Nevertheless, a positive temperature bias in synoptic situations with
lower temperatures is observed. Three reasons to explain this positive bias are discussed
in the following sections. One reason may be a positive bias in the downward longwave
radiation (LWd), the atmospheric stability is examined, and thirdly a change in snow
thermal conductivity is evaluated regarding a possible reduction of the positive surface
temperature bias [9].

4.1.2 Radiation and Clouds

A hypothesis explaining the positive temperature bias is a positive bias in LWd result-
ing from, for example, a bias in clouds. The components of SEB and especially the
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4.1 Evaluation of the Control Run with MOSAiC Observations

longwave downward radiation (LWd) and liquid water path (LWP ) from the CTRL
run are compared to MOSAiC data to verify this hypothesis.

Table 4.1 shows that the SEB and its components Hs and LWnet have monthly
positive biases. The SEB has a MBE of 16.58Wm−2 for the CTRL run. The radia-
tive fluxes LWu and LWd have relatively high correlations of > 0.7 compared to a low
correlation of 0.33 for Hs. The correlation of SEB is 0.61 and corr = 0.56 for LWnet.
The time series of LWnet and Hs as well as the one of the SEB are appended to the
thesis in Figure 6.2. There are no obvious differences in the blue and grey hatched
periods, which can be clearly interpreted as source of the positive temperature bias.

One important component of the longwave contribution to the SEB is LWd. It
directly depends on the presence of clouds [18]. This can be seen in Figure 4.3. Observed
LWd (left axis, solid) varies between 120Wm−2 and 250Wm−2 while the maximum of
LWP (right axis, dotted) is at approximately 80 gm−2. The time series of MOSAiC’s
LWd has maxima and minima at similar times as the measured surface temperature.
Associated with the occurrence of storms (blue hatched periods and third grey period)
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Figure 4.3: Time series of downward longwave radiation (solid line, left y-axis) and

liquid water path (dotted, right y-axis) for February 2020. As in Figure 4.1
periods of time are hatched in different colours depending on temperature
biases and synoptic situations. The data are three-hourly means at Met City
and ASFS from MOSAiC observations with their across station standard
deviation in blue and HIRHAM-NAOSIM runs in blue, orange and purple.

the observed LWd and LWP increase and reach their highest values. Thus, clouds
combined with a higher LWP (increase by 30 gm−2) contribute to an increased LWd

by 80Wm−2 in the third grey period. During high-pressure situations in the two first
grey periods, LWP shows values near 0 gm−2.

The CTRL run has a positive monthly LWP bias of 2.66 gm−2 and a RMSE of
6.33 gm−2 compared to MOSAiC (Table 4.1). The correlation of 0.36 is low, which
indicates that some periods are in good agreement with the observations while others
are not. Figure 4.3 shows a good LWP representation in the stormy time periods
and the bias in LWd in these time periods is relatively small (maximum only about
10Wm−2 to 20Wm−2) as well. A positive bias in LWP can be seen during the grey
hatched periods. Related to the higher presence of cloud liquid water, the CTRL run
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4 Results and Discussion

also has a positive bias of LWd (in the order of 40Wm−2 to 80Wm−2) in these time
periods. The first two grey time periods are high-pressure situations associated with
cold temperatures and clear sky. Figure 4.3 shows that the model in contradiction
to the observation simulates liquid clouds and therefore can not reproduce such cases
overestimating LWd and Ts. The third grey period is different caused by a shift in the
position of a stormy intrusion relative to the grid cell of Polarstern.

The positive bias in LWd leads to a positive bias in LWnet in the same time spans
(Figure 6.2 and Table 4.1). This means the monthly positive bias of LWd of 15.97Wm−2

outweighs the monthly negative bias in LWu of −7.96Wm−2 (Table 4.1).
To conclude, these results match the hypothesis that biases in cloud representation

and in particular an overestimated LWP cause positive biases in LWd, and thus lead
to a warming and overestimated surface temperature. This occurs specifically during
observed clear-sky, cold conditions.

Not only clouds influence the LWd but also the amount of water vapour in the
atmosphere [49]. Figure 4.4 shows the pdf plot of integrated water vapour (IWV ) and
liquid water path (LWP ) for MOSAiC and HIRHAM-NAOSIM data. For IWV the
graph of CTRL is shifted towards smaller values with MBE = −0.55 kgm−2 (Table 4.1),
whereas the opposite is visible in the pdf plot of LWP with a monthly positive bias
in February 2020 of 2.66 gm−2. The fact that the bias of LWd is positive leads to the
conclusion that the influence of the positive bias in LWP on LWd is bigger than the
negative bias in IWV .
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Figure 4.4: Plots of the pdf for integrated water vapour (IWV ) on the left and liquid
water path (LWP ) on the right side for MOSAiC data (blue) and HIRHAM-
NAOSIM’s nearest grid cells to Met City and the ASFS. The plots are based
on three-hourly data from February 2020. The CTRL run is depicted in
green, k15 in orange and k50 in purple.

Closely related to the evaluation of the longwave radiation and clouds is the repre-
sentation of the two Arctic winter states (described in Section 2.1). For this, Figure 4.5
shows a bivariate histogram of LWnet and low-level stability ∆T [50]. The low-level
stability is calculated as temperature difference between the temperature at 10m height
and at the surface. For calculating the relative frequency, model data are only used
when there are also observational data available.

The cloudy state in the MOSAiC histogram (Figure 4.5, left) is associated with ∆T
centered around 0K and LWnet around −15Wm−2. The clear state has a maximum
in relative frequency of occurrence for temperature differences at around 1.5K and
LWnet at approximately −50Wm−2. In other words, the two states can be detected as
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Figure 4.5: Two-dimensional histogram of LWnet over ∆T = T10m − Ts for February
2020 based on three-hourly data from MOSAiC (left) and the model CTRL
run (right) at Met City.

bimodal distributions in LWnet and ∆T .
Compared to this, the relative frequency in the histogram of CTRL (Figure 4.5, right)

has a maximum for the cloudy state centered around 0K and −10Wm−2 but there is
an absence of the radiatively clear state. The cloudy state has a higher frequency of
occurrence in the model CTRL run than observed. This is reflected in the positive bias
in LWP and LWd.

4.1.3 Atmospheric Stability

The atmospheric stratification is closely related to the Arctic temperature inversion. If
the simulated atmosphere is not stable enough, too much mixing results in insufficient
cooling of the surface and overestimated surface temperatures.

As a measure for atmospheric stability, the bulk Richardson number RiB at the
lowest model level at 10m height, calculated with Equation (2.3), is taken into account.
A time series of RiB is shown in Figure 4.6. The observed RiB is based on the Met
Tower temperatures. During stormy events (blue hatched periods), the observed RiB
is generally lower than 0.02 and the atmospheric stability can be classified as neutral.
The atmospheric stratification is especially neutral during the second blue time period
when values of RiB are around zero. MOSAiC’s RiB has peaks with values higher than
0.3 and around 0.15 in the first and third grey area. At these times, the atmosphere
shows stable stratification. This is in accordance to the described cold, high-pressure
situation. High numbers of RiB can be interpreted as stable conditions due to low wind
speed conditions, potentially accompanied by a strong vertical temperature gradient.

The general occurrence of neutral and stable stratification associated with the different
synoptic situations is reproduced by the models CTRL run. During stormy events, the
near zero RiB and neutral conditions are well simulated. The model shows an increased
RiB and stable conditions during observed clear-sky cold periods but the stratification
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Figure 4.6: Time series of bulk Richardson number at 10m height for three-hourly data
from MOSAiC observations and HIRHAM-NAOSIM model runs at Met
City. Dashed grey lines separate unstable (RiB < 0), neutral and stable
(0.02 ≤ RiB) stratification.

Table 4.2: Percentages of time steps with different stabilities of bulk Richardson number
divided into three categories for February 2020. The frequency of occurrence is
calculated for three-hourly data from HIRHAM-NAOSIM runs and MOSAiC
data from Met City for RiB at 10m height.

unstable neutral stable
RiB < 0 in % 0 ≤ RiB < 0.02 in % 0.02 ≤ RiB in %

MOSAiC 0 61 39
CTRL 27 56 17
k15 23 56 21
k50 29 54 17

is not as strong as observed.
As discussed before, the CTRL run shows a different behaviour in the third grey

time period, caused by a shift in the position of a storm event relative to the grid cell
of Polarstern. RiB of CTRL run decreases towards negative values connected with
unstable atmospheric stratification while the observed atmosphere is stable.

A conclusion from Figure 4.6 is that in the stormy time periods (blue hatched)
neutral and stable stratification is reproduced well by the CTRL run. The model
underestimates neutral and stable stratification during observed clear-sky cold times.

To statistically quantify the occurrence of different stabilities, RiB is classified in
three categories (Table 4.2). The atmospheric stratification is considered unstable for
negative values of RiB, neutral for 0 ≤ RiB < 0.02, and stable for 0.02 ≤ RiB [10]. The
results show that the CTRL run overestimates unstable situations with a difference of
27% and underestimates the occurrence of stable stratification by 22%.

For further examination of the overestimated unstable situations with negative RiB,
the buoyancy and shear terms of RiB or in other words the denominator and numerator
of Equation (2.3) are plotted separately as pdfs in Figure 4.7. The form of the model
pdfs corresponds to the observed ones but there is a shift of approximately 0.5m2s−

2

in buoyancy towards lower values. The negative bias in RiB mainly results from this
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Figure 4.7: Plots of the pdf for the
buoyancy term (top) and
shear term (middle) of RiB as
well as for the RiB (bottom).
Three-hourly data from MO-
SAiC Met City (blue) and
HIRHAM-NAOSIM model
runs (green, orange, purple)
are used. Grey dashed
vertical lines in the plot of
RiB mark limits of unstable
(RiB < 0), neutral and stable
(0.02 ≤ RiB) stratification.

underestimation of the buoyancy term.

To conclude, the model underestimates the atmospheric stability during observed
clear-sky, cold conditions caused by a negative bias in the buoyancy term. CTRL
also underestimates the occurrence of stable stratification. As a result, the simulated
atmosphere during clear-sky events is mixed stronger than observed and the surface
temperature of CTRL has the positive bias discussed in Section 4.1.1. In addition to
this result, it can be seen that the CTRL run is able to reproduce neutral and stable
stratification during stormy periods.

4.2 Impact of Changed Snow Thermal Conductivity

Changing the snow thermal conductivity ks directly affects the conductive flux through
the snow and as a result Ts, LWu and the whole SEB. An inappropriate choice of a
too high ks can be the reason for an overestimated surface temperature.

Figure 4.8 shows time series of the differences ∆Hc (top) and ∆Ts (bottom) between
k15 and CTRL run at the nearest grid cell to Met City for February 2020. The thermal
conductivity of snow in k15 is reduced by 0.16Wm−1K−1 compared to CTRL. A
smaller snow thermal conductivity reduces the heat transfer through the snow layer,
and the modeled Hc through sea ice and snow becomes smaller by 2Wm−2 to 6Wm−2.

In the blue hatched and the third grey stormy periods the Hc difference of k15 and
CTRL is smaller than in the rest of February. As a consequence of the reduced Hc in
run k15, the surface temperature decreases as well, with a maximal difference to CTRL
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Figure 4.8: Time series of ∆Hc (top) and ∆Ts (bottom) as differences between k15 and
CTRL. The model output is three-hourly data from the nearest grid cell to
Met City in February 2020. Synoptic events are hatched in blue and grey.

of around 5K. The correlation between the time series of Hc and Ts is 0.46. In the
second blue hatched time period, the temperature difference between k15 and CTRL
is near 0K. This contradicts the expected improvement when choosing a smaller ks
to simulate freshly fallen snow during storm events. In the first two grey periods, the
surface temperature is slightly reduced by approximately 1K to 2K.

Figure 4.1 and Figure 4.2 show a clear shift towards lower Ts with smaller ks. Com-
paring the temperature MBE of k15 and CTRL in Table 4.1 the monthly Ts bias
is reduced by approximately 1K (i.e. the MBE for k15 is 1.27K and thus smaller
compared to CTRL which has a MBE of 2.13K). The RMSE for Ts is smaller for k15
as well (RMSE = 2.51K).

Because the liquid water path (LWP ) of all model runs is similar, there are only
small differences between the runs when it comes to LWd (Figure 4.3). To evaluate the
connection between the LWd forcing (Section 4.1.2) and the change of ks, the scatter
plot in Figure 4.9 shows the conductive heat flux (Hc) over LWd. A linear regression is

Figure 4.9: Scatterplot of conductive heat
flux (Hc) over downward long-
wave radiation (LWd) for three
model runs with different ks. A
linear regression is plotted with
its standard deviation with confi-
dence interval of 68%.

made with a confidence interval of 68%. At smaller LWd in clear-sky conditions, the
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4.2 Impact of Changed Snow Thermal Conductivity

impact of a changed ks on Hc is more apparent due to a generally larger conductive
flux through the ice surface. Therefore a change of ks has a larger impact at times
with clear-sky than in warmer, cloudier time periods. This becomes visible in the small
values of ∆Hc in the blue hatched periods in Figure 4.8. Nevertheless, there are also
minima in the amount of ∆Hc in the grey hatched periods caused by the positive LWd

bias during these times (Figure 4.3).
To conclude: Although the monthly Ts bias is reduced by lowering ks, the pronounced

positive temperature bias during cold, clear-sky periods remains. Changing ks has the
biggest impact on Hc and Ts in clear-sky time spans, but these are not well represented
in the model.

A reduction in ks and related cooler Ts are associated with according SEB changes.
To demonstrate this, Figure 4.10 shows the pdf plots for SEB (left), LWnet (middle)
and Hs (right) of the HIRHAM-NAOSIM model runs. The decrease in energy transport
through the snow and resulting smaller surface temperature reduces the amount of
LWu according to the Stefan-Boltzmann law. The less negative LWu causes a shift
of LWnet pdf to the right (Figure 4.10, middle). This means the LWnet loss from the
surface is smaller. The pdf of the sensible heat flux is also shifted to the right due to its
linear relation to ∆T (Figure 4.10, right) and consequently SEB becomes less negative
compared to MOSAiC data (Figure 4.10, left). These changes make the model biases
larger. Table 4.1 gives quantitative information of the changed biases. The monthly
MBE of LWnet increases by 1.45Wm−2 and the MBE of Hs by 2.14Wm−2 in k15
compared to CTRL. The RMSE of SEB increases by 3.96Wm−2 to 20.54Wm−2 and
k15 and MOSAiC data is less correlated for Hs and SEB.
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Figure 4.10: Plots of the pdf for SEB (left) and its main winter components LWnet

(middle) and Hs (right). The plots are based on three-hourly data of
MOSAiC observation and HIRHAM-NAOSIM values from the nearest grid
cells to Met City and ASFS in February 2020.
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A pdf plot of ∆T in Figure 4.11 depicts that a smaller ks causes a broader range
of the simulated ∆T compared to the temperature difference of MOSAiC data. In
contrast to MOSAiC data, the temperature at 10m height is more often below the
surface temperature in HIRHAM-NAOSIM model runs. The temperature inversion is
not simulated accurately.

Figure 4.11: Probability density func-
tion of ∆T = T10m − Ts

for the model runs with
different ks (green, orange,
purple) and MOSAiC data
(blue). The data are three-
hourly means of February
2020 from Met City and the
ASFS as well as their near-
est grid cells in HIRHAM-
NAOSIM.
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Figure 4.7 in Section 4.1.3 shows how the model reacts to a changed snow thermal
conductivity concerning the atmospheric stability and stratification. The shear term de-
picted in the middle of the graphic hardly differs for the model runs. The buoyancy pdf
of RiB from k15 is slightly denser at higher values. This is reflected in Figure 4.6. The
RiB time series of k15 rises to higher values than the CTRL run, especially in the end
or shortly after the first and third grey hatched time span. HIRHAM-NAOSIM k15 is
able to simulate the peak of RiB around 2020-02-02. Nevertheless, the underestimation
of the occurrence of stable condition remains. As noted in Table 4.2, the percentage
of stable conditions increases by 4% up to 21% for k15 but stays under the observed
percentage of 39% stable conditions. Unstable situations are still overestimated by 23%.

The height of the snow thermal conductivity is linked to other sea ice properties.
A smaller conductive heat flux and energy transport through the snow at lower ks
insulates the ice from the colder atmosphere. As a result, the sea ice is warmer and
there is less bottom sea ice growth. The opposite applies for higher ks [12]. This effect
can be seen in Figure 4.12. A difference of ∆ks = 0.16Wm−1K−1 leads to a vertical ice
growth of up to ∆hi = 40 cm in central Arctic at Polarstern.

A changed ks in the opposite direction towards the value of the MOSAiC expedition
ks = 0.5Wm−1K−1 in k50 increases the surface temperature, compared to CTRL, as a
result of a less insulating snow layer (Figure 4.1). The MBE of February rises to 2.56K.
Figures 4.10 and 6.2 show the shift of SEB, LWnet and Hs towards less positive values
above 0 and more negative values in the negative range especially for SEB (shifted
to the left). The correlation between MOSAiC and HIRHAM-NAOSIM rises with the
higher ks for all components of SEB, and the surface temperature and the MBE of
SEB is reduced.

28



4.2 Impact of Changed Snow Thermal Conductivity
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Figure 4.12: Spatial plots over central Arctic of monthly three-hourly mean of February
ice thickness differences ∆hi between k15 and CTRL. The position of Met
City is plotted for every day in February 2020.

Despite this, the lowered snow insulation effect causes more heat transfer through
the snow and less atmospheric stability (Figure 4.6). The frequency of occurrence of
unstable atmospheric stratification is overestimated by 29%, 2% more than by CTRL.
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5 Summary and Outlook

The coupled Arctic atmosphere-ocean-sea ice model HIRHAM-NAOSIM is evaluated
compared to data from the MOSAiC expedition for Arctic wintertime. February 2020
is chosen for the comparison, and five synoptic periods including the radiatively clear
and opaquely cloudy state are specifically considered.

The analysis shows that HIRHAM-NAOSIM’s control run (CTRL) is able to simulate
temporal changes of the surface temperatures at Polarstern with a high correlation of
0.89. Especially during cyclone events and moisture intrusions with a low atmospheric
stability, the surface temperature as well as the components of the surface energy
budget are in good agreement with MOSAiC observations. The radiative components
of the surface energy budget (SEB) are higher correlated to MOSAiC data than the
non-radiative sensible heat flux.

In addition to a general evaluation, the focus of the analysis lies on HIRHAM-
NAOSIM’s positive temperature bias especially during clear-sky conditions. The control
run CTRL underestimates the occurrence of the clear-sky state, but overestimates
the liquid water path (LWP ) in clear-sky, cold conditions causing a positive bias of
longwave radiation directed towards the surface (LWd). Additionally, the frequency
of occurrence of the cloudy state is higher than observed. The evaluation shows that
the model underestimates the occurrence of stable conditions due to a negative bias
in the buoyancy term of the bulk Richardson number (RiB). Atmospheric layers are
less stable and the temperature inversion is less pronounced. Whether the stratification
bias is a consequence of the LWd bias cannot be ruled out.

A reduced snow thermal conductivity (ks) of 0.15Wm−1K−1 causes a decrease of
the monthly CTRL temperature bias, but the surface temperature (Ts) during cold
temperature periods remains too high. The warming effect of the positive cloud bias
outweighs the surface cooling which results from the change towards a smaller snow
thermal conductivity. During clear-sky conditions, a change of ks has a bigger impact on
the conductive heat flux (Hc) and thus on the surface temperature. Due to the underes-
timation of stable conditions, the model overestimates LWP and LWd in the same time
periods. As a result, the changed ks can not reduce the surface temperature as much
as needed. The suggested higher snow thermal conductivity of MOSAiC expedition
ks = 0.50Wm−1K−1 leads to an increased correlation between HIRHAM-NAOSIM k50
and MOSAiC data, compared to CTRL. The monthly positive SEB bias is reduced but
the negative temperature bias at colder times is enhanced. Due to the heterogeneous
surface of the Arctic sea ice one constant parameter of ks can not represent the observed
situation. Nevertheless, the snow thermal conductivity can be one factor when adjusting
HIRHAM-NAOSIM’s atmospheric stability towards a more stable stratification, as
the occurrence of stable conditions increases by 4% when reducing ks by 0.16Wm−1K−1.

A challenge of the evaluation of the Arctic climate model to MOSAiC data is the
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comparison of an averaged grid cell to stations. Most of the time there are no big
differences between neighbouring grid cells of HIRHAM-NAOSIM over sea ice, but
especially when the Polarstern is nearby a stormy event, more than one grid cell of the
model should be taken into account.

One-at-a-time sensitivity analyses, as carried out by changing only the snow thermal
conductivity and comparing the modified runs of HIRHAM-NAOSIM to the control
run CTRL, help to get an impression of how the model reacts to the change in
single parameters. Besides this, it is important to gain a better understanding of
the interactions between climate variables and feedback linkages of climate models in
analyses concerning all input parameters and their biggest uncertainties in the used
climate model [12].

As investigated by Schneider et al. [10] for the stand-alone model HIRHAM5, the
coupled model HIRHAM-NAOSIM also has a deficit in simulating atmospheric stability
during Arctic winter clear-sky events. Closely related to the atmospheric stratification,
the temperature inversion is an important Arctic winter characteristic [51] and its
representation in HIRHAM-NAOSIM must be improved.
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6 Appendix
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Figure 6.1: Spatial plots of IWV (shaded) with isobares of SLP of CTRL run for the
central Arctic. The plots are based on three-hourly data for 2020-02-03 09:00
(left), 2020-02-10 15:00 (middle) and 2020-02-14 21:00 (right). The position
of Met City is highlighted in orange.
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Figure 6.2: February 2020 time series of three-hourly data from MOSAiC (blue) and
three model runs of HIRHAM-NAOSIM with different snow thermal con-
ductivities in green, orange and purple at Met City and ASFS. SEB is
plotted in the top plot, in the middle LWnet is depicted and the bottom
plot shows Hs. The across station standard derivation of the MOSAiC data
is plotted in blue as well.
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