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Abstract

An extensive rearing system (ERS) for poultry requires an outdoor run, which enhances the

foraging activity of chickens. Slow-growing (SG) strains are more adapted to ERS than fast-

growing (FG); and generally, have higher levels of bioactive compounds in their meat. The

aim of this paper was to assess the storage efficiency of n-3 and n-6 polyunsaturated fatty

acids (PUFA), tocols and carotenes in the meat of seven commercial SG genotypes (SG1-

7). One hundred SG chicks/strain of both sexes were included and their walking activity

(High- or Low-W) was classified: SG1-4, HW comprised more than 10% of the time budget,

and SG5-7, less than 10% (LW). Chickens were reared in pens (4 pens/strain) with indoor

(0.10 m2/bird) and outdoor (4 m2/bird) areas, and they were fed the same diet ad libitum

(starter feed for 1–21 d, grower feed from 22 d to slaughter at 81 d). The chickens were

weighed weekly; feed consumption and grass intake were also estimated. At 81 days of

age, 32 chickens/genotype were selected on the basis of the average weight (1:1, M:F) and

slaughtered. The breast, thigh and drumstick meat were excised from 30 carcasses/geno-

type, sampled and stored at -20˚C until analysis. Nutrients (e.g., n-3, n-6, carotenes and

tocols) of feed, grass and meat were analyzed. The storage efficiency of nutrients was esti-

mated as the ratio between the amount deposited in the body muscles (OUT) and the die-

tary intake (feed and grass, IN). The genotype affected chickens foraging behavior and the

intake of nutrients. For SG1, SG2 and SG3, more than 50% of the intake of n-3 came from

grass, whereas in the other genotypes, less than 20%. Accordingly, chickens that foraged

more showed better meat nutritional profiles (less fat, more n-3 and antioxidants), which, in

ERS, was ascribed to grass ingestion. However, the storage efficiency of nutrients into meat

was inversely correlated with the grass intake: strains with higher grass intake (SG1, SG2,

and SG3) had lower storage rates. Several hypotheses were proposed to explain these

trends.
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Introduction

Extensive rearing systems (ERSs, i.e., organic or free-range rearing) of chicken has received

increased interest in Europe. ERSs better meet the welfare and health needs of animals; fur-

thermore, greater consumer interest in more healthy products motivated many chicken com-

panies to develop ERSs [1].

The first EU organic guidelines were provided in 1999 (the implementation of Reg. 2092/

91); successively, other rules strictly regulated organic systems for rearing animals (Commis-

sion Regulations 2078/1992, 834/2007, 889/2008, and 848/2018). Adaptation of poultry pro-

duction to outdoor rearing is essential for complying with the organic guidelines. The chicken

density in ERSs is 28 kg/m2 (compared to 21 kg/m2 in organic EU systems); ERSs require

access to a pasture (4 m2/chicken) and environmental enrichment [2,3] that enhance poultry

activity. In the pasture, chickens exhibit the range of their behavioral repertoire (e.g., preening,

walking and foraging; [4–6]) while exploring the outdoor area and eating grass, worms and

insects. Chickens adapted to this natural rearing environment generally have better immunity,

higher resistance to diseases, and high-quality meat [7–9] due to the intake of bioactive com-

pounds (Poly-Unsaturated Fatty Acids-PUFA, vitamins, and carotenes [10]).

The genetic strain modulates the foraging activity of chickens: chickens with high growth

rates (mainly selected for intensive rearing systems) generally have low locomotor activity and

are not adapted to organic systems [11]. Accordingly, EU Regulation 848/2018 recommends

the use of slow-growing strains for organic systems and introduces the concept of adaptability

to outdoor rearing. Mancinelli et al. [6] demonstrated that although a prerequisite of adapt-

ability to ERS is a daily weight gain (DWG) below 45 g/d, the genotype can also affect this

adaptability. Accordingly, slow weight gain is a prerequisite of adaptation, but SG chickens

also differ in other aspects, such as walking and foraging behavior [8,9,12,13], demonstrating

that interest in outdoor spaces strongly depends on the intrinsic behavior and genetics of

animals.

However, because access to a pasture is mandatory in ERSs, the grass intake and storage

ability of nutrients originating from grass by different strains has attracted increasing atten-

tion. Studies on the storage efficiency of nutrients in ERSs are scarce [14,15] and require the

development of new methodological tools. In aquaculture, feed storage efficiency is deter-

mined as the amount of intake with respect to the amount stored in the body (the Fish In/Fish

Out index [16]). In the light of what reported, the objective of the present research was to esti-

mate the intake of some nutrients (n-3 and n-6 PUFA, tocols and carotenes) and their body

(muscle) storage in different commercial SG poultry genotypes.

Material and methods

Animals and farming system

The trial was carried out at the experimental farm of the University of Perugia (Italy) in Sep-

tember-November 2020. Chickens were reared according to EU Regulation 834/07 and 889/

2008, and the Italian directives [17] on animal welfare for experimental and other scientific

purposes. The experimental protocol was approved by the Ethical Committee of the University

of Perugia (ID number: 62705 of 07/15/2020).

A total of 100 chickens/genotype (25 chickens x 4 replicates) of both sexes (male:female

ratio of 1:1) from seven SG genotypes were used. The birds were provided by two commercial

poultry farms: three strains from Aviagen (Ranger Classic–SG7, Ranger Gold–SG4, Rowan

Ranger–SG1, RedJA–SG3; Cocconato, AT, Italy) and four strains from Hubbard (CY Gen 5

JA87 –SG6, M22 × JA87 –SG5, Naked Neck–SG2; Le Foeil-Quintin, France), and selected on
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the basis of different growth rates (DWG, g/d/bird, Table 1) and live weights (Table 1).

According to previous studies [6,9], the genetic lines were classified on the basis of walking

behavior (SG1-4 spent > 10% of budget time in walking activity, whereas SG5-7 spent� 10%

of budget time in walking activity).

Each chicken strain was reared in four different pens that provided 128 m2 of outdoor

space/replicate (total pen dimensions: 32 x 32 m) and which were also equipped with a shelter.

The indoor (0.10 m2/bird) and outdoor (4 m2/bird) densities of animals were specified accord-

ing to organic regulations (EC Regulation nos. 834/2007 and 889/2008). From 1 to 20 days of

age, birds were housed in an environmentally controlled poultry house, with a temperature

between 30 and 32˚C and relative humidity oscillating between 65% and 70%. At 21 days of

age, the chickens were provided with free access to the outdoor space. The temperature and

humidity of the pasture were 19±7˚C and 50.1±12.5%, respectively. The pasture was not

treated with pesticides and contained natural bushes and hedges (Table 2).

The animals were fed ad libitum with the same diet (starter feed for 1–21 d, grower feed

from 22 d to slaughter; Table 3); the diets provided chicken nutritional requirements as recom-

mended by the breeding companies and scientific literature [18]. Water was always available,

and the birds were kept in shelters only during the night to protect them from predators.

Once a week, 25 chickens/replicate from all genotypes were weighed. The feed consump-

tion was recorded in every replicate by weighing the quantity of feed provided minus the feed

Table 1. Genetic lines studied, daily weight gain (DWG, g/d/bird), live weight (g ± SEM) and walking behaviour.

Acronym a DWG b, g/d/bird live weight, g walking behaviours c

SG1 32.11 3957.14±318.07 HW

SG2 32.50 3682.14±542.91 HW

SG3 34.91 3405.00±202.01 HW

SG4 41.90 3363.57±228.23 HW

SG5 42.36 2579.28±356.49 LW

SG6 44.83 2783.57±273.51 LW

SG7 48.47 2632.28±127.48 LW

a SG1: Rowan Ranger, SG2: Naked Neck, SG3: RedJA, SG4: Ranger Gold, SG5: M22 × JA87, SG6: CY Gen 5 JA87,

SG7: Ranger Classic.
b DWG: Daily weight gain by Cartoni Mancinelli et al. [5].
c HW: High-Walking, NW: Low-Walking by Pulcini et al. [9].

https://doi.org/10.1371/journal.pone.0275527.t001

Table 2. Floristic composition of pasture.

Phleum sp. Avena fatua
Dactylis glomerata Sanguisorba minor

Santolina sp. Linaria sp.

Agropyron sp. Picris hieracioides
Calamintha nepeta Reichardia picroides

Rubus sp. Daucus carota
Chondrilla juncea Geranium sp.

Cichorium intybus Euphorbia sp.

Centaurea sp. Campanula rapunculus
Convolvulus sp. Portulaca oleracea

Plantago lanceolata Petrorhagia prolifera

https://doi.org/10.1371/journal.pone.0275527.t002
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Table 3. Dietary ingredients, proximate composition, energy value and nutrients of feed and grass.

Starter Finisher Grass

Ingredients
Maize % 53.92 53.11

Soybean meal “ 30.23 15.69

Wheat “ 5.00 15.00

Maize meal “ 5.08 11.45

Gluten feed “ 1.00

Soybean oil “ 0.62 1.15

Vitamin-mineral premix a “ 0.40 0.40

Dicalcium phosphate “ 1.71 1.21

Calcium carbonate “ 1.23 1.29

NaCl “ 0.20 0.23

Sodium bicarbonate “ 0.15 0.15

Proximate composition
Moisture % 12.20 12.00 78.61

Crude protein % of DM 24.01 18.41 8.34

Ether extract “ 3.99 4.55 2.11

Ash “ 6.92 5.78 7.85

Crude fibre “ 3.48 3.60 23.2

NDF “ 17.63 10.1 60.90

ADF “ 7.41 5.06 39.81

ADL “ 1.67 1.11 5.81

Cellulose “ 5.74 3.56 34.0

Hemicellulose “ 10.22 5.05 21.09

Metabolizable energy b kcal/kg 3245.20 3295.94 1876.00

Nutrients c

Vitamin A mg/kg of D.M. 14.3 14.55 -

Vitamin E “ 67.5 55.03 355.51

Carotenes “ 2.16 3.65 401.65

C16:0 g/kg of D.M. 0.84 0.86 5.00

C16:1 “ 0.01 0.01 0.21

C18:0 “ 0.15 0.20 1.06

C18:1 “ 1.60 1.65 7.53

C18:2 “ 3.52 3.58 8.16

C18:3 “ 0.27 0.29 8.56

SFA “ 0.99 1.06 6.05

MUFA “ 1.61 1.66 7.74

PUFA “ 3.79 3.87 16.72

n-6 “ 3.52 3.58 8.16

n-3 “ 0.27 0.29 8.56

n-6/n-3 - 13.04 12.34 0.95

a Amount per kg: vitamin A, 11,000 IU; vitamin D3, 2000 IU; vitamin B1, 2.5 mg; vitamin B2, 4 mg; vitamin B6, 1.25 mg; vitamin B12, 0.01 mg; α-tocopheryl acetate, 30

mg; biotin, 0.06 mg; vitamin K, 2.5 mg; niacin, 15 mg; folic acid, 0.30 mg; pantothenic acid, 10 mg; choline chloride, 600 mg; manganese, 60 mg; iron, 50 mg; zinc, 15

mg; iodine, 0.5 mg; and cobalt, 0.5 mg.
b Estimated by Carrè and Rozo [19].
c SFA: Saturated fatty acid, MUFA: Monounsaturated fatty acid; PUFA: Polyunsaturated fatty acid.

https://doi.org/10.1371/journal.pone.0275527.t003
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that remained at the end of the week according to weight. The feed intake referred to intake

over 80 days (from 1 to 81 days).

Grass intake

The modified method of Lantinga et al. [20] was applied to estimate forage intake. At the start

of the rearing cycle, a metallic frame (exclusion pens, 0.50 × 0.50 m) was positioned 10 m from

the shelters in each replication. Herbage samples were collected at the beginning (outside the

exclusion pens) and at the end (both inside and outside the exclusion pens) of the rearing cycle

in each replication. Outside the exclusion pens, collections were carried out from one area of

the same size (i.e., 0.50 × 0.50 m) randomly chosen by casting a frame on the ground, approxi-

mately one meter away from each exclusion pen, to provide the same number of observations

for grazed and undisturbed areas.

Grass intake (GI) was estimated using the following equation:

GI ¼ ðGMs� GMeÞ þ ½½1� ðGMe=GMsÞ=� In½GMe=GMs��xðGMu� GMsÞ�

where GMs = herbage present before birds entered each pen; GMe = forage that remained at

the end of the trial; and GMu = undisturbed forage mass from the exclusion pens.

The forage intake was representative of the whole subarea of the pens. The values obtained

from the different pens were then averaged and referred to 59 days of outdoor access (from 21

to 80 days).

Production performance and carcass traits

At 81 days of age, 32 chickens/genotype were selected on the basis of the average weight (±
10%) and slaughtered (8 chickens/replicates/genotypes, M:F 1:1) in a commercial slaughter-

house 12 h after feed withdrawal. The animals were electrically stunned (110 V; 350 Hz) before

being killed. After bleeding, the carcasses were placed in hot water (56.5˚C for 1 min) and then

plucked and eviscerated (nonedible viscera, including intestines, proventriculus, gall bladder,

spleen, esophagus, and full crop were removed), and the carcasses were stored for 24 h at 4˚C.

The breast, thigh and drumstick muscle were excised from 30 carcasses/genotypes, separately

sampled and stored at -20˚C, until the analysis.

Proximate composition of feed and grass

Moisture was determined by oven-drying at 105˚C overnight an aliquot of feed and grass [21].

Crude protein was measured by a Kjeldahl nitrogen analysis [21]. Ether extract were quantified

by diethyl ether using a Soxhlet apparatus (SER 148, VELP Scientifica, Monza-Brianza, Italy).

Ash content was determined by combusting for 3 h at 550˚C. Crude fiber was determined as

described by Reference [21]. Crude fiber, neutral detergent fiber (NDF), acid detergent fiber

(ADF), and acid detergent lignin (ADL) content were determined according to Reference [22].

Cellulose and hemicellulose were calculated as differences started from NDF, ADF and ADL

(i.e., cellulose = ADF-ADL; hemicellulose = NDF-ADF). Metabolizable energy were estimated

following what reported by Carrè and Rozo [19].

Nutrients in feed, grass and meat

Nutrients in feed, grass and meat were analyzed in duplicate, furthermore the different meat

cuts were analysed separately.

Antioxidants. The α-, γ-, and δ-tocopherol; α- and γ-tocotrienol; carotenes (feed and

grass) and retinol (meat) levels were quantified using HPLC (Hitachi Primade, Milan, Italy)
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according to Hewavitharana et al. [23]. Five milliliters of distilled water and 4 mL of ethanol

were added to 2 g of sample and vortexed for 10 s. After mixing, 4 mL of hexane containing

BHT (200 mg/L) was added, and the mixture was carefully shaken and centrifuged at 8,000 × g

for 10 min. An aliquot of the supernatant (3 mL) was dried under a stream of nitrogen and dis-

solved in 200 μL of acetonitrile; 50 μL was then injected into the same HPLC system (Hitachi

Primade comprised of a cooling autosampler 1210, pump 1110, fluorimetric detector 1440 and

diode array detector 1430 and a Synergi Hydro-RP column, Phenomenx, Bologna, Italy). The

antioxidant content in feed, grass and meat were expressed as mg/kg. The average amount of

each nutrients was used to calculate the daily intake (μg/d). The sum of tocols (tocotrienols

+ tocopherols) and carotenes (lutein + zeaxanthin) intake in grass and feed was also

calculated.

Fatty acids. Fatty acid intake was evaluated from the lipid fraction extracted from feed,

grass and meat following the method reported by Folch et al. [24]. To measure the fatty acid

methyl esters, the lipid extract was dried with a rotavapor, and 1 mL of n-exane was added.

Finally, the trans-metylation procedure was performed with 0.5 mL of 2 M KOH methanol

solution at 60˚C for 15 min. One microliter was added to the gas chromatography system (CP

3800 VARIAN, Milan, Italy) equipped with an FID detector and a capillary column of 100 m

length x 0.25 mm x 0.2 μm film (Supelco, Bellefonte, PA). To calculate the amount of each

fatty acid, heneicosanoic acid was used as the internal standard (C21:0, Sigma–Aldrich analyti-

cal standard). The amount of each fatty acid was expressed as mg/100g of tissue and used to

calculate the total saturated (SFA), total monounsaturated fatty acids (MUFA), and total

PUFA from the n-3 and n-6 series.

Estimation of storage efficiency: OUT/IN ratio

We modified the in/out index [16] into the opposite (out/in) to directly assess the storage effi-

ciency of dietary sources in body muscle. This index was developed for the different dietary

sources (feed and grass) and for the specific nutrients measured. Thus, the storage efficiencies

were estimated using a simple OUT/IN ratio, not taking into account all the metabolic (cata-

bolic) mechanisms that can be modified it [25].

After estimating the feed and grass intake (see previous sections) of the seven chicken

strains, the intake of each nutrients (n-3 and n-6 PUFA, tocols and carotenes) was calculated

(mg). Then, we calculated the OUT/IN ratio for the entire length of the experiment using the

equation:

OUT/IN = (compounds on breast, thing and drumstick) / [(daily intake of compounds by

grass X 59) + (daily intake of compounds by feed X 80)]

• The sum of breast, thing and drumstick meat was used because represents more than 60% of

chicken muscle mass and more than 80% of commercial meat cuts [26];

• The animals had access to the outdoors for 59 days;

• The entire rearing period (chickens life) lasted 80 days (81 days minus 1 day because the day

before slaughtering, food was withheld).

Statistical analysis

Linear models (SPSS v. 27, Italy) were used to evaluate the effect of chicken genotype. For the

feed/grass intake the pens (n = 4/genotype) have been considered as experimental units,

whereas for the chickens live weight and quantification of nutrients in meat cuts the individual

carcasses were considered (n = 30/genotype). Differences among strains were assessed by one-

PLOS ONE Storage efficiency in slow-growing chickens

PLOS ONE | https://doi.org/10.1371/journal.pone.0275527 November 1, 2022 6 / 17

https://doi.org/10.1371/journal.pone.0275527


way ANOVA with Tukey’s test for multiple comparisons. Differences with a P < 0.05 were

considered statistically significant. The graphs were constructed in Microsoft Office Excel

(Figs 1 and 4) and SPSS software (Figs 2 and 3), and the data were expressed as the means and

95% confidence intervals. Polynomial regressions were fitted to show the grass and n-3 fatty

acids intake and the OUT/IN trend in relation to chicken foraging behavior. Upper and lower

95% confidence limits were also reported.

Fig 1. Estimated grass intake of different chicken genotypes along the trial. Grass intake is expressed as g D.M./day

and presented as mean ± SE. a..d means P< 0.01. SG1: Rowan Ranger, SG2: Naked Neck, SG3: RedJA, SG4: Ranger

Gold, SG5: M22 × JA87, SG6: CY Gen 5 JA87, SG7: Ranger Classic. SG1, SG2, SG3, SG4: High-Walking chickens; SG5,

SG6, SG7: Low-Walking chickens.

https://doi.org/10.1371/journal.pone.0275527.g001

Fig 2. Proportion of n-3 PUFA, n-6 PUFA, tocols and carotenoids furnished by feed and grass intake. The n-3

PUFA (a), n-6 PUFA (b), tocols (c) and carotenoids (d) are expressed as %. White bar represents intakes by feed. Black

bar represents intakes by grass. SG1: Rowan Ranger, SG2: Naked Neck, SG3: RedJA, SG4: Ranger Gold, SG5:

M22 × JA87, SG6: CY Gen 5 JA87, SG7: Ranger Classic. SG1, SG2, SG3, SG4: High-Walking chickens; SG5, SG6, SG7:

Low-Walking chickens. Upper and lower limits was set at 95%.

https://doi.org/10.1371/journal.pone.0275527.g002
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Fig 3. Storage efficiency into chicken body and n-3 PUFA, n-6 PUFA, tocols and carotenes intake. Grey full bar

represents the storage efficiency expressed as OUT/IN ratio; black empty dot represents n-3 PUFA (a), n-6 PUFA (b),

tocols (c) and carotenes (d) intakes expressed as mg/life. SG1: Rowan Ranger, SG2: Naked Neck, SG3: RedJA, SG4:

Ranger Gold, SG5: M22 × JA87, SG6: CY Gen 5 JA87, SG7: Ranger Classic. SG1, SG2, SG3, SG4: High-Walking

chickens; SG5, SG6, SG7: Low-Walking chickens. Upper and lower limits 95% of confidence.

https://doi.org/10.1371/journal.pone.0275527.g003

Fig 4. Grass and n-3 intakes and storage efficiency, in relation to the foraging behaviors of chicken genotypes.

Dark gray dot and solid line represent respectively the grass intake and n-3 intake expressed as g/d; light gray triangle

and dotted line represents n-3 intake expressed as g/life; black square and solid line represent storage efficiency

expressed as OUT/IN ratio; foraging behaviors is expressed as %. SG1: Rowan Ranger, SG2: Naked Neck, SG3: RedJA,

SG4: Ranger Gold, SG5: M22 × JA87, SG6: CY Gen 5 JA87, SG7: Ranger Classic. SG1, SG2, SG3, SG4: High-Walking

chickens; SG5, SG6, SG7: Low-Walking chickens.

https://doi.org/10.1371/journal.pone.0275527.g004
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Results

Table 3 reports the feed ingredients and the chemical composition of the grass and feed. The

grass had a high water content; however, if comparisons were conducted with DM, the bioac-

tive compound content in grass was much higher than that in feed (e.g., vitamin E, carotenes,

n-3 PUFA, 7, 120 and 40 times, respectively).

Fig 1 shows the grass intake of the chicken genotypes. SG1 ate the most grass (16.12 g of

DM/d), followed by SG3 and SG2 (15.68 and 10.52 g of DM/d, respectively), while SG4, SG7,

SG6 and SG5 ate little grass quantities (3.39, 2.22, 1.70, 0.85 g of DM/d, respectively).

In Tables 4 and 5, the ingestion of nutrients ascribed to grass and feed, respectively, are

reported. Grass (Table 4) provided higher levels of antioxidants (mainly carotenes: lutein + zea-

xanthin) and n-3 PUFA than those of feed, corresponding to the grass intake of different

strains.

Similarly, the contribution of feed (Table 5) was different, related to the genetic strains;

however, the differences were lower than those of grass.

Consequently, the proportion of n-3 and n-6 PUFA, tocols and carotenes provided by feed

and grass was widely affected by the foraging preferences of the genotypes (Fig 2). For SG1,

SG2 and SG3, more than 50% of the intake of n-3 PUFA came from grass; in the other geno-

types, less than 2% of this intake came from grass (Fig 2A). Conversely, n-6 PUFA were mainly

furnished by feed, and in each genotype, feed provided more than 93% of n-6 PUFA (Fig 2B).

The antioxidant intake (carotenes and tocols; Fig 2C and 2D) was also modulated by grass

ingestion, with SG1, SG2, and SG3 having higher values. SG6 and SG5 ingested 75.73 and

Table 4. Estimated nutrients intake through grass.

Genotype a

SG1 SG2 SG3 SG4 SG5 SG6 SG7 RMSE b P value

Antioxidants
α-Tocotrienol 8.59d 6.02c 5.96c 1.63b 0.31a 0.63a 1.06b 0.66 <0.001

δ-Tocopherol 1.90 1.65 1.32 0.36 0.16 0.32 0.24 0.31 0.126

γ-Tocopherol 0.70 0.65 0.49 0.13 0.03 0.05 0.09 0.19 0.305

α-Tocopherol 60.46c 58.04c 41.99c 11.45b 1.45a 2.91a 7.50b 1.87 <0.001

Lutein + Zeaxanthin 86.81d 72.45c 60.28c 16.44b 1.72a 3.44a 10.77b 2.19 <0.001

Fatty acids c

C16 162.82d 141.17d 113.07d 30.84c 8.76a 17.52b 20.19b 6.97 <0.001

C16:1 11.17c 9.68c 7.75c 2.11b 0.16a 0.31a 1.38b 1.42 <0.001

C18 46.35d 40.19d 32.18d 8.78c 2.06a 4.11b 5.75b 3.20 <0.001

C18:1 n-9 628.01e 544.51e 436.10e 118.94d 27.43a 54.87b 77.89c 8.56 <0.001

C18:2 n-6, LA 246.41e 213.64e 171.11d 46.67c 12.93a 25.85b 30.56b 8.91 <0.001

C18:3 n-3, α-ALA 498.09e 431.86e 345.88d 94.33c 24.65a 49.30b 61.77b 9.13 <0.001

SFA 209.17d 181.36d 145.25d 39.61c 10.82a 21.63b 25.94b 7.68 <0.001

MUFA 639.18e 554.19e 443.85e 121.05d 27.59a 55.18b 79.27c 8.68 <0.001

PUFA 744.49f 645.51e 516.99e 141.00d 37.58a 75.16b 92.33c 12.76 <0.001

Grass nutrients intake is expressed as mg/d.

a..f, P < 0.001.
a SG1: Rowan Ranger, SG2: Naked Neck, SG3: RedJA, SG4: Ranger Gold, SG5: M22 × JA87, SG6: CY Gen 5 JA87, SG7: Ranger Classic. SG1, SG2, SG3, SG4: High-

Walking chickens; SG5, SG6, SG7: Low-Walking chickens.
b RMSE: Root mean square error.
c LA: Linoleic Acid, ALA: Linolenic Acid, SFA: Saturated Fatty Acid, MUFA: Mono Unsaturated Fatty Acid; PUFA: Poly-Unsaturated Fatty Acid.

https://doi.org/10.1371/journal.pone.0275527.t004

PLOS ONE Storage efficiency in slow-growing chickens

PLOS ONE | https://doi.org/10.1371/journal.pone.0275527 November 1, 2022 9 / 17

https://doi.org/10.1371/journal.pone.0275527.t004
https://doi.org/10.1371/journal.pone.0275527


66.17% of tocols, respectively, from feed; carotenes were almost entirely provided by grass in

all genotypes.

The storage efficiency (OUT/IN ratio) of nutrients in the body differed (Fig 3A–3D). The

mean body storage varied by compound (from approximately 1 for tocols to 2.5 and 3.5 for n-

6 and n-3 PUFA, respectively) and by genetic strain.

Generally, the chickens with higher grass intake (SG1 and SG2) had lower storage efficiency

of n-3 PUFA and tocols, and thus a negative correlation with the grass intake (P<0.01;

Table 6).

The trend of n-6 PUFA storage was different than that of n-3 PUFA; SG6 and SG5 showed

significantly different levels (in average 1.5 times higher) than those of the other genotypes

(Fig 3B).

Table 5. Estimated nutrients intake through feed.

Genotype a

SG1 SG2 SG3 SG4 SG5 SG6 SG7 RMSE b P value

Antioxidants
α-Tocotrienol 2.84a 2.93a 3.28b 3.67b 3.76bc 3.76bc 4.16c 0.27 <0.001

δ-Tocopherol 0.67 0.69 0.77 0.86 0.88 0.89 0.98 0.13 0.406

γ-Tocopherol 0.22 0.23 0.25 0.28 0.29 0.29 0.32 0.07 0.268

α-Tocopherol 2.97a 3.07a 3.43b 3.84b 3.94bc 3.94bc 4.36c 0.27 <0.001

Lutein + Zeaxanthin 0.32 0.33 0.37 0.41 0.42 0.42 0.47 0.05 0.103

Fatty acids c

C16 622.13 641.08 718.01 803.03 823.38 824.43 911.75 11.55 0.223

C16:1 4.76 4.91 5.49 6.15 6.30 6.31 6.98 0.15 0.804

C18 154.01 158.70 177.74 198.79 203.83 204.09 225.71 8.71 0.099

C18:1 n-9 1243.09 1280.95 1434.66 1604.55 1645.20 1647.30 1821.79 22.13 0.126

C18:2 n-6, LA 2598.21a 2677.33a 2998.61b 3353.71b 3438.67b 3443.05b 3807.76c 37.17 <0.001

C18:3 n-3, ALA 208.01a 214.35a 240.07b 268.50b 275.30bc 275.65bc 304.85d 12.89 <0.001

SFA 776.14 799.78 895.75 1001.83 1027.21 1028.52 1137.46 21.71 0.340

MUFA 1247.85a 1285.85a 1440.15b 1610.70c 1651.51c 1653.61c 1828.77d 29.14 <0.001

PUFA 2806.22a 2891.67a 3238.67b 3622.20b 3713.97b 3718.70b 4112.60c 12.30 <0.001

Feed nutrients intake is expressed as mg/d.

a..d, P < 0.001.
a SG1: Rowan Ranger, SG2: Naked Neck, SG3: RedJA, SG4: Ranger Gold, SG5: M22 × JA87, SG6: CY Gen 5 JA87, SG7: Ranger Classic. SG1, SG2, SG3, SG4: High-

Walking chickens; SG5, SG6, SG7: Low-Walking chickens.
b RMSE: Root mean square error.
c LA: Linoleic Acid, ALA: Linolenic Acid, SFA: Saturated Fatty Acid, MUFA: Mono Unsaturated Fatty Acid; PUFA: Poly-Unsaturated Fatty Acid.

https://doi.org/10.1371/journal.pone.0275527.t005

Table 6. Correlation between grass intake and storage efficiency of n-3, n-6 PUFA, tocols and carotenes.

| Grass intake n-3 PUFA a n-6 PUFA a Tocols

n-3 PUFA a -0.83�� - - -

n-6 PUFA a -0.31� 0.78�� - -

Tocols -0.77�� 0.96�� 0.82�� -

Carotenes -0.58�� 0.79�� 0.70�� 0.88��

Grass intake is expressed as g D.M./day; storage efficiency is expressed as OUT/IN ratio.

�correlation is significant at the 0.05 level.

��correlation is significant at the 0.01 level.
a PUFA: Poly-Unsaturated Fatty Acid.

https://doi.org/10.1371/journal.pone.0275527.t006
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SG1, SG2 and SG3 presented the lowest tocols OUT/IN ratio, followed by SG4 and SG7;

SG5 and SG6 exhibited the highest OUT/IN ratio (Fig 3C). Carotene metabolism (Fig 3D),

estimated as meat retinol concentration resulting from lutein and zeaxanthin intake, followed

the same trend as that of tocols.

The fatty acid profile (Table 7) of chicken meat showed that strains with higher grass intake

(i.e., SG1 and SG3), had n-3 fatty acid with more than 20 carbon atoms (long-chain polyunsat-

urated fatty acids, LC-PUFA) levels similar to those of SG6, a strain that exhibited less foraging

behavior. Accordingly, grass intake could be a useful way to increase LC-PUFA content in

meat, magnifying the low ALA content of standard feed, although the conversion efficiency of

the n-3 precursor (C18:3n-3, ALA) into n-3 LC-PUFA decreased with grass ingestion.

Fig 4 shows the n-3 PUFA storage ability of chickens on the basis of their grass intake.

Higher conversion efficiencies were found in strains that foraged more (mainly in the SG1,

SG2 and SG3 genotypes), primarily ascribed to the n-3 PUFA intake furnished by grass.

Discussion

In well-managed ERSs, the foraging activity of chickens may replace up to 5–20% of feed

[2,27]. However, this replacement depends on several factors that determine how appealing a

plant is to a bird, such as the plant species, nutritional content, and stage of growth, as well as

individual bird, such as its nutritional needs, hunger, and foraging and feeding behavior

[28,29]. Almeida et al. [30] found that protein-restricted diets motivated grass ingestion by

chickens. However, other studies and the experience of poultry producers suggest that chick-

ens consume large amounts of forage even if they have good feed available: poultry crave

greens and eat them even if balanced feed is provided [31].

In our study, the grass intake was moderate in all chickens (from 0.85 to 17.90 g of DM/d),

but different grass intakes modified the proportion of some nutrients (n-3 and n-6 PUFA,

tocols and carotenes) ingested by poultry genotypes. The SG1 birds had the highest intake of

Table 7. Fat and main PUFA content of body chicken meat.

Genotype a

SG1 SG2 SG3 SG4 SG5 SG6 SG7 RMSE b P value

Fat 2.60b 1.78a 2.38b 1.90a 2.49b 2.97c 1.90a 0.24 <0.001

Fatty acids c

C18:2n-6, LA 460.94b 389.08a 377.96a 346.22a 449.08b 496.87b 343.22a 2.88 <0.001

C18:3 n-3, ALA 51.88c 27.2a 59.15c 37.03a 46.90b 52.21c 37.99a 1.27 <0.001

C18:4 n-3 0.97a 1.65a 1.53a 2.13b 2.80c 2.00b 2.09b 0.36 0.01

C20:3 n-3 0.95b 0.64a 0.64a 0.70ab 0.86b 1.20c 0.52a 0.20 <0.001

C20:4 n-6 AA 120.65c 87.17a 115.55b 109.80b 127.03c 185.5d 98.96b 2.12 <0.001

C20:5 n-3, EPA 4.75b 15.07c 3.35b 2.57a 1.95a 2.60a 2.21a 0.84 <0.001

C22:5 n-3, DPA 22.45b 11.91a 27.36c 14.10a 27.40c 25.80bc 19.93b 0.99 <0.001

C22:6 n-3, DHA 19.86c 13.55b 18.55c 11.08b 9.01a 13.00b 9.67a 0.80 <0.001

LC-PUFA n-3 47.04c 39.52b 48.37c 26.32a 36.96b 41.60bc 30.24a 0.20 <0.001

Fat is expressed as %; main PUFA are expressed as mg/100 g of meat.

a..c P < 0.01.
a SG1: Rowan Ranger, SG2: Naked Neck, SG3: RedJA, SG4: Ranger Gold, SG5: M22 × JA87, SG6: CY Gen 5 JA87, SG7: Ranger Classic. SG1, SG2, SG3, SG4: High-

Walking chickens; SG5, SG6, SG7: Low-Walking chickens.
b RMSE: Root mean square error. c LA: Linoleic Acid, ALA: Linolenic Acid, SFA: Saturated Fatty Acid, MUFA: Mono Unsaturated c Fatty Acid; PUFA: Poly-

Unsaturated Fatty Acid, LC-PUFA: Long-Chain PUFA.

https://doi.org/10.1371/journal.pone.0275527.t007
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pasture (17.90 g of DM/day), whereas the SG5 birds had the lowest. SG genotypes are more

active than FG [32], and the negative correlation between foraging behavior and productive

performance is well documented [8].

Previous trials have confirmed that feeding behaviors vary among poultry strains. Lorenz

et al. [33] found that slow-growing chickens had higher grass intake than fast-growing chick-

ens. Castellini et al. [34] determined that the crop content of “scavenger” chickens, compared

to that of fast-growing strains, had less protein and energy and higher amounts of α-tocoph-

erol and carotenes, indicating greater grass ingestion. Conversely, breast meat from broiler

chickens with free access to pasture presented lower levels of n-6 and n-3 fatty acid precursors

compared to SG chickens, which increased during the spring season, suggesting that storage

efficiency varies depending on the type of pasture available [35].

Genetic selection has deeply modified the behavior of chickens, and SG strains show differ-

ent foraging behaviors (i.e. grass intake) [36]. Pasture-raised birds still require a grain-based

feed formulated for sustaining body growth. Moreover, with very high grass intake, the fiber

content may limit the digestibility of nutrients and feed efficiency. In our previous study, the

circulating levels of antioxidants (mainly vitamin E) in blood [8] suggest a minor effect of

grass fiber, which were almost independent of grass intake, although the effect of grass inges-

tion on digestibility cannot be excluded. However, data on the amounts and types of nutrients

foraged by free-range birds are lacking and should be further scrutinized to formulate diets

that can maintain high poultry production and meat quality. Furthermore, it should be

emphasized that free-range birds also consume roots, stems and invertebrates [37].

Access to vegetation provides a multitude of vitamins, minerals and lipids. Dal Bosco et al.

[10] showed that vitamins, minerals and n-3 PUFA are transferred from vegetation to the

meat of organic chickens, also affecting the oxidative stability of the meat (increase antioxi-

dants content, reduce lipid oxidation). In particular, the PUFA profile of grass differs from

that of feed (e.g., n-6/n-3 0.90 vs. 13.04 and 12.34; Table 3) and represents a way to increase n-

3 PUFA intake in poultry diets. Increasing grass intake also increases the n-3 PUFA content in

meat and eggs [32,38–41].

The present results indicate that the foraging profile of a genotype largely affects the avail-

ability of nutrients because chicken genotypes respond differently to the presence of an out-

door range [5,8,9], in terms of both walking activity and forage intake. The proportion of n-3

and n-6 PUFA, tocols and carotenes in the examined strains were affected by their relative

intake of grass (Table 4) and feed (Table 5, Fig 2). More than 50% of the n-3 PUFA intake of

the “foraging” strains (SG1, SG2 and SG3) was provided by grass, while in the other genotypes,

grass provided less than 20%. Therefore, in the former genotypes, n-3 PUFA intake strongly

depends on pasture. Conversely, n-6 PUFA were mainly furnished by feed (> 93%). Indeed,

the common ingredients of poultry feed (e.g., corn and soybeans) have fatty acid profiles

mainly consisting of n-6 PUFA [42,43].

Furthermore, grass represented an important source of carotenes for all chicken genotypes

(Table 4; Fig 2). These compounds mainly act as antioxidants or provitamins (i.e., β-carotene

[44]). More than 1,100 carotenes have been identified in vegetation, including xanthophylls, β-

cryptoxanthin, astaxanthin, canthaxanthin, zeaxanthin and lutein, but many of these do not

have a provitamin effect [45]. Furthermore, zeaxanthin and xanthophylls (derived from corn

and alfalfa, respectively), are commonly found in poultry feeds and contribute to skin yellow-

ing and the yellow/orange color of egg yolks [46]. In addition, carotenes have also been impli-

cated in the modulation of the innate immune system [47,48].

The intake of tocols and the proportion furnished by feed and grass (Fig 3C) also varied by

genotype and were higher in SG1, SG2, and SG3. In SG6 and SG5, the intake of tocols was
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mainly furnished by feed. Indeed, tocopherol-acetate is generally added to the poultry diets to

improve the shelf life of meat, [49], greatly contributing to the tocols furnished by feed.

The present study estimated the specific intake of different compounds furnished by differ-

ent sources (grass and feed) of chicken strains to assess the relative storage efficiency in body

muscle (OUT/IN ratio). Naturally, the other body tissues and organs could play a key role in

storage (i.e. liver and fat); while, other tissues (many organs) are thought to have a minor role

[50] and mainly preserve normal physiological functions, including immunity, health, and

homeostasis.

The nutrients storage efficiency in body meat of chicken strains (Fig 3) differed from a ratio

of approximately 1 for tocols (Fig 3C) to approximately 6 for n-3 PUFA (Fig 3A). The chicken

strains with higher grass intake (SG2, SG1, and to a lesser extent SG3) had lower storage effi-

ciency, indicating that as grass intake increases, storage ability decreases (Fig 4). The genotypes

with the highest storage efficiency were SG5 and SG6, although they had a low intake.

Many authors have reported a higher percentage of n-3 PUFA (g n-3 PUFA/100 g fatty

acids) in the breast and drumstick meat of more active poultry genotypes [10,14,51]. Our data

are consistent with the above-mentioned results (Table 7). However, our results indicated that

genotypes with higher DWG, such as SG5 and SG6, also have a higher storage efficiency, prob-

ably because the content of fatty acids is widely modulated by the lipid content and then by

their amount in meat. Indeed, these strains have meat with higher fat content (2.49 and 2.97 g/

100 g muscle, respectively) than the other genotypes and metabolisms oriented to accumulate

dietary resources in the body, according to resource allocation theory and previous results

[52]. It is probable that, part of n-3 PUFA ingested by SG with lower DWG, was used for the

maintenance of body energy (immune status, thermotolerance, etc) [52] or to supply the

energy of these very active chickens thought the β-oxidation pathway [53] (as stated by

resource allocation theory).

Therefore, these animals have higher efficiency in converting such dietary nutrients into

meat. In foraging birds, part of the energetic requirement for walking activity may be due to β-

oxidation of fatty acids [12,52], thus increasing PUFA mobilization and reducing the fat con-

tent of chickens [54].

Regardless, whether the higher efficiency of storage was a result of the specific metabolism

of the strain or depended on the amount ingested remains unclear. Although the present data

do not permit a definitive answer, a comparison of the trends of both PUFA series and antioxi-

dants indicates that an interaction between these factors is probable. Indeed, it is well know

that higher PUFA content in meat, if not appropriately balanced with antioxidants compounds

(i.e. vitamin E, C, polyphenols, etc) increases the tissue susceptibility to oxidation [55], proba-

bly the interaction of pro and anti- oxidative molecules [56], also affected the estimated con-

tent of each compounds in chickens meat.

Even if the n-3 LC-PUFA did not show a clear trend (Table 7), it should be emphasized that

grass intake of walking chickens is a “natural” way to increase the n-3 LC-PUFA content of

meat and magnify the low ALA content of the standard feed. Because outdoor runs are manda-

tory in ERSs, pasture intake is a plus that can highlight the adaptation of chicken strains.

Accordingly, if pasture is considered an extra and free supplementation source, the grass con-

version in LC-PUFA was much higher in foraging chickens that that of the other genotypes

(0.47 in SG1, 0.38 in SG2, 0.41 in SG3 vs. < 0.30 in all other genotypes; resulted from data

reported in Table 7).

The storage efficiency of tocols and carotenes showed a trend similar to that of n-3 PUFA

but had higher variability, probably due to different physiological mechanisms (oxidative

thrust, kinetic activity, energy balance, etc). In particular, SG1 and SG2 had a lower antioxi-

dant uptake, which means that these genotypes took a high amount of tocols but stored much
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less quantity, probably due to the involvement of such compounds in the oxidative/antioxidant

balance [8,57]. Indeed, more “active” animals have a higher oxidative thrust associated with

this activity [8]. This overproduction of free radicals could compromise the antioxidant

defence of organism, although neutralization by appropriate levels of antioxidant intake results

in a good oxidative status of meat [7,55]. Thus, the more active strains probably had a higher

need for supplemental vitamins to counteract radical production.

Conclusion

Pasture availability is an essential aspect of ERS although it is clear that grass intake does not

ensure adequate energy and protein intake by birds. Many aspects may modulate the foraging

activity of chickens. The data presented herein suggest that foraging is relevant for nutrient

intake because it provides a high share of nutrients, i.e., carotenes, tocols and n-3 PUFA,

which are often scarce in standard poultry feed. Accordingly, the foraging chicken genotypes

had better meat nutritional profiles (less fat, more n-3 PUFA and LC-PUFA content) than

not-foraging ones, due to the intake of grass which is a free-available source of nutrients in

ERS.

However, associated with differences in foraging behavior, the genotypes had a negative

correlation between the ability to store nutrients provided by feed and/or grass in body meat

and their foraging activity. Genetic selection should be used to favor chickens with a good bal-

ance between foraging and recovery rates, given that active animals have lower storage

efficiencies.
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