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Natural hybridization promotes evolutionary 


innovation, 

creating novel and diverse outcomes in subsequent genera-
tions, thereby providing a rich substrate on which selection 

can further act to shape evolutionary trajectories1,2. Since 2010, 
methodological advances allowing unprecedented, high-resolution 
insights into ancient genomes have provided increasing evidence 
for hybridization and resultant gene flow among late Pleistocene 
humans. Currently, indications for gene exchange include move-
ment of genes from Neanderthals into early Homo sapiens (conven-
tionally called ‘early modern humans’)3–8, resulting in approximately 
2–3% Neanderthal ancestry of non-African living modern humans7; 
as well as evidence that H. sapiens contributed to the Neanderthal 
gene pool as early as 150 to >200 thousand years ago (ka)9,10. Gene 
flow from Denisovans into the ancestors of modern Asian popu-
lations11,12, from Neanderthals into Denisovans13,14, and from some 
unknown hominin into Denisovans13 has also been reported, and 
the genome of a first-generation descendant of a Neanderthal 
mother and a Denisovan father living ca. 90 ka was recently discov-
ered15. Finally, genetic exchanges between ancient and recent lin-
eages may have also occurred within Africa9,16–21. Taken together, 
these studies indicate that gene flow has been multidirectional, was 
much more common than previously appreciated by most (but see 
for example, ref. 22), and may have been instrumental in structur-
ing genetic diversity across our ancestral lineage over the last half a 
million years. Given the speed at which new discoveries and meth-
odological breakthroughs are occurring, such as the retrieval of 

Q1 hominin DNA from cave sediments14, our expectation is that such 
evidence will probably continue to accumulate in the future.



















Gene flow among hominins has had variable effects, best docu-
mented over the last 100 K years. These include genetic evidence 
for some level of introgression affecting phenotypes in a beneficial 
manner, including those involved in immunity, spermatogenesis, 
adaptation to low-oxygen contexts, response to ultraviolet radiation 
and other traits23–31 (but see ref. 32). For example, Neanderthal genes 
affecting skin and hair phenotypes are retained in humans living 
today27,31, suggesting that these genes might have been important 
in the dispersal and adaptation of people emerging from Africa and 
migrating into environments inhabited by Neanderthals. In other 
cases, gene exchange may have been detrimental. For example, 
the existence of chromosomal regions in living humans devoid 
of Neanderthal-derived alleles, such as the X-chromosome and 
genes related to testes and therefore reproduction27,31, suggests that 
selection may have acted to purge these genes from descendants. 
Neanderthal alleles present in living people have also been associ-
ated with a range of phenotypes considered detrimental in modern 
(but not necessarily ancient) contexts, including depression, neu-
rodevelopmental disorders, hypercoagulation, altered carbohydrate 
metabolism and addiction27,29,33 (but see ref. 32). A few recent studies 
suggest that Neanderthal-derived genetic variation also influences 
brain phenotypes29,34,35 and susceptibility to infectious diseases36,37.

Taken together, the genetic evidence so far indicates that gene 
flow played an important role in shaping the evolutionary fate of 
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Merging morphological and genetic evidence to 
assess hybridization in Western Eurasian late 
Pleistocene hominins
K. Harvati   1,2 ✉ and R. R. Ackermann   2,3,4 ✉

Previous scientific consensus saw human evolution as defined by adaptive differences (behavioural and/or biological) and the 
emergence of Homo sapiens as the ultimate replacement of non-modern groups by a modern, adaptively more competitive 
group. However, recent research has shown that the process underlying our origins was considerably more complex. While 
archaeological and fossil evidence suggests that behavioural complexity may not be confined to the modern human lineage, 
recent palaeogenomic work shows that gene flow between distinct lineages (for example, Neanderthals, Denisovans, early H. 
sapiens) occurred repeatedly in the late Pleistocene, probably contributing elements to our genetic make-up that might have 
been crucial to our success as a diverse, adaptable species. Following these advances, the prevailing human origins model has 
shifted from one of near-complete replacement to a more nuanced view of partial replacement with considerable reticulation. 
Here we provide a brief introduction to the current genetic evidence for hybridization among hominins, its prevalence in, and 
effects on, comparative mammal groups, and especially how it manifests in the skull. We then explore the degree to which 
cranial variation seen in the fossil record of late Pleistocene hominins from Western Eurasia corresponds with our current 
genetic and comparative data. We are especially interested in understanding the degree to which skeletal data can reflect 
admixture. Our findings indicate some correspondence between these different lines of evidence, flag individual fossils as 
possibly admixed, and suggest that different cranial regions may preserve hybridization signals differentially. We urge further 
studies of the phenotype to expand our ability to detect the ways in which migration, interaction and genetic exchange have 
shaped the human past, beyond what is currently visible with the lens of ancient DNA.
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our lineage38, although its exact effects appear to vary considerably 
across time, population and environmental/geographical context.

Hybridization in extant primates and other mammals and 
its relevance to hominins
Although the genetic evidence for hybridization in hominins has 
shifted the prevailing narrative about human origins over the past 
decade, there was already a growing realization before this (for 
example, see refs. 39,40) that its role may have been underappreciated 
based on an increasing understanding of its prevalence across other 
mammals, including primates. We now know that approximately 
10% of animal species produce hybrids, and occasionally ‘phy-
logenetic hotspots’ occur in which hybridization rates in animals 
exceed those seen in plants41,42. Within mammals, hybridization 
occurs across a wide range of lineages, including (but not limited 
to) a number of large-bodied terrestrial groups such as bovids43–45, 
bears46,47, cats48,49, canids50–54 and primates (see below). These stud-
ies have provided compelling evidence that gene flow impacts the 
evolutionary trajectory of large-bodied mammals, acting as a par-
ticularly strong force for accelerating evolution in novel or changing 
environmental contexts1,2, a scenario that resonates with the narra-
tive of human origins.

Non-human primates are arguably the most relevant models for 
human evolution, and there is considerable evidence for hybridiza-
tion in the wild within all the major lineages at both specific and 
intraspecific levels, including strepsirrhines55,56, American mon-
keys57–61 and Afro-Eurasian monkeys62–66. Among these, perhaps 
the best studied are baboons (genus Papio), which have also repeat-
edly been put forth as models for human evolution40,67. The six 
recognized baboon species (or ‘allotaxa’; see ref. 40) have parapatric 
ranges, with natural hybridization recorded between the species that 
are most phylogenetically distant (Papio ursinus vs P. cynocephalus), 
morphologically distinct (P. ursinus vs Kinda baboons) and behav-
iourally different (P. hamadryas vs P. anubis)68. Like our own genus 
Homo, Papio is the evolutionary product of a radiation that began in 
non-forested regions of tropical Africa around 2 million years ago 
(Ma); both genera have inhabited similar regions in Africa and been 
subject to comparable climatic fluctuations.

Hybridization has also occurred among our closest primate rela-
tives, the apes (Superfamily Hominoidea). It is well-documented 
among the small-bodied apes69,70, and there are also genetic signa-
tures of gene flow both among subspecies71 and between species72 of 
great apes. One percent of the central chimpanzee genome has been 
shown to derive from the bonobo72, indicating two ancient hybrid-
ization events comparable to the admixture seen between H. sapiens 
and Neanderthals.

Hybridization can have a wide range of effects on anatomy, 
behaviour and speciation73, but it is in its interplay with adapta-
tion that its impact may be most powerful. However, the impact of 
adaptive introgression can differ even among closely related taxa. 
For example, in chimpanzees the regions of adaptive introgression 
are subspecies-specific (for example, regions involving male repro-
duction versus immune system)74. As a species-specific example, 
the region around the FOXP2 locus is devoid of introgression in 
humans75,76, but not in either chimpanzees77 or bonobos78.

How does gene exchange manifest itself in skeletal 
morphology?
Genetic evidence for the effect of gene flow on the hominin skel-
eton remains limited, despite its importance in linking the genetic 
and fossil record, as well as potentially understanding the func-
tional implications of skeletal variation. Recent studies suggest that 
Neanderthal-derived genetic variation influences shape variation 
in the crania and brains of Europeans living today34,35. In particu-
lar, Neanderthal ancestry was found to be associated with a more 
Neanderthal-like, elongated cranial and endocranial shape in these 

Europeans, including morphology of the occipital and parietal 
regions, as well as differences in brain morphology34,35.

Genetic evidence aside, some researchers have proposed hybrid 
individuals in the human fossil record on the basis of their mor-
phology. Such proposed hybrids include Lagar Velho 179, Mladeč 5 
and 6 (ref. 80), Cioclovina 1 (ref. 81), Peştera cu Oase 1 (refs. 82,83) and 
2 (refs. 82,84), Skhul IV and V84, Vindija85, Klasies River Mouth86, Jebel 
Irhoud and Mugharet el ‘Aliya in North Africa86,87 and others88–90. 
However, these hypotheses have generally not been possible to test, 
and the hybrid status of these specimens has been disputed91–93 or 
considered inconclusive94,95. This was mainly due to the lack of clear 
expectations about hybrid morphology that could be empirically 
applied to the fossil record (but see refs. 84,96–99), but also because of 
the problem of equifinality, as phenotypes consistent with hybrid-
ization, especially ‘intermediate’ morphology, may also be pro-
duced through other processes, most importantly by the retention 
of primitive features. In the face of these shortcomings, admixed 
status has almost exclusively been recognized on the basis of genetic 
evidence (as discussed above). However, such evidence is limited 
in many respects. For example, the application of ancient DNA is 
constrained due to preservation issues, which can vary from site to 
site and specimen to specimen but become particularly severe as we 
move further back in time or into warmer climates. Additionally, 
knowledge derived from comparisons among extant genomes can 
only provide partial insight into the past, given the extinction of 
many ancient lineages. Therefore, evidence for hybridization pres-
ent in the skeletal phenotype remains essential to the interpretation 
of the fossil record, as it can help us to locate such potential events 
in time and place, and particularly within lineages for which we do 
not have a genetic record.

The taxon for which most empirical evidence for the effects of 
hybridization on the skeleton is available is baboons. Studies of 
baboons have revealed visible perturbations in dental and sutural 
formation at high frequencies in early-generation inter-specific 
hybrids, as well as atypical expression of some dental traits1,96,97, sug-
gesting that hybridization breaks down the coordination of early 
development, although this does not appear to meaningfully affect 
fitness84,97,100. These results are consistent with what is seen in the 
skeletal anatomy of hybrids in other mammalian lineages, includ-
ing ungulates43, rodents101, and most recently canids102, although 
they manifest somewhat differently in each taxon. Hybrid baboons 
also have, on average, crania that are larger than an intermediate 
value between their parents96,97,103, with some measurements that are 
extreme relative to both parents. The production of extreme hybrid 
phenotypes, or transgressive phenotypes, outside of the range of 
both parental taxa (in a negative or positive direction) is called 
transgressive segregation104, and in the case of the mammals men-
tioned above could include atypical traits as well as extreme size/
shape.

Large cranial size in hybrids (relative to either a parental mid-
point value, or the mean of the largest parents) has also been identi-
fied in mice98,105–110 (as well as tamarins111). Inter-subspecific mouse 
hybrids (F1s, F2s and backcrossed individuals) are typically as large 
as or larger than the larger parent taxon, with associated size-related 
shape changes98,110. They also tend to have cranial and mandibular 
shape variation that is somewhat intermediate to that of the par-
ents, but more closely resembling the smaller parent (Fig. 1), with 
high levels of heterosis in certain features such as molar length98,110. 
Later generations (F2, B2) are more variable than first-generation 
hybrids, with backcrosses expectedly moving towards the shape of 
the parent taxon with which they are hybridizing. These patterns 
hold for crosses of taxa that hybridize in the wild but have low levels 
of gene flow and low hybrid fertility; for taxa that hybridize in the 
wild and produce successful offspring; and for taxa that are geo-
graphically separated in nature but nevertheless hybridize under 
laboratory conditions98,110, making them robust across different 
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scenarios of contact and hybrid fitness. Importantly, the fact that 
these various mammal models show similar patterns for hybridiza-
tion across both species and subspecies provides a robust model for 
assessing its impact in taxa where the specific status is debated, such 
as Neanderthals and H. sapiens (see below).

The studies above have focused on skulls. Unfortunately, con-
siderably less information exists on the effects of hybridization on 
the postcranial skeleton, outside of the observation from a num-
ber of previous studies in mice and primates that hybrids gener-
ally exhibit both longer limbs and increased body size relative to 
parents84,98,105,106,109,112–114. A new study of macaques suggests that 
effects of admixture on the pelvis may be relatively small, possibly 
due to functional or developmental constraints, or relatively minor 
divergence of the parent taxa (in this case, at or possibly below the 
subspecies level)115.

Do late Pleistocene Western Eurasian humans fit the 
morphological predictions of a hybrid sample?
Although current genetic evidence indicates that hybridization 
occurred repeatedly among Pleistocene hominins, there have been 
few efforts to link this genetic evidence to morphological evidence 
from the fossil record itself, despite such a link being key for ascer-
taining the status and relevance of the bulk of the fossil record (for 
which genetic data are not available). This is further exacerbated 
by the fact that our ability to extrapolate from genotype to skeletal 
phenotype is currently very limited. While it is true that some indi-
viduals that show genetic evidence of admixture have limited mor-
phology15, making establishing these links difficult, this is not the 
case for other specimens. This lack of discourse between morphol-
ogy and genetics is detrimental to understanding the dynamics of 
human evolution in the late Pleistocene.

Here we explore how insights derived from genetics and model 
organisms might be applied to the interpretation of the human fos-
sil record. In particular, we examine the patterns of variation in 
cranial shape across the late middle to late Pleistocene, interpreted 
in conjunction with published genetic and non-metric phenotypic 
evidence for hybridization. The latter evidence consists of sutural 
and dental developmental anomalies comparable to what has been 
observed in comparative studies on hybridization and its effects 

on the phenotype. Even though admixture between hominin lin-
eages has been demonstrated outside of Western Eurasian contexts, 
we focus specifically on Neanderthals and early H. sapiens, that 
is, hominins from Western Eurasia and Africa, to limit the scope 
of this inquiry. In recognizing the important limitations of spe-
cies concepts and their application to the fossil record, as well as 
long-standing disagreements on Neanderthal alpha taxonomy, we 
avoid the term Homo neanderthalensis, while using H. sapiens to 
refer to extant humans and their ancestors in the late middle and 
late Pleistocene, following recent literature116–118. Consistent with 
current consensus, we consider these taxa to represent distinct lin-
eages evolving in large part independently (see for example, ref. 116) 
and be best viewed as anatomically distinctive but reproductively 
compatible ‘allotaxa’40. We consider the following questions: (1) 
Do late Pleistocene Eurasian H. sapiens as a sample match the ana-
tomical expectations, based on mammalian comparative data, for 
a Neanderthal-early H. sapiens hybrid population spanning mul-
tiple generations? (2) Among individuals for whom genetic data are 
available, does a higher level of Neanderthal ancestry co-occur with 
Neanderthal-like morphology or with developmental abnormali-
ties? (3) How does hybrid status manifest itself in different aspects 
of cranial shape and size, and are these skeletal indicators useful 
predictors of admixture in samples where no genetic evidence is 
available?

Our analyses include late middle to late Pleistocene (roughly 
MIS 7-2) 


Neanderthal and H. sapiens specimens from Europe, 

Africa and the Middle East (Extended Data Table 1 and Fig. 2). We 
consider the Neanderthal sample as one of the ‘parental’ (unhy-
bridized) populations. Because of the poor representation of pene-
contemporaneous African early H. sapiens, a pooled sample of 
ancient and recent sub-Saharan Africans, expected to have no or 
minimal Neanderthal ancestry (see ref. 9), referred to as ‘African H. 
sapiens’, is used as a proxy for early H. sapiens anatomy and as the 
second ‘parental’ population. Our analyses included a few speci-
mens with uncertain attribution or incomplete morphology (Omo 
2, Eliye Springs, Apidima 1); these were not assigned to a group 
and were labelled and discussed separately. All other individuals 
are referred to as Eurasian H. sapiens. As such, they are potentially 
admixed and are the primary focus of this study. Three datasets  
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Fig. 1 | a,b, Principal 



components analyses of mouse crania (a) and mandibles (b) from laboratory bred mice. Images redrawn with permission from ref. 

110 (Figs. 7.2.1 and 7.2.2). Red and green represent parent taxa Mus musculus castaneus and M. m. musculus, that hybridize successfully in the wild across a 
large hybrid zone in China and Japan. Blue represents a pooled sample of first (F1), second (F2) and unidirectionally (with M. m. musculus) backcrossed (B1) 
inter-subspecific hybrids.
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(hemimandible, posterior cranial profile, face) designed to capture 
typical Neanderthal/H. sapiens morphology routinely used for tax-
onomic identification119 were investigated using principal compo-
nents analysis (PCA). A shape index was developed by calculating 
an axis between the mean Neanderthal and mean African H. sapi-
ens shapes and projecting all Eurasian H. sapiens onto it120. For the 
Eurasian H. sapiens sample, we also compiled data on non-metric 
skeletal abnormalities and percentage Neanderthal ancestry, where 
known from the literature, and integrated them in our plots. Results 
are presented in Figs. 3–5.

Empirical research on hybridizing mammalian taxa predicts that 
an admixed sample should contain: (1) individuals with ‘mixed’ or 
intermediate morphologies, (2) individuals with developmentally 
atypical traits and/or (3) individuals that are transgressive in shape 
or size relative to the parental taxa1, resulting in hybrid populations 
that are more diverse than parental groups. In assessing potential 
hybridization between early H. sapiens and Neanderthals, however, 
we must keep in mind some important differences from studies on 
model organisms, which focus primarily on first- or early-generation 
hybrids. Neanderthal to early H. sapiens introgression occurred at 
low levels and asymmetrically, and our Eurasian H. sapiens sample 
certainly comprises mostly later-generation hybrids. Therefore, 
not all specimens in this sample are expected to be admixed, and 
those that are will probably have substantially greater African than 
Neanderthal ancestry components. Furthermore, our analyses focus 
on specific aspects of skull anatomy and therefore differ from model 
organism studies that generally examine size/shape of overall cra-
nial morphology or key non-metric traits. Crucially, an important 
complicating factor is equifinality, that is, that similar morphologies 
can result from different processes, and that some of the predictions 
outlined above for admixture may also result from other evolution-
ary processes. These potentially include the retention of primitive 
features, or convergence due to selection for specific phenotypes 
under particular environmental conditions.

Results
In the hemimandible analysis, Eurasian H. sapiens broadly conform 
to our expectations for a hybridized sample. They occupy shape 
space intermediate to Neanderthals and African H. sapiens in the 
PCA plot (PC1-2, 44.9% of total variance; Fig.  3). This is a simi-
lar pattern to that observed in mouse subspecific hybrids relative 
to parental lineages (Fig. 1). However, although broadly intermedi-
ate, the Eurasian H. sapiens sample falls largely outside the convex 
hulls of either Neanderthals or African H. sapiens, with several of 
these transgressive specimens also plotting outside the 95% confi-
dence ellipses of either ‘parental’ sample. This includes all individu-
als with genetic or morphological signatures of hybridization. The 
Eurasian H. sapiens sample is also partly intermediate, although 
closer to the African H. sapiens in centroid size and in the shape 
index. However, neither the percentage of Neanderthal genetic 
ancestry, where known, nor the incidence of developmental abnor-
malities appear to follow a clear relationship with Neanderthal-like 
morphology or with the shape index values. A case in point is the 
Oase 1 mandible. This individual is known to have approximately 
10% Neanderthal ancestry—equivalent to a Neanderthal ances-
tor four to six generations previously4,121—and is the earliest gen-
eration Neanderthal-modern human hybrid currently known. Oase 
1 shows very large overall size (one of the two largest H. sapiens 
mandibles in centroid size in our sample) and megadont lower 
third molars83,122, consistent with its hybrid status. Yet its mandibu-
lar shape index value is less Neanderthal-like than other specimens 
with known smaller Neanderthal genetic components (Fig.  3). 
Indeed, Muerii 1 (although there is no genome data available on 
Muierii 1, it may represent the same individual as Muierii 2 with 
5.2% Neanderthal ancestry4), Oberkassel 2 and Dolní Věstonice 16 
fall closest to Neanderthals in the mandibular shape index.

A similar pattern is shown by the posterior cranial profile analy-
sis PCA plot (PC1-2, 81.2% of total variance; Fig. 4). Although the 
separation between the African H. sapiens and Neanderthal convex 
hulls is smaller than in the hemimandible analysis (largely due to 
the position of Omo 1), overlap in the 95% confidence ellipses of 
the two ‘parental’ taxa is similarly limited. The Eurasian H. sapiens 
sample is again intermediate between Neanderthals and African H. 
sapiens, but here it shows much more overlap with both ‘parental’ 
convex hulls and 95% confidence ellipses, and especially with the 
African sample, indicating that a large proportion of these Eurasian 
specimens display H. sapiens-like shape, while some are more 
Neanderthal-like (and some intermediate).

This dataset essentially investigates a single, albeit very impor-
tant, feature—the outline of the posterior part of the cranium in 
lateral view. A rounded cranium is considered a derived feature for 
modern humans, and recent work has linked a relatively reduced 
globularity of the parietal and occipital bones in modern Europeans 
to Neanderthal genetic ancestry and even to the presence of spe-
cific Neanderthal alleles35. Our shape index of the posterior cranial 
profile, encompassing the midsagittal outline of the parietal region 
and the upper occipital, might reasonably be considered as a proxy 
for an important aspect of the ‘globularization’ index calculated 
in ref. 35. The overall observed pattern of separation between our 
Neanderthal and African H. sapiens samples is consistent with that 
described in ref. 35, except for Omo 2 and to a lesser extent, Omo 
1. These specimens differ from all other Africans in that they plot 
within the Neanderthal convex hull (Omo 2) or within the region of 
overlap of the African H. sapiens and Neanderthal 95% confidence 
ellipses (Omo 1). Omo 2, the only African specimen overlapping 
with Neanderthals and showing a Neanderthal-like shape index, 
may represent an archaic lineage rather than early H. sapiens (see 
for example, ref. 116). Alternatively, the high PC1 score of Omo 2 
and, to a lesser extent, Omo 1 may indicate high levels of variation 
and population structure in early H. sapiens, as has been argued 
previously123,124. The remaining early African H. sapiens or possible 
H. sapiens, including LH18, Eliye Springs and Aduma 3, plot with 
the African sample; all but Aduma 3 overlap with the Eurasian H. 
sapiens range. In contrast to the African samples, multiple Eurasian 
H. sapiens specimens fall outside the African H. sapiens convex hull 
and confidence ellipse: of those, Qafzeh 6, Pavlov 1 and Mladeč 5 
plot within the Neandertal convex hull, while Cro Magnon 1, Cro 
Magnon 3, Abri Pataud 1, Mladeč 1 and Predmost 3 fall within the 
Neanderthal 95% confidence ellipse. Several more (Chancelade, 
Cioclovina, Cro Magnon 2, Dolní Věstonice 16) plot in the region 
of overlap of the two ‘parental’ confidence ellipses. Many also show 
Neanderthal-like shape indices. Some of these individuals have pre-
viously been described as possessing occipital ‘hemibuns’, posterior 
projections of the occipital bone reminiscent of those shown by 
Neanderthals, possibly due to Neanderthal ancestry. Unfortunately, 
no genomic evidence is available to test this possibility further.

Elongated cranial profiles in fossil H. sapiens might also result 
from the retention of ancestral morphology represented here by 
Omo 1 and possibly Omo 2. However, the Omo specimens greatly 
predate both the Levantine and the European Upper Palaeolithic 
samples by ca. 60–90 kyr and >160 kyr, respectively, making recent 
admixture with Neanderthals a more probable explanation for the 
observed variation in the Upper Palaeolithic, and perhaps also the 
Near Eastern sample—a possibility that requires further investiga-
tion. On the other hand, Oase 2, which exhibits upper third molar 
megadontia83,122 and has also recently been found to have relatively 
elevated Neanderthal admixture (6.06%, ref. 125), plots in the centre 
of the African convex hull in the PCA plot and shows a modern 
human-like shape index. So does Dolní Věstonice 15, which shows 
4.3% Neanderthal ancestry4 as well as a conical mandibular supernu-
merary tooth in the region of the left canine root and rotation of the 
left mandibular premolar122; the supernumerary tooth in particular  
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might be interpreted as possibly resulting from admixture (although 
being a more common form of supernumerary tooth, it is not strong 
evidence). Furthermore, several additional specimens with known, 
relatively low Neanderthal genetic components (Fig. 4) have shape 
index values within the range of African H. sapiens. Finally, the 
proposed early H. sapiens Apidima 1 specimen plots with African 
H. sapiens in both the PCA and shape index plots but is character-
ized by a smaller centroid size, consistent with retention of ancestral 
morphology as well as with possible admixture.

The facial dataset shows yet a different pattern in the PCA plot 
(PC1-2, 39.5% of total variance; Fig. 5). Here the African H. sapi-
ens sample (except for the late Pleistocene specimen Hofmeyr) 
falls within the more dispersed shape space of Eurasian H. sapiens, 

with its 95% confidence ellipse completely nested within that of the 
Eurasian H. sapiens sample. Both plot away from the tightly cluster-
ing Neanderthals. The Eurasian H. sapiens sample is considerably 
more variable in shape, as reflected in their more widely diverging 
PC1 and 2 scores, with most specimens, including all individuals 
with known Neanderthal genetic components, falling outside of 
the African H. sapiens convex hull or even confidence ellipse (that 
is, transgressive relative to African H. sapiens). The early modern 
humans from the Near East (Qafzeh 6 and 9) plot in more inter-
mediate positions in the PCA plot and also have intermediate facial 
shape indices, although still clearly away from the Neanderthal 
range/confidence ellipse. The greater variability and transgressive/
intermediate shape of many individuals in this sample relative to the 

Neanderthal sites African HS sites Eurasian HS sites

32 Mladec 1,523 Abri Pataud17 Aduma 310 La Quina 51 Amud 1

33 Muierii 124 Apidima 118 Hofmeyr11 Régourdou2 Apidima 2

34 Oase 1,225 Brno 219 Omo 112 Saccopastore 13 Biache-Saint-Vaast

35 Oberkassel 1,226 Chancelade20 Wadi Kubbaniya13 Shanidar 1,54 La Chapelle-aux-Saints

36 Pavlov 127 Cioclovina21 Eliye Springs14 Spy 1,25 Feldhofer

37 Predmost 3,428 Cro Magnon 1,2,322 LH1815 Tabun C16 La Ferrassie 1

38 Qafzeh 6,929 Dolní Vestonice 3,13,14,15,1616 Zafarraya7 Gibraltar 1
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Fig. 2 | Localities for Pleistocene fossil hominin specimens used in the analyses. The Near East and potentially the general Eastern Mediterranean region 
and Eastern Europe have been proposed as contact areas between Neanderthals and Pleistocene H. sapiens. The map was produced using QGIS  
(https://www.qgis.org) and Natural Earth (http://naturalearthdata.com/).
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‘parent’ taxa is reflected in its wider confidence ellipse, which over-
laps somewhat with the Neanderthal one, even though no H. sapiens 
plot in the region of overlap of the ellipses. Such increased variabil-
ity is consistent with an admixed sample, but could also result from 
sampling bias, a greater temporal variability in our Eurasian H. sapi-
ens sample, or from within-species geographic variation, although 
similar temporal and geographic variation did not lead to this pat-
tern in the other analyses.

Similarly, the facial shape index values of the African H. sapiens 
specimens fall within the Eurasian H. sapiens range and away from 
those of Neanderthals. Again, there is no relationship between the 
facial shape index and the percentage of Neanderthal ancestry in the 
specimens for which the latter is known (Fig. 5). The two H. sapiens 
samples also show roughly equivalent centroid sizes.

Discussion
We did not approach this study by asking whether hybridization 
was common in late Pleistocene Europe, although current evidence 

suggests that it may have been. Instead, we wanted to evaluate how 
admixture manifests in the skeleton and whether different lines of 
evidence, morphological as well as genetic, can help reveal the pres-
ence of admixture, making it possible to identify hominin hybrids 
on the basis of either (or both). However, our evaluation of the mor-
phology of late Pleistocene Eurasian H. sapiens against predictions 
based on model organisms is based on small and imperfect samples 
(that is, poor representation of African early H. sapiens, few individ-
uals with both genomic and morphological data available, and rep-
resentation of primarily later- rather than early-generation hybrids). 
Recent African individuals are also imperfect models for early H. 
sapiens given that they have gone through their own process of evo-
lution relative to the population for which we are using them as a 
proxy. Furthermore, the interpretation of the observed patterns is 
complicated by equifinality, as phenotypic variation consistent with 
admixture may also result from other processes, especially retention 
of ancestral features; and by sampling limitations that may underes-
timate the true variability of the groups included in our analyses. We 
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 Top right: violin plot of centroid size by group, minimum to maximum values; superimposed boxplot shows median and 25–75% quartiles (n = 8 

Neanderthals; n = 12 Eurasian Upper Palaeolithic H. sapiens; n = 14 recent African H. sapiens; earlier specimens also plotted).
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
 Bottom: shape index. Red, 

Neanderthals; green, African recent (filled circles) and Pleistocene H. sapiens (filled squares); blue, Eurasian Upper Palaeolithic (filled circles) and early late 
Pleistocene H. sapiens (filled squares). Individuals with genetic evidence for hybridization are marked with a DNA symbol in the PCA plot, with % Neanderthal 
ancestry given in the shape index. Individuals with atypical dental or sutural variation as reviewed in ref. 122 are marked with a tooth symbol in the PCA plot and 
with an (*) in the shape index. Tooth and DNA symbols are freely available at https://freesvg.org/pages/about-us. Photo credit for skeletal image: K.H.
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therefore can provide only tentative and preliminary answers to the 
questions posed. These answers, nevertheless, can form the basis 
for future work exploring hybridization in the human fossil record.

To summarize, we explored whether our late Pleistocene Eurasian 
H. sapiens sample fits our predictions for a population with a history 
of hybridization. For our mandibular and posterior cranial datasets, 
we found that they were intermediate in shape and size between 
Neanderthals and African H. sapiens, with some individuals being 
transgressive in aspects of shape—patterns consistent with hybrid-
ization across the sample as a whole. Facial shape, on the other hand, 
did not provide a signal that clearly emulates what we see in com-
parative datasets (for example, baboons, mice), although the large 
variation in the Eurasian H. sapiens sample and high proportion 
of transgressive individuals outside of the African H. sapiens range 
is suggestive. It is unclear why different anatomical regions would 
demonstrate different patterns in the presence of hybridization, if 
indeed that is the signal being detected here. Facial and mandibular 

shape has been argued to be affected differentially by selection and 
by adaptive or plastic responses to external environmental factors 
(for example, ref. 126–128). Facial morphology is also widely recog-
nized as important in species recognition and social interactions 
among primates129, and may therefore be under selective pressure 
to conform more closely to the backcrossing population. Finally, 
in all our analyses, late Pleistocene Eurasian H. sapiens as a sample 
was closer in shape to African H. sapiens than to Neanderthals, as 
expected under conditions of asymmetric gene flow (hypothesized 
for large differences in parental population sizes, as postulated for 
early European H. sapiens relative to late Neanderthals; for exam-
ple, ref. 130), or more importantly, for a sample comprising multiple 
later generations (that is, more backcrossed into modern humans) 
hybrids.

In terms of individual specimens, no direct relationship was 
found between estimated levels of Neanderthal ancestry based on 
genomic evidence where known, and anatomical shape/size, nor 
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between this genomic evidence and expression of developmentally 
abnormal dental or sutural features as reported in the literature. 
This was also the case in the early-generation Neanderthal-modern 
human hybrid, the mandible Oase 1, whose phenotypic signals of 
hybridization are limited to its very large overall size and mega-
dontia. This result is perhaps not surprising, as estimated admix-
ture percentages may vary across most specimens due to noise or 
sequencing depth. Furthermore, the critical factor for the expres-
sion of Neanderthal-like features is most probably the presence 
of particular alleles relevant to the expression of specific pheno-
types, rather than overall percentages of Neanderthal ancestry (as 
has recently been argued for cranial globularity35). Assuming that 
cranio-mandibular morphology is at least in part under genetic 
control, the comparatively moderately elevated Neanderthal genetic 
component shown by, for example, Dolní Věstonice 16, may com-
prise alleles influencing development of the masticatory region and 

neurocranium, which resulted in shape similarities to Neanderthals 
reflected by this specimen’s mandibular and midsagittal profile 
shape indices and PC scores (Figs. 3 and 4) and in the known mis-
alignment of the maxillae along the intermaxillary suture131, but not 
in marked facial similarities (Fig. 5).

Are these skeletal morphologies useful predictors of admixture in 
samples where no genetic evidence is available? At the moment, the 
patterns observed when considering a larger sample/population are 
the most informative. As regards individual specimens, the signals 
are often mixed, even across anatomical regions for the same indi-
viduals, possibly reflecting differential preservation of the hybrid-
ization signal according to anatomical region (see above). The state 
of preservation and degree of completeness of a fossil, therefore, 
may influence whether an admixture signal can be detected. This 
signal will probably further be influenced by the differential expres-
sion of Neanderthal-like or developmentally abnormal features  
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according to the presence of particular Neanderthal alleles or the 
degree and/or recency of ancestry. Nevertheless, some observations 
can be made. The individuals Qafzeh 6, Cro Magnon 3, Mladeč 5 
and Pavlov 1 are the only ones across all our analyses that plot with 
Neanderthals in the PCA plot and show Neanderthal-like shape 
index values in one of our analyses—the posterior midsagittal cra-
nial outline (the only analysis where these three Upper Palaeolithic 
individuals could be included). On this basis, we may hypothesize 
that they have a Neanderthal genetic component comprising alleles 
important for cranial shape. In terms of the Qafzeh specimens, 
Qafzeh 9 plots completely opposite from Qafzeh 6 in the posterior 
midsagittal cranial outline analysis, underlining a very high variabil-
ity in this morphology within a single site. The Qafzeh specimens 
are also the only ones that show a somewhat intermediate position 
in the facial analysis. These results, together with the high levels of 
variation in one site and the geographic origin in the Levant (a pos-
tulated contact area between Neanderthals and modern humans5), 
raise the possibility that the Qafzeh individuals may have some 
Neanderthal ancestry84. Even though such indications are intrigu-
ing, they cannot be considered conclusive and must be treated as 
hypotheses, especially since similar phenotypes might be consistent 
with different underlying causes as mentioned above. Nevertheless, 
it is possible to evaluate the likelihood of such alternative explana-
tions on a case-by-case basis. For example, because a rounded cra-
nium is a derived H. sapiens feature, an alternative hypothesis for a 
relatively elongated cranial phenotype could be that it results from 
retention of the ancestral elongated condition. An ancestral reten-
tion, however, is more convincing for Qafzeh, which represents an 
early H. sapiens population dating to ca. 100–130 ka (Extended Data 
Table 1), than for the Upper Palaeolithic Europeans Cro Magnon 3, 
Mladeč 5 and Pavlov 1, which greatly postdate the establishment of 
the derived condition117,132.

Finally, recent suggestions that skeletal anomalies in some 
Upper Palaeolithic and Neanderthal samples result from inbreed-
ing122,133 may further complicate the interpretation of develop-
mental abnormalities as indicators of admixture. Indeed, both 
processes are expected to have taken place in the highly dynamic 
conditions of cyclical environmental change of Pleistocene 
Eurasia, which probably resulted in repeated isolation of popula-
tions in refugia areas, sometimes leading to local extinctions but 
also to population expansion and dispersals134. Under these condi-
tions, palaeodemes have been proposed to resemble ‘tidal islands’, 
often isolated but occasionally flooded with expanding/dispers-
ing populations and their genetic material134. However, although 
empirical evidence from primates for the skeletal expression of 
inbreeding is limited, the evidence that does exist suggests that it 
is associated with abnormalities (for example, reduced size, anen-
cephaly, polydactyly, syndactyly, limb malformations135–139) that 
are different from those shown to occur in hybrids (for example, 
increased size, extremely rare dental and sutural traits with no 
other associated diseases or syndromes1,84,96,97). This indicates 
that, in the future, it should be possible to distinguish between 
these causal phenomena and their relative contributions to the 
morphology we see in the fossil record.

This study compared genomic and morphological datasets to 
interrogate the fossil evidence for late Pleistocene hybridization 
between Neanderthals and early H. sapiens, for which we currently 
have substantial evidence. We urge further studies of the phenotype 
to expand our ability to detect the ways in which migration, inter-
action and genetic exchange have shaped the human past, beyond 
what is currently visible with the lens of ancient DNA. It is particu-
larly important to examine such datasets together to understand 
the effects of hybridization on the morphology of later-generation 
hybrids, and whether these effects vary by anatomical region. The 
results provided here should form the basis for developing hypoth-
eses to be tested against the human fossil record in the future.

Methods
Our sample comprised late middle and late Pleistocene (roughly corresponding 
to MIS 7-2) fossil human specimens from Europe, Africa and the Middle 
East assigned to Neanderthals and H. sapiens (Extended Data Table 1 and 
Fig. 2), including but not limited to individuals that are genetically known and 
morphologically proposed hybrids. We chose an upper age limit of MIS 7 because 
the suites of diagnostic morphological features of both Neanderthals and modern 
humans were largely established by this time (see for example, refs. 116,140). To 
frame our study in a manner that is consistent with studies from model organisms 
(see for example, Fig. 1; refs. 96–98,110), the Neanderthal portion of this sample was 
considered as representative of one of the ‘parental’ (unhybridized) populations. 
We could not rule out H. sapiens ancestry in individual Neanderthals, although 
so far, evidence for introgression of H. sapiens genes into Neanderthals is more 
limited than the reverse. For the second parental population, because of the poor 
representation of penecontemporaneous African early H. sapiens in our dataset and 
in the fossil record generally, we considered a pooled sample of ancient and recent 
sub-Saharan Africans, expected to have no or minimal Neanderthal ancestry9 
as a proxy for early H. sapiens anatomy. The recent sub-Saharan African portion 
of the pooled H. sapiens sample was represented by three sex-pooled datasets of 
individuals from eastern and southern Africa (face: n = 15; hemimandible: n = 14; 
posterior cranial profile: n = 15) from the collections of the American Museum of 
Natural History, New York, and the University of the Witwatersrand, Johannesburg, 
which we refer to as African H. sapiens. We recognize that the inclusion of these 
small samples of extant sub-Saharan Africans is not ideal, given the potential 
effects of recent and ancient demographic processes, as well as the possibility of 
admixture in deeper time9,16–21. We hoped to mitigate such effects to the extent 
possible by combining the few available ancient individuals with our recent African 
samples and limiting the extant sample to sub-Saharan Africa, thereby reducing the 
likelihood of admixture from Neanderthals. We could not rule out the possibility 
that introgression from other non-Neanderthal ‘ghost lineages’ might be present 
in the African samples, or the late survival of archaic lineages not directly ancestral 
to H. sapiens in our ancient African samples. Specimens explicitly proposed as 
such possible hybrids (for example, the Iwo Eleru calvaria) were excluded from our 
analyses. The results presented largely position the ancient African samples within 
the same shape space as the modern ones (and distinct from Neanderthals), thus 
supporting these choices. All other fossils were considered together as Pleistocene 
(non-Neanderthal) Western Eurasians, which we refer to as Eurasian H. sapiens, 
and as such are potentially admixed, and the primary focus of this study. A few 
individuals with incomplete morphology or uncertain attribution (that is, Omo 
2, Eliye Springs, Apidima 1) were also included in our analyses. These were not 
assigned to a group and are discussed separately.

We expect that the morphological datasets investigated would differentiate 
between Neanderthals and African H. sapiens, reflecting their commonly accepted 
status as distinct lineages. Further, we made a series of predictions aimed at 
determining whether the Eurasian H. sapiens sample shows patterns of variation 
consistent with hybridization between African H. sapiens and Neanderthals. 
Empirical research on hybridization in primates, mice and a handful of other 
mammals predicts that an admixed sample should contain: (1) individuals 
with ‘mixed’ or intermediate morphologies somewhere between their parental 
(un-admixed) taxa, (2) individuals with developmentally atypical traits not seen (or 
seen at extremely low frequency) in the parental taxa (especially dental or sutural 
anomalies) and/or (3) individuals that are transgressive in shape or size relative to 
the parental taxa1; these characteristics framed our morphological expectations. 
Taken together, they were expected to result in hybrid populations that are more 
diverse than parental groups. The consistency of the findings across taxa and 
generations within taxa1,97 supported the use of this general pattern for determining 
hybrid status in the fossil record.

In assessing the question of hybridization between early H. sapiens and 
Neanderthals, some additional dynamics also needed to be taken into account. 
Introgression from Neanderthals into H. sapiens occurred at a low level, probably 
mediated by differences in population size (with H. sapiens being considerably 
larger8,130) as well as directionality of backcrossing and possibly reduced hybrid 
fitness141–143. Moreover, any sample is certain to be composed of multi-generational 
recombinants rather than first-generation hybrids. As a result, not all specimens 
in our Eurasian H. sapiens sample were expected to be admixed, and those 
that are admixed would probably represent individuals with substantially more 
African than Neanderthal ancestry components. Indeed, all Upper Palaeolithic 
Eurasian specimens for which genetic information is available showed evidence of 
Neanderthal admixture at least as great as that observed in modern non-Africans, 
but specimens with recent Neanderthal ancestry were rare6,125. This differs from 
the studies of model organisms which focus primarily on early-generation 
hybrids. Furthermore, our analyses focused on specific aspects of skull anatomy 
(mandibular, neurocranial, facial) to maximize samples (see below), and therefore 
our datasets do not exactly replicate the model organism studies that generally 
examine size/shape of overall cranial morphology (in addition to key non-metric 
traits). As a result of these factors, we expected to find substantial overlap between 
the African H. sapiens ‘parental’ population and a Eurasian admixed sample, with 
some individuals plotting as expected for hybrids, that is, intermediate, atypical, or 
transgressive. Alternatively, if no admixture occurred, or if such admixture did not 
manifest on the aspects of cranial morphology investigated here, the Eurasian  
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H. sapiens sample would be expected to largely conform to the patterns shown by 
the African H. sapiens ‘parental’ population. However, it must be stressed again 
that an important complicating factor in these assessments is the problem of 
equifinality, that is, that similar morphologies can result from different processes. 
Some of the predictions outlined above for admixture may also apply to other 
evolutionary processes, such as the retention of primitive features, or selection 
for specific phenotypes under particular environmental conditions leading to 
convergence. The results presented here must therefore be interpreted with caution.

Due to the fragmentary nature of the fossil record, individuals are generally 
not fully preserved and different individuals are often represented by different 
parts of the skeleton. To include as many fossils as possible, we evaluated 
three anatomical regions: the hemimandible, the posterior cranial profile 
(midsagittal profile) and the face. Data were collected previously by K.H. (the 
hemimandible dataset was collected jointly by K.H. and E. Lopez; see ref. 144). 
They consisted of three-dimensional landmarks and semilandmarks, processed 
with Procrustes superimposition and semilandmark sliding (in the case of the 
posterior cranial profile), and analysed using PCA. The datasets were specifically 
designed to capture salient morphological features that are widely considered 
Neanderthal or H. sapiens-derived traits in the respective anatomical regions 
and are routinely used for taxonomic identification144–146. However, they may be 
affected differentially by different evolutionary processes. For example, facial and 
mandibular traits may be influenced by selection resulting from environmental 
factors, such as climate or diet126–128, with facial morphology also possibly affected 
by stabilizing selection due to its importance in species recognition129. In contrast, 
neurocranial shape is proposed to track neutral evolutionary changes and 
population history more closely126, and has been linked to Neanderthal genetic 
ancestry in modern Europeans35. Our mandibular and facial datasets, therefore, 
may be expected to reflect a hybridization signal less clearly than our midsagittal 
profile dataset. For each dataset, we also developed a shape index by calculating 
an axis between the mean Neanderthal and mean African H. sapiens shapes and 
projecting all Eurasian H. sapiens onto it35,117. Finally, data indicating the presence 
of non-metric skeletal abnormalities and genetic information on % Neanderthal 
ancestry were compiled from the literature, where available, and integrated in our 
figures and discussion.

Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available in the Zenodo open source 
online repository at https://doi.org/10.5281/zenodo.6846628.
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Extended Data Table 1 | Hominin samples used in analyses
Neanderthals Face Mandible Posterior Profile Apx. geological age (ka) Reference
 Amud 1 x x 55–60 147
 Apidima 2 x ca. 170 117
 Biache St Vaast x ca. 250 148
 La Chapelle-aux-Saints x x 47 / 56 149
 Feldhofer x 40 150
 Ferrassie 1 x x x 43–45 151
 Gibraltar 1 x ca. 50 152
 Guattari 1 x x 50–60 153,154
 Krapina J x 140-120 155
 La Quina 5 x x >​48 (OIS 3-4) 156
 Regourdou x MIS 4-5 157
 Saccopastore 1 x 295-220 158
 Shanidar 1 x x 46–50 Uncalibrated 159
 Shanidar 5 x 46–50 Uncalibrated 159
 Spy 1 x 40.6–44.2 cal BP 160
 Spy 2 x 40.6–44.2 cal BP 160
 Tabun C1 x 130-100 161,162
 Zafarraya x ca 30–46, >​46 163,164
(*possible) Homo sapiens Late Middle – Late Pleistocene Africa
 Aduma 3 x 79–105 165
 Hofmeyr x 36 166
 *Eliye Springs x Middle/Late Pleistocene 167,168
 LH 18 x 120 ±​ 30 169,170
 *Omo 1 x 233 ±​ 22 171,172
 Omo 2 x 195 ±​ 5 172
 Wadi Kubbaniya x x ca. 20 173
(*possible) Homo sapiens Late Middle – Late Pleistocene Eurasia

 Abri Pataud 1 x x x 28-26 (22 uncalibrated) 174
 *Apidima 1 x ca. 210 117
 Brno 2 x 23.7 uncal (ca. 28.5 cal BP) 175
 Chancelade x x 18 176
 Cioclovina x ca. 33 177
 Cro Magnon 1 x x ca 30 178
 Cro Magnon 2 x x ca 30 178
 Cro Magnon 3 x ca 30 178
 Dolní Věstonice 13 x x x ca. 31 179
 Dolní Věstonice 14 x x ca. 31 179
 Dolní Věstonice 15 x x x ca. 31 179
 Dolní Věstonice 16 x x x ca. 30 179
 Dolní Věstonice 3 x x x undated 179
 Grimaldi x x 25 uncal (ca. 29.5 cal BP) 180
 Isturitz III x Upper Paleolithic 181
 Mladec 1 x x 35–36.5 182
 Mladec 5 x 35–36.5 182
 Muierii 1 x x x ca. 35 81
 Oase 1 x ca. 40.5 183
 Oase 2 x x ca. 40.5 82
 Oberkassel 1 x 12 uncalb (ca. 14.2 cal BP) 184
 Oberkassel 2 x 12 uncalb (ca. 14.2 cal BP) 184
 Pavlov 1 x ca. 30 179
 Predmost 3 x x 27–29 185
 Predmost 4 x x 27–29 185
 Qafzeh6 x x 100–130 162
 Qafzeh9 x x x 100–130 162
 Skhul 5 x x 100–130 162

Dates are reported in calendar years unless otherwise stated
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Provide a description of all commercial, open source and custom code used to collect the data in this study, specifying the version used OR 
state that no software was used.

Data analysis Provide a description of all commercial, open source and custom code used to analyse the data in this study, specifying the version used OR 
state that no software was used.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data availability statement included. Data will be made freely available on the zenodo platform
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid 
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in 
study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the 
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for 
sharing of individual-level data; provide overall numbers in this Reporting Summary.  Please state if this information has not 
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based 
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation 
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established. 

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this 
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates 
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible, 
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 
what criteria were used to decide that no further sampling was needed.
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Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 

computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description yes

Research sample yes

Sampling strategy yes

Data collection yes

Timing and spatial scale n/a

Data exclusions n/a

Reproducibility n/a

Randomization n/a

Blinding n/a

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or 
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance yes

Specimen deposition yes

Dating methods n/a

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight All samples were accessed with permission from the curating institutions and following all relevant regulations

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 
numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 
performed, justify reasons for lack of sex-based analysis.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.
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Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 

was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.
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Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).
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Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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